Как работает турбогенератор. Как устроены синхронные турбо- и гидрогенераторы? Турбогенераторы с воздушным охлаждением

И паровой или газовой турбины, выполняющей роль привода. Термин "турбогенератор" намеренно включён в название ГОСТ 533, чтобы отличать данные типы генераторов от генераторов вертикального исполнения, используемых в паре с гидротурбинами ГОСТ 5616 (использование терминов "турбогенератор" и "гидрогенератор" для описания отдельно взятых электрических генераторов является неправильным). В случае электростанций применяется термин турбоагрегат .

Основная функция в преобразовании внутренней энергии рабочего тела в электрическую, посредством вращения паровой или газовой турбины . Скорость вращения ротора определяется по параметрам используемого генератора, от десятков тысяч оборотов в минуту (для синхронных генераторов с возбуждением от постоянных магнитов "НПК "Энергодвижение") до 3000, 1500 об/мин (у синхронных генераторов с возбуждением обмоток ротора). Механическая энергия от турбины преобразуется в электрическую посредством вращающегося магнитного поля ротора в статоре . Поле ротора, которое создается либо установленными на ротор постоянными магнитами, либо током постоянного напряжения, протекающего в медной обмотке ротора, приводит к возникновению трёхфазного переменного напряжения и тока в обмотках статора. Напряжение и ток на статоре тем больше, чем сильнее поле ротора, т.е. больше ток протекающий в обмотках ротора. У синхронных генераторов с внешним возбуждением напряжение и ток в обмотках ротора создает тиристорная система возбуждения или возбудитель - небольшой генератор на валу основного генератора. В составе турбогенераторов применяются генераторы, имеющие цилиндрический ротор, установленный на двух подшипниках скольжения , в упрощенном виде напоминает увеличенный генератор легкового автомобиля. Выпускаются 2-х полюсные (3000 об/мин), 4-х полюсные (1500 об/мин как на Балаковской АЭС), и многополюсные машины, в зависимости от мест эксплуатации и технологических требований. Для охлаждения таких генераторов используются следующие способы охлаждения обмоток: жидкостное - через рубашку статора; жидкостное - с непосредственным охлаждением обмоток; воздушное; водородное (чаще применяются на АЭС).

История

Один из основателей компании «ABB » Чарльз Браун построил первый турбогенератор в 1901 году . Это был 6-ти полюсный генератор мощностью 100 кВА .

Появление во второй половине XIX века мощных паровых турбин привело к тому, что потребовались высокоскоростные турбогенераторы. Первое поколение этих машин имело стационарную магнитную систему и вращающуюся обмотку. Но данная конструкция имеет целый ряд ограничений, одно из них - небольшая мощность. Кроме этого, ротор явнополюсного генератора не способен выдерживать большие центробежные усилия.

Основным вкладом Чарльза Брауна в создание турбогенератора было изобретение ротора, в котором его обмотка (обмотка возбуждения) укладывается в пазы, которые получаются в результате механической обработки поковки. Вторым вкладом Чарльза Брауна в создание турбогенератора была разработка в 1898 году ламинированного цилиндрического ротора. И, в конечном итоге, в 1901 году он построил первый турбогенератор. Данная конструкция используется в производстве турбогенераторов по сей день.

Типы турбогенераторов

В зависимости от системы охлаждения турбогенераторы подразделяются на несколько типов: с воздушным, масляным, водородным и водяным охлаждением. Также существуют комбинированные типы, например, генераторы с водородно-водяным охлаждением.

Также существуют специальные турбогенераторы, к примеру, локомотивные, служащие для питания цепей освещения и радиостанции паровоза . В авиации турбогенераторы служат дополнительными бортовыми источниками электроэнергии. Например, турбогенератор ТГ-60 работает на отбираемом от компрессора авиадвигателя сжатого воздуха, обеспечивая привод генератора трёхфазного переменного тока 208 вольт, 400 герц, номинальной мощностью 60 кВ*А.

Также были разработаны сверхмощные турбогенераторы КГТ-20 и КГТ-1000 на основе сверхпроводимости .

Конструкция турбогенератора

Генератор состоит из двух ключевых компонентов - статора и ротора. Но каждый из них содержит большое число систем и элементов. Ротор - вращающийся компонент генератора и на него воздействуют динамические механические нагрузки, а также электромагнитные и термические. Статор - стационарный компонент турбогенератора, но он также подвержен воздействию существенных динамических нагрузок - вибрационных и крутящих, а также электромагнитных, термических и высоковольтных.

Возбуждение ротора генератора

Первоначальный (возбуждающий) постоянный ток ротора генератора подается на него с возбудителя генератора. Обычно возбудитель соосно соединён упругой муфтой с валом генератора и является продолжением системы турбина-генератор-возбудитель. Хотя на крупных электрических станциях предусмотрено и резервное возбуждение ротора генератора. Такое возбуждение происходит от отдельно стоящего возбудителя. Такие возбудители постоянного тока приводятся в действие своим электродвигателем переменного трехфазного тока и включены как резерв в схему сразу нескольких турбоустановок. С возбудителя постоянный ток подается в ротор генератора посредством скользящего контакта через щётки и контактные кольца. Современные турбогенераторы используют тиристорные системы самовозбуждения.

У этой паровой турбины хорошо видны лопатки рабочих колес.

Тепловая электростанция (ТЭЦ) использует энергию, высвобождающуюся при сжигании органического топлива - угля, нефти и природного газа - для превращения воды в пар высокого давления. Этот пар, имеющий давление около 240 килограммов на квадратный сантиметр и температуру 524°С (1000°F), приводит во вращение турбину. Турбина вращает гигантский магнит внутри генератора, который вырабатывает электроэнергию.

Современные тепловые электростанции превращают в электроэнергию около 40 процентов теплоты, выделившейся при сгорании топлива, остальная сбрасывается в окружающую среду. В Европе многие тепловые электростанции используют отработанную теплоту для отопления близлежащих домов и предприятий. Комбинированная выработка тепла и электроэнергии увеличивает энергетическую отдачу электростанции до 80 процентов.

Паротурбинная установка с электрогенератором

Типичная паровая турбина содержит две группы лопаток. Пар высокого давления, поступающий непосредственно из котла, входит в проточную часть турбины и вращает рабочие колеса с первой группой лопаток. Затем пар подогревается в пароперегревателе и снова поступает в проточную часть турбины, чтобы вращать рабочие колеса с второй группой лопаток, которые работают при более низком давлении пара.

Вид в разрезе

Типичный генератор тепловой электростанции (ТЭЦ) приводится во вращение непосредственно паровой турбиной, которая совершает 3000 оборотов в минуту. В генераторах такого типа магнит, который называют также ротором, вращается, а обмотки (статор) неподвижны. Система охлаждения предупреждает перегрев генератора.

Выработка энергии при помощи пара

На тепловой электростанции топливо сгорает в котле, с образованием высокотемпературного пламени. Вода проходит по трубкам через пламя, нагревается и превращается в пар высокого давления. Пар приводит во вращение турбину, вырабатывая механическую энергию, которую генератор превращает в электричество. Выйдя из турбины, пар поступает в конденсатор, где омывает трубки с холодной проточной водой, и в результате снова превращается в жидкость.

Мазутный, угольный или газовый котел

Внутри котла

Котел заполнен причудливо изогнутыми трубками, по которым проходит нагреваемая вода. Сложная конфигурация трубок позволяет существенно увеличить количество переданной воде теплоты и за счет этого вырабатывать намного больше пара.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Особенности конструкции турбогенератора

Турбогенератор - работающий в паре с турбиной синхронный генератор.

Основная функция в преобразовании механической энергии вращения паровой или газовой турбины в электрическую. Скорость вращения ротора 3000, 1500 об/мин. Механическая энергия от турбины преобразуется в электрическую посредством вращающегося магнитного поля ротора в статоре. Поле ротора, которое создается током постоянного напряжения, протекающего в медной обмотке ротора, приводит к возникновению трёхфазного переменного напряжения и тока в обмотках статора. Напряжение и ток на статоре тем больше чем сильнее поле ротора т.е. больше ток протекающий в обмотках ротора. Напряжение и ток в обмотках ротора создает тиристорная система возбуждения или возбудитель - небольшой генератор на валу турбогенератора.

Турбогенераторы имеют цилиндрический ротор, установленный на двух подшипниках скольжения, в упрощенном виде напоминает увеличенный генератор легкового автомобиля. Выпускаются 2-х полюсные (3000 об/мин), 4-х полюсные (1500 об/мин как на Балаковской АЭС), следовательно, имеют высокие частоты вращения и проблемы с этим связанные. По способам охлаждения обмоток турбогенератора различают: с водяным охлаждением (три воды), с воздушным и водородным (чаще применяются на АЭС).

По качеству, надежности и долговечности турбогенераторов - Россия занимает передовые позиции в мире.

Конструкция турбогенератора

Генератор состоит из двух ключевых компонентов - статора и ротора . Но каждый из них содержит большое число систем и элементов.

Ротор - вращающийся компонент генератора и на него воздействуют динамические механические нагрузки, а также электромагнитные и термические.

Статор - стационарный компонент турбогенератора, но он также подвержен воздействию существенных динамических нагрузок - вибрационных и крутящих, а также электромагнитных, термических и высоковольтных.

В зависимости от системы охлаждения турбогенераторы подразделяются на несколько типов : с воздушным, масляным, водородным и водяным охлаждением. Также существуют комбинированные типы, например, генераторы с водородно-водяным охлаждением.

Также существуют специальные турбогенераторы, к примеру, локомотивные, служащие для питания цепей освещения и радиостанции паровоза. В авиации турбогенераторы служат дополнительными бортовыми источниками электроэнергии.

Например, турбогенератор ТГ - 6 0 работает на отбираемом от компрессора авиадвигателя сжатом воздухе, обеспечивая привод генератора трёхфазного переменного тока 208 вольт, 400 герц, номинальной мощностью 60 кВ*А.

Основными направлениями в области научно-технической политики компании «Электросила » я вляются:

· разработка новой продукции с техническими характеристиками, соответствующими или превосходящими мировые аналоги;

· привлечение к разработке новой продукции ведущих отечественных научных организаций;

· развитие материально-технической базы конструкторских подразделений и исследовательских лабораторий.

Изготавливают турбогенераторы:

· Всего изготовлено более 2701 турбогенераторов суммарной мощностью 275,1 ГВт (или 323,6 ГВ*А)

· Диапазон мощностей выпускаемых турбогенераторов от 2 до 1200 МВт

· Турбогенераторы «Силовых машин» работают в 44 странах мира

· Первый турбогенератор «Силовых машин» был изготовлен филиалом «Электросила» в 1924 году

Особенности конструкции современных турбогенераторов.

Одна их важнейших проблем турбостроения - охлаждение.

Прославленный ленинградский завод Электросила имени С.М. Кирова отгружает в адрес Костромской ГРЭС турбогенератор мощностью 1,2 млн. кВт. Создание такой исполинской электрической машины - замечательная победа советской науки и техники.

Вот что ему рассказали о создании сверхмощных турбогенераторов:

В результате научно-технического прогресса в энергомашиностроении, металлургии, благодаря созданию новых материалов, успехам технологии единичную мощность отечественных турбогенераторов удалось повысить с 0.5 тыс. кВт (1924 г.) до 1200 кВт (1975 г.), т.е. за 50 лет она выросла в 2400 раз.

Это большое достижение нашей науки и техники, особенно если учесть, что чем мощнее была создаваемая машина, тем сложнее оказывался узел проблем, встававших перед учеными, конструкторами, инженерами.

Чтобы получить хотя бы общее представление о том, как достигалось повышение мощности, какие основные задачи приходилось решать при этом, рассмотрим некоторые особенности конструкции современных турбогенераторов.

Ротор турбогенератора , который сидит на одном валу с паровой турбиной, выполняется из массивной поковки магнитной стали. В его обмотку от постороннего источника подается постоянный ток, и таким образом ротор превращается в электромагнит. При вращении ротора создаваемое им магнитное поле пересекает проводники статора, которые уложены в пазах сердечника (он выполняет роль магнитопровода). В результате в проводниках статора индуктируется переменная электродвижущая сила (э. д. с). От статора переменный ток поступает на повышающий трансформатор, а затем по линии электропередачи направляется к потребителям.

Даже это описание работы турбогенератора позволяет установить пути увеличения его мощности.

Ясно, что сделать это можно, повышая частоту вращения ротора : чем она будет больше, тем чаще магнитное поле будет пересекать обмотку статора. Казалось бы, такое решение весьма желательно, так как и паровая турбина имеет наилучшие технико-экономические показатели при больших частотах вращения. Но в действительности возможности в этом направлении строго ограничены. В Советском Союзе стандартная частота тока-50 Гц. Следовательно, чтобы при двух полюсах вырабатывать ток такой частоты, ротор должен делать за секунду 50 оборотов, или 3000 оборотов в минуту.

Очевидно, мощность турбогенератора можно повышать, увеличивая его габариты . Конечно. Ведь чем больше внутренний диаметр и длина статора (соответственно и ротора), тем больше размеры магнитной системы машины, а значит, величина магнитного потока, который и наводит э.д.с. в обмотке статора. И действительно, было время, когда конструкторы добивались роста мощности турбогенератора в значительной степени за счет увеличения его габаритов. Однако и эта возможность довольно скоро была практически исчерпана. Чем же это объясняется?

Длина той части ротора, на которой располагается обмотка (активная длина), не может быть существенно больше 8 м , иначе возникнут недопустимые прогибы. Ограничен и диаметр ротора величиной 1,2-1,3 м , так как по условиям прочности линейная скорость точек его поверхности не должна превышать 170-190 м в секунду (а это уже скорость реактивного самолета), при этом возникают усилия в сотни тонн, стремящиеся вытолкнуть обмотку из пазов. Если сделать ротор диаметром свыше 1,3 м, то даже лучшая легированная сталь не выдержит - центробежные силы разрушат конструкцию. Внешний диаметр статора также имеет свой предел - 4,3 м иначе, чтобы перевезти турбогенератор по железной дороге, придется расширять мосты и тоннели, останавливать встречное движение поездов по маршрутам следования. Может быть, сделать статор разъемным, чтобы облегчить перевозку? Но тогда на электростанции надо создавать филиал завода - сборочный цех и испытательную станцию.

Несмотря на значительные успехи металлургической промышленности, активный объем ротора за период с 1937 по 1974 год вырос менее чем в 2 раза (длина - с 6,5 до 8 м, диаметр - с 1 до 1,25 м), в то время как мощность турбогенераторов увеличивалась в 12 раз (со 100 до 1200 тыс. кВт). «Предельные габариты» были фактически достигнуты уже при создании машины в 300 тыс. кВт. Конечно, некоторые, правда, незначительные изменения размеров с увеличением мощности турбогенераторов происходили и в дальнейшем. Надо заметить, что, хотя и наблюдается прогресс в улучшении магнитных характеристик сталей, имеющиеся пределы по их насыщению не позволяют сколь-нибудь существенно повысить магнитную индукцию (для увеличения мощности генератора).

Центральная проблема

Теперь становится ясно, что для продвижения вверх по шкале мощности остается фактически один путь - увеличение токовой нагрузки статора . Но чем больше ток, проходящий по обмоткам машины, тем сильнее они нагреваются. Увеличивается ток в два раза - в четыре раза увеличиваются тепловые потери, ток растет в три раза, выделение тепла - в девять и т.д. Таков неумолимый закон физики.

Путь увеличения токовых нагрузок оказался довольно тернистым. Теперь главным врагом конструкторов стало тепло. И надо было найти эффективные способы отводить его от частей машины раньше, чем их температура успеет превысить допустимые значения.

Итак, центральной стала проблема охлаждения турбогенератора . От успехов в ее решении и сегодня в основном зависит прогресс турбогенераторостроения.

Вся история борьбы за повышение единичной мощности турбогенератора есть, в сущности, история развития способов его охлаждения.

Турбогенераторы, которые выпускались в довоенные годы, охлаждались воздухом. В машине 100 тыс. кВт устанавливались вентиляторы, которые ежесекундно прогоняли через нее 60 кубометров воздуха. Из-за малой его теплопроводности даже такой воздушный ураган оказался недостаточно эффективным для охлаждения машин большей мощности.

Лучше, чем воздух, отбирает тепло водород , так как его теплопроводность почти в 7 раз выше . К тому же плотность водорода в 10 раз меньше : ротору легча вращаться, а менее вязкой среде, снижаются потери на трение, коэффициент полезного действия турбогенератора увеличивается примерно на один процент; существенно и то что в среде водорода медленнее изнашивается («стареет») изоляция. Мощность турбогенератора при таком охлаждении удалось поднять до 150 тыс. кВт.

Чтобы создать еще более крупную машину, надо было опять-таки улучшать отвод тепла.

У машины в 150 тыс. кВт охлаждающий газ отнимал тепло, омывая наружную поверхность ротора и поверхность вентиляционных каналов в сердечнике статора. Такое косвенное охлаждение оказалось недостаточным для турбогенераторов следующей ступени мощности. У них впервые часть проводников в обмотках сделали полыми, и через них прогонялся водород. Непосредственное охлаждение вместо косвенного позволило создать машину в 200 тыс. кВт (1957 год).

Конечно, заманчиво было использовать для охлаждения воду: ведь ее теплопроводность в 3 раза, а теплоемкость в 3500 раз больше, чем у водорода. Но реализовать эту идею трудно из-за «несовместимости» воды и электричества. При малейшем увлажнении изоляции возможны пробой, короткое замыкание и весьма серьезная авария.

В турбогенераторе мощностью 300 тыс. кВт все же удалось осуществить непосредственное охлаждение водой обмоток статора. И хотя жидкость прогоняется под давлением по полым проводникам статора совсем близко от корпусной изоляции, водяной тракт настолько надежно спроектирован, так тщательно изготовлен, что прорыв воды практически исключен. (Для охлаждения применяют дистиллированную воду, так как обычная вода проводит электрический ток и оставляет осадки растворенных в ней солей на внутренних стенках проводников.)

Схема охлаждения:

водой - статорную обмотку,

водородом - роторную обмотку и активное железо - оказалась очень удачной. Она была использована и при создании турбогенераторов мощностью 500 и 800 тыс. кВт.

Таким образом, мы видим, что появление более совершенных систем охлаждения связано с невозможностью развития предыдущих типов машин, с достижением ими предельных мощностей. Показательно, что в дальнейшем новые решения распространялись не только вверх, но и вниз по шкале мощностей (в настоящее время для всех современных турбогенераторов мощностью 150 тыс. кВт и выше применяется непосредственное водяное охлаждение обмотки статора ) и границы между машинами с различными системами охлаждения устанавливались, по технико-экономическим соображениям.

Следует отметить, что новые принципы исполнения машин, которые появляются при повышении их единичной мощности, почти всегда оказываются и технически и экономически более целесообразными также для машин менее мощных.

Одно из главных следствий создания все более интенсивных систем охлаждения - снижение удельных расходов материалов при одновременном росте мощности турбогенератора . Если для машины в 30 тыс. кВт он был равен 2,75 кг (на 1 кВА), то с увеличением мощности турбогенератора до 800 тыс. кВт стал уже 0,58. Если бы удельный расход у него был бы таким же, как у машины в 30 тыс. кВт, то масса его была бы не 500 т, а 2000 т. А ведь на долю материалов приходится примерно 75 процентов себестоимости турбогенератора1

Проблема отвода тепла действительно центральная, но далеко не единственная. Путь интенсификации, то есть увеличения мощности турбогенератора при почти неизменяющемся его объеме, приводит, естественно, к росту электромагнитной, тепловой и механической напряженности машины. Одновременно с этим снижается (если не принимать специальных мер) её надежность.

Охлаждение

Во время работы в генераторе возникают потери энергии, превращающиеся в теплоту и нагревающие его элементы. Хотя к. п. д. современных генераторов очень высок и относительные потери составляют всего 1,5-2,5%, абсолютные потери достаточно велики (до 10 МВт в машине 800 МВт), что приводит к значительному повышению температуры активной стали, меди и изоляции.

Предельный нагрев генераторов лимитируется изоляцией обмоток статора и ротора, так как под воздействием теплоты происходит ухудшение ее электроизоляционных свойств и понижение механической прочности и эластичности. Изоляция высыхает, крошится и перестает выполнять свои функции. Опытным путем установлено, что процесс этого, так называемого старения изоляции протекает тем быстрее, чем выше ее температура. Математически это выражается формулой

В качестве охлаждающей среды в современных генераторам применяют газы (воздух, водород) и жидкости (вода, масло).

Турбогенераторы выполняются с воздушным, водородным, водородно-жидкостным или чисто жидкостным охлаждением .

По способу отвода теплоты от меди обмоток системы охлаждения подразделяются накосвенные (поверхностные) и непосредственные.

При косвенном охлаждении (оно применяется только при газах) охлаждающий газ не соприкасается с проводником обмоток, а теплота, выделяемая в них, передается газу через изоляцию, которая таким образом оказывается перегруженной в тепловом отношении и значительно ухудшает теплопередачу.

При непосредственном охлаждении водород, вода циркулируют по внутрипроводниковым каналам и, соприкасаясь непосредственно с нагретой медью, отводят от нее теплоту при максимальной эффективности теплопередачи, так как между источником тепла и охлаждающей средой нет никаких барьеров. Большим преимуществом такой системы является также небольшая тепловая нагрузка изоляции.

Исторически первой системой охлаждения генераторов была система косвенного охлаждения. При этой системе циркуляция воздуха в машине осуществляется вентиляторами. Нагретый в машине воздух выбрасывается через горячие камеры в воздухоохладитель, расположенный под генератором, а оттуда, через общие камеры холодного воздуха поступает обратно в генератор (рис. 1-1).

Из схемы на рис. 1-2 видно, что при такой системе вентиляции один и тот же объем воздуха совершает замкнутый цикл охлаждения, поэтому ее называют замкнутой. В зависимости от расположения вентиляционных каналов и направления движения воздуха в машине различают осевую (рис. 1-3) и радиальную (рис. 1-4) вентиляцию.

Замкнутая система косвенного воздушного охлаждения турбогенератора

Эффективность вентиляции повышается при разделении потока охлаждающего воздуха на несколько параллельных струй. Радиальная многоструйная система вентиляции широко применялась до 50-х годов, и сейчас в эксплуатации находится значительное число турбогенераторов до 100 МВт, а также гидрогенераторов до 225 МВт с воздушным охлаждением (рис. 1-5).

В настоящее время косвенное воздушное охлаждение применяют ограниченно, в турбогенераторах только до 12 МВт . Более мощные генераторы оснащаются теперь более эффективными системами охлаждения, позволяющими значительно увеличить единичную мощность без существенного увеличения размеров машины, которые уже у генераторов 100 МВт с косвенным воздушным охлаждением достигли предельных значений, определяемых транспортными, технологическими и конструктивными соображениями.

Замкнутые системы вентиляции М машина; В = вентилятор; О - охладитель

Осевая вентиляция

Повышение единичной мощности генераторов может производиться только за счет увеличения отдельных конструктивных параметров, входящих в (1-9).

Однако частота вращения не может быть повышена, так как определяется частотой сети и числом пар полюсов генератора.

Индукция в зазоре современных крупных турбогенераторов также достигла практически предельного значения 1 Тл и не может существенно меняться из-за насыщения в зубцах.

Диаметр статора нельзя увеличивать из-за транспортных ограничений, а диаметр ротора - по условиям технологии изготовления его бочки.

Длина бочки ротора не должна быть больше шестикратного диаметра бочки, так как иначе статический прогиб ее достигнет недопустимых значений, а собственная частота приблизится к критической, при которой могут возникнуть опасные вибрации ротора. Это означает, что при предельном диаметре ротора 1200 мм длина его активной стали не может быть больше 7200-7500 мм.

Таким образом, единственная возможность повышения единичной мощности генераторов заключается в увеличении линейной нагрузки (а следовательно, плотности тока), которое требует соответствующего увеличения интенсивности отвода теплоты и может быть выполнено только при переходе на принципиально иные способы охлаждения.

Первым шагом повышения интенсивности охлаждения был переход на другую охлаждающую среду (водород) при сохранении системы косвенного охлаждения.

турбогенератор синхронный мощность

Многоструйная система водородного охлаждения турбогенератора

За счет лучших теплоотводящих свойств водорода удалось изготовить генераторы с максимальной мощностью 150 МВт.

Кроме повышения единичной мощности при переходе на водород были получены следующие преимущества: потери в генераторе на трение и вентиляцию уменьшились в 10 раз, так как плотность водорода в 14 раз меньше плотности воздуха. Это привело к повышению к. п. д. турбогенератора примерно на 0,8%. Удлинился срок службы изоляции и повысилась ее надежность, так как при коронировании не возникает озона, вызывающего интенсивное окисление изоляции и вредные азотные соединения.

Из-за значительно меньшей вязкости водорода снижается шум генератора.

При внутренних повреждениях в машине уменьшается вероятность пожара в ней, так как водород не поддерживает горения. Значительно уменьшается поверхность газоохладителей, которые могут теперь быть встроены в корпус генератора. Правда, применение водорода для охлаждения связано с опасностью взрывов гремучей смеси, которая образуется при определенных соотношениях кислорода и водорода. Однако правильная эксплуатация систем водородного охлаждения сводит на нет эту опасность.

Косвенное водородное охлаждение сохранилось в настоящее время только в турбогенераторах 30-60 МВт и в синхронных компенсаторах 32 MBЧА и выше, так как увеличение единичной мощности при косвенной системе охлаждения ограничено превышениями температур в изоляции и стали над температурой охлаждающей среды.

Дальнейшее повышение единичной мощности турбогенераторов оказалось возможным лишь при переходе на систему непосредственного охлаждения . Такое охлаждение применяется теперь не только в машинах 200 -800, но и в машинах 150, 100 и 60 МВт.

Н аилучшей охлаждающей средой является вода . Получение дистиллята с удельным сопротивлением 200-10+3 ОмЧсм не представляет трудностей. Поэтому при жидкостном охлаждении преимущественно применяется вода. Теплоотводящая способность трансформаторного масла примерно в 2,5 раза ниже, чем воды, а кроме того, масло пожароопасно и поэтому значительно реже применяется в качестве охлаждающей среды.

Для непосредственного охлаждения статора и ротора турбогенераторов широко применяется также водород.

Турбогенераторы используются на атомных и тепловых электростанциях .

С их помощью электроэнергия вырабатывается при непосредственном контакте с газовыми и паровыми турбинами в номинальном режиме в течение продолжительного времени.

Существуют три группы турбогенераторов различной мощности :

больше 500 МВт.

Различаются турбогенераторы также и по частоте вращения и частоте сети . Это четырех-полюсные частотой вращения 1500 и 1800 об/мин на частоту сети 50Гц и двухполюсные на частоту вращения 3000 и 3600 об/мин на частоту сети 60 Гц.

Турбогенераторы делятся на генераторы, приводимые во вращение газовой турбиной и с приводом от паровой турбины . Это классификация по виду приводной турбины.

В зависимости от системы охлаждения турбогенераторы разделяются на машины с косвеннымводородным охлаждением , воздушным охлаждением и водородным и жидкостным охлаждением . Любому оборудованию нужно своевременное обслуживание, а также иногда может потребоваться ремонт турбогенераторов.

Классификация по системе возбуждения подразделяет турбогенераторы на машины с независимой тиристорной системой , статической системой самовозбуждения и бесщеточным возбуждением .

Мощность генератора зависит от частоты и напряжения. Работа генератора допускается при напряжении не более 110% от номинального на выводах обмотки статора.

Сверхпроводящая обмотка возбуждения сделана из кабеля, поперечником 0,7 мм с 37 сверхпроводящими жилами из ниобий-титана в медной матрице. Центробежные и электродинамические стремления в обмотке воспринимаются бандажом из нержавеющей стали. Между открытой толстостенной пленкой из нержавеющей стали и бандажом расположен духовой электротермический экран, охлаждаемый потоком протекающего в тракте безжалостного газообразного гелия (он позже возвращается в ожижитель). Подшипники работают при комнатной температуре. Обмотка статора сделана из медных посредников (охладитель - вода) и охвачена ферромагнитным экраном из шихтованной стали. Ротор поворачивается в вакуумированном пространстве изнутри стенки из изоляционного материала. Сохранение вакуума в камере гарантируют уплотнители.

Размещено на Allbest.ru

...

Подобные документы

    Выбор главных размеров турбогенератора. Расчет номинального фазного напряжения при соединении обмотки в звезду. Характеристика холостого хода. Определение индуктивного сопротивления рассеяния Потье. Оценка и расчет напряжений в бандаже и на клине.

    курсовая работа , добавлен 21.06.2011

    Определение размеров и электромагнитных нагрузок. Проектирование статора и ротора. Характеристика холостого хода. Параметры и постоянная времени турбогенератора. Отношение короткого замыкания, тока короткого замыкания и статической перегружаемости.

    курсовая работа , добавлен 10.11.2015

    Понятие и характеристика паровой турбины. Особенности конструкции и предназначение паровой турбины. Анализ расчета внутренних потерь и схемы работы теплофикационной турбины и последовательность расчета ступеней давления. Эксплуатация турбинной установки.

    курсовая работа , добавлен 25.03.2012

    История создания и виды электродвигателя. Принцип работы и устройство синхронного электродвигателя переменного тока. Изучение работы генератора на основе закона электромагнитной индукции Фарадея. Изучение характеристики простейшего электрогенератора.

    презентация , добавлен 12.10.2015

    Принцип действия, основные характеристики и элементы конструкции синхронного вертикального двигателя, область применения. Расчет электромагнитного ядра явнополюсного синхронного двигателя, его оптимизация по минимуму приведенной стоимости и резервов.

    курсовая работа , добавлен 16.04.2011

    Понятие и функциональные особенности погрузочно-разгрузочных машин, сферы их практического применения и значение. Группа режима работы и направления ее исследования. Классификация и типы кранов, их специфика. Устройство, элементы тележки, принцип работы.

    презентация , добавлен 17.05.2013

    Принцип действия синхронного генератора. Типы синхронных машин и их устройство. Управление тиристорным преобразователем. Характеристика холостого хода и короткого замыкания. Включение генераторов на параллельную работу. Способ точной синхронизации.

    презентация , добавлен 05.11.2013

    Применение синхронных двигателей в устройствах автоматики и техники. Изготовление ротора, турбогенератора. Предназначение двигателей для привода мощных вентиляторов, мельниц, насосов и других устройств. Конструктивное исполнение статора синхронной машины.

    презентация , добавлен 01.09.2015

    Понятие и задачи языков программирования общего назначения, их классификация и разновидности, их функциональные особенности и сферы практического применения. Структурные составляющие языка QBasic, принцип его работы, главные операции и возможности.

    презентация , добавлен 30.03.2014

    Факторы, влияющие на жизнедеятельность человека в полёте. Работоспособность авиационных систем охлаждения по высоте и скорости полета. Конструкция и принцип работы турбохолодильника. Система охлаждения аппаратуры средних и заднего технических отсеков.

Посредством вращающегося магнитного поля ротора в статоре . Поле ротора, которое создается либо установленными на ротор постоянными магнитами, либо током постоянного напряжения, протекающего в медной обмотке ротора, приводит к возникновению трёхфазного переменного напряжения и тока в обмотках статора. Напряжение и ток на статоре тем больше, чем сильнее поле ротора, т.е. больше ток протекающий в обмотках ротора. У синхронных турбогенераторов с внешним возбуждением напряжение и ток в обмотках ротора создает тиристорная система возбуждения или возбудитель - небольшой генератор на валу турбогенератора. Турбогенераторы имеют цилиндрический ротор установленный на двух подшипниках скольжения , в упрощенном виде напоминает увеличенный генератор легкового автомобиля. Выпускаются 2-х полюсные (3000 об/мин), 4-х полюсные (1500 об/мин как на Балаковской АЭС), и многополюсные машины, в зависимости от мест эксплуатации и требований Заказчика. По способам охлаждения обмоток турбогенератора различают: с жидкостным охлаждением через рубашку статора; с жидкостным непосредственным охлаждением обмоток; с воздушным охлаждением; с водородным охлаждением (чаще применяются на АЭС).

История

Один из основателей компании «ABB » Чарльз Браун построил первый турбогенератор в 1901 году . Это был 6-ти полюсный генератор мощностью 100 кВА .

Появление во второй половине XIX века мощных паровых турбин привело к тому, что потребовались высокоскоростные турбогенераторы. Первое поколение этих машин имело стационарную магнитную систему и вращающуюся обмотку. Но данная конструкция имеет целый ряд ограничений, одно из них - небольшая мощность. Кроме этого, ротор явнополюсного генератора не способен выдерживать большие центробежные усилия.

Основным вкладом Чарльза Брауна в создание турбогенератора было изобретение ротора, в котором его обмотка (обмотка возбуждения) укладывается в пазы, которые получаются в результате механической обработки поковки. Вторым вкладом Чарльза Брауна в создание турбогенератора была разработка в 1898 году ламинированного цилиндрического ротора. И, в конечном итоге, в 1901 году он построил первый турбогенератор. Данная конструкция используется в производстве турбогенераторов по сей день.

Типы турбогенераторов

В зависимости от системы охлаждения турбогенераторы подразделяются на несколько типов: с воздушным, масляным, водородным и водяным охлаждением. Также существуют комбинированные типы, например, генераторы с водородно-водяным охлаждением.

Также существуют специальные турбогенераторы, к примеру, локомотивные, служащие для питания цепей освещения и радиостанции паровоза . В авиации турбогенераторы служат дополнительными бортовыми источниками электроэнергии. Например, турбогенератор ТГ-60 работает на отбираемом от компрессора авиадвигателя сжатого воздуха, обеспечивая привод генератора трёхфазного переменного тока 208 вольт, 400 герц, номинальной мощностью 60 кВ*А.

Конструкция турбогенератора

Генератор состоит из двух ключевых компонентов - статора и ротора. Но каждый из них содержит большое число систем и элементов. Ротор - вращающийся компонент генератора и на него воздействуют динамические механические нагрузки, а также электромагнитные и термические. Статор - стационарный компонент турбогенератора, но он также подвержен воздействию существенных динамических нагрузок - вибрационных и крутящих, а также электромагнитных, термических и высоковольтных.

Возбуждение ротора генератора

Первоначальный (возбуждающий) постоянный ток ротора генератора подается на него с возбудителя генератора. Обычно возбудитель соосно соединён упругой муфтой с валом генератора и является продолжением системы турбина-генератор-возбудитель. Хотя на крупных электрических станциях предусмотрено и резервное возбуждение ротора генератора. Такое возбуждение происходит от отдельно стоящего возбудителя. Такие возбудители постоянного тока приводятся в действие своим электродвигателем переменного трехфазного тока и включены как резерв в схему сразу нескольких турбоустановок. С возбудителя постоянный ток подается в ротор генератора посредством скользящего контакта через щётки и контактные кольца. Современные турбогенераторы используют тиристорные системы самовозбуждения.

Напишите отзыв о статье "Турбогенератор"

Литература

  • Вольдек А. И. Электрические машины. Энергия. Л. 1978
  • Operation and Maintenance of Large Turbo Generators, by Geoff Klempner and Isidor Kerszenbaum, ISBN 0-471-61447-5, 2004

Примечания

Ссылки

Отрывок, характеризующий Турбогенератор

– Мы просто гуляем, – улыбаясь сказала Стелла. – Мы не будем вам мешать.
– А кого вы ищете? – спросила Атенайс.
– Никого, – удивилась малышка. – А почему вы думаете, что мы должны кого-то искать?
– А как же иначе? Вы сейчас там, где все ищут себя. Я тоже искала... – она печально улыбнулась. – Но это было так давно!..
– А как давно? – не выдержала я.
– О, очень давно!... Здесь ведь нет времени, как же мне знать? Всё, что я помню – это было давно.
Атенайс была очень красивой и какой-то необычайно грустной... Она чем-то напоминала гордого белого лебедя, когда тот, падая с высоты, отдавая душу, пел свою последнюю песню – была такой же величественной и трагичной...
Когда она смотрела на нас своими искристыми зелёными глазами, казалось – она старее, чем сама вечность. В них было столько мудрости, и столько невысказанной печали, что у меня по телу побежали мурашки...
– Можем ли мы вам чем-то помочь? – чуточку стесняясь спрашивать у неё подобные вопросы, спросила я.
– Нет, милое дитя, это моя работа... Мой обет... Но я верю, что когда-нибудь она закончится... и я смогу уйти. А теперь, скажите мне, радостные, куда вы хотели бы пойти?
Я пожала плечами:
– Мы не выбирали, мы просто гуляли. Но мы будем счастливы, если вы хотите нам что-нибудь предложить.
Атенайс кивнула:
– Я охраняю это междумирье, я могу пропустить вас туда, – и, ласково посмотрев на Стеллу, добавила. – А тебе, дитя, я помогу найти себя...
Женщина мягко улыбнулась, и взмахнула рукой. Её странное платье колыхнулось, и рука стала похожа на бело-серебристое, мягкое пушистое крыло... от которого протянулась, рассыпаясь золотыми бликами, уже другая, слепящая золотом и почти что плотная, светлая солнечная дорога, которая вела прямо в «пламенеющую» вдали, открытую золотую дверь...
– Ну, что – пойдём? – уже заранее зная ответ, спросила я Стеллу.
– Ой, смотри, а там кто-то есть... – показала пальчиком внутрь той же самой двери, малышка.
Мы легко скользнули внутрь и... как будто в зеркале, увидели вторую Стеллу!.. Да, да, именно Стеллу!.. Точно такую же, как та, которая, совершенно растерянная, стояла в тот момент рядом со мной...
– Но это же я?!.. – глядя на «другую себя» во все глаза, прошептала потрясённая малышка. – Ведь это правда я... Как же так?..
Я пока что никак не могла ответить на её, такой вроде бы простой вопрос, так как сама стояла совершенно опешив, не находя никакого объяснения этому «абсурдному» явлению...
Стелла тихонько протянула ручку к своему близнецу и коснулась протянутых к ней таких же маленьких пальчиков. Я хотела крикнуть, что это может быть опасно, но, увидев её довольную улыбку – промолчала, решив посмотреть, что же будет дальше, но в то же время была настороже, на тот случай, если вдруг что-то пойдёт не так.
– Так это же я... – в восторге прошептала малышка. – Ой, как чудесно! Это же, правда я...
Её тоненькие пальчики начали ярко светиться, и «вторая» Стелла стала медленно таять, плавно перетекая через те же самые пальчики в «настоящую», стоявшую около меня, Стеллу. Её тело стало уплотняться, но не так, как уплотнялось бы физическое, а как будто стало намного плотнее светиться, наполняясь каким-то неземным сиянием.
Вдруг я почувствовала за спиной чьё-то присутствие – это опять была наша знакомая, Атенайс.
– Прости меня, светлое дитя, но ты ещё очень нескоро придёшь за своим «отпечатком»... Тебе ещё очень долго ждать, – она внимательнее посмотрела мне в глаза. – А может, и не придёшь вовсе...
– Как это «не приду»?!.. – испугалась я. – Если приходят все – значит приду и я!
– Не знаю. Твоя судьба почему-то закрыта для меня. Я не могу тебе ничего ответить, прости...
Я очень расстроилась, но, стараясь изо всех сил не показать этого Атенайс, как можно спокойнее спросила:
– А что это за «отпечаток»?
– О, все, когда умирают, возвращаются за ним. Когда твоя душа кончает своё «томление» в очередном земном теле, в тот момент, когда она прощается с ним, она летит в свой настоящий Дом, и как бы «возвещает» о своём возвращении... И вот тогда, она оставляет эту «печать». Но после этого, она должна опять возвратиться обратно на плотную землю, чтобы уже навсегда проститься с тем, кем она была... и через год, сказав «последнее прощай», оттуда уйти... И вот тогда-то, эта свободная душа приходит сюда, чтобы слиться со своей оставленной частичкой и обрести покой, ожидая нового путешествия в «старый мир»...
Я не понимала тогда, о чём говорила Атенайс, просто это звучало очень красиво...
И только теперь, через много, много лет (уже давно впитав своей «изголодавшейся» душой знания моего удивительного мужа, Николая), просматривая сегодня для этой книги своё забавное прошлое, я с улыбкой вспомнила Атенайс, и, конечно же, поняла, что то, что она называла «отпечатком», было просто энергетическим всплеском, который происходит с каждым из нас в момент нашей смерти, и достигает именно того уровня, на который своим развитием сумел попасть умерший человек. А то, что Атенайс называла тогда «прощание» с тем, «кем она была», было ни что иное, как окончательное отделение всех имеющихся «тел» сущности от её мёртвого физического тела, чтобы она имела возможность теперь уже окончательно уйти, и там, на своём «этаже», слиться со своей недостающей частичкой, уровня развития которой она, по той или иной причине, не успела «достичь» живя на земле. И этот уход происходил именно через год.

Введение

1. Технические данные

2. Устройство и работа генератора

3. Указания по технике безопасности

Заключение

Список литературы

Введение

Турбогенераторы (ТГ) представляют собой основной вид генерирующего оборудования, обеспечивающего свыше 80% общего мирового объема выработки электроэнергии. Одновременно ТГ являются и наиболее сложным типом электрических машин, в которых тесно сочетаются проблемы мощности, габаритов, электромагнитных характеристик, нагрева, охлаждения, статической и динамической прочности элементов конструкции. Обеспечение максимальной эксплуатационной надежности и экономичности ТГ является центральной научно-технической проблемой.

В отечественном турбогенераторостроении огромный вклад в развитие теории, разработку вопросов расчета, проектирования и эксплуатации ТГ внесли многие ученые, исследователи, конструкторы, среди которых в первую очередь следует отметить Алексеева А.Е., Лютера Р.А., Костенко М.П., Одинга А.И., Бергера А.Я., Комара Е.Г., Ефремова Д.В., Иванова Н.П., Глебова И.А., Казовского Е.Я., Еремина М.Я., Вольдека А.И., Жерве Г.К., Важнова А.И. Среди зарубежных специалистов следует отметить Видемана Е., Келленбергера В., Шуйского В.П., Готтера Г.

Вместе с тем, несмотря на огромное количество работ, выполненных за прошедшие десятилетия, вопросы дальнейшего развития теории, разработки более совершенных технологий и конструкций ТГ, методов расчета и исследований не теряют своей актуальности.

Турбогенератор - неявнополюсный синхронный генератор, основная функция которого состоит в конвертации механической энергии в работе от паровой или газовой турбины в электрическую при высоких скоростях вращения ротора (3000,1500об/мин). Механическая энергия от турбины конвертируется в электрическую при помощи вращающегося магнитного поля, которое создается током постоянного напряжения, протекающего в медной обмотке ротора, что в свою очередь приводит к возникновению трехфазного переменного тока и напряжения в обмотках статора. В зависимости от систем охлаждения турбогенераторы подразделяются на несколько видов: генераторы с воздушным охлаждением, генераторы с водородным охлаждением и генераторы с водяным охлаждением. Также существуют комбинированные типы, например, генератор с водородно-водяным охлаждением (ТВВ). Турбогенератор ТВВ-320-2 предназначен для выработки электрической энергии на тепловой электростанции при непосредственном соединении с паровой турбиной К-300-240 Ленинградского металлического завода или Т-250-240 Уральского турбомоторного завода.

1. Технические данные

Номинальные параметры генератора при номинальном давлении и температуре охлаждающих сред даны в табл. 1.

Наименование основных параметров

Номинальный режим

Длительно допустимый режим

Полная мощность, квт

Активная мощность, квт

Коэффициент мощности

Напряжение. в

Частота, гц

Скорость вращения, об/мин

Коэффициент полезного действия, %

Не нормируется

Критическая скорость вращения, об/мин

Соединение фаз обмотки статора

Двойная звезда


Число выводов обмотки статора


Основные параметры охлаждающих сред

Водород в корпусе статора


Дистиллят в обмотке статора


Техническая вода в газоохладителях


Техническая вода в теплообменниках обмотки статора

Избыточное давление технической воды должно быть не больше избыточного давления дистиллята в обмотке.


Допустимое отклонение определяется температурой дистиллята.

Наибольшая допустимая температура отдельных узлов генератора и охлаждающих сред. Изоляция обмоток генератора класса "B".

Наибольшая допустимая температура отдельных узлов генератора и охлаждающих сред указана в табл. 2.

Наименование элементов

генератора

Наибольшая температура, измеренная

по сопротивлению

по термометрам сопротивления

По ртутным термометрам

Обмотка статора

Обмотка ротора

Сердечник статора

Горячий дистиллят на выходе из обмотки

Горячий газ в генераторе

*Допускается превышение температуры обмотки ротора над температурой холодного водорода не более чем на 75.

Допустимая температура по температурам сопротивления, заложенным под клинья статорной обмотки, не должна превышать 75 между показаниями наиболее и наименее нагретого термометров сопротивления не должна превышать 20 могут быть уточнены по согласованию с предприятием-изготовителем для каждой конкретной машины после проведения тепловых испытаний.

Дополнительные технические данные

Расход масла на подшипник генератора (без уплотнения вала), л /мин

Избыточное давление масла в опорных подшипниках, кгс/см 2

Расход масла на уплотнения вала с обеих сторон генератора, л/мин

Газовый объем собранного генератора, м 3

Число ходов воды газоохладителя

Масса газоохладителя, кг

Масса ротора генератора, кг

Масса средней части с серьгой для монтажа (без рым-лап), кг

Масса концевой части, кг

Масса статора с рым-лапами, газоохладителями и щитами, кг

Масса подшипника с траверсой и фундаментной плитой, кг

Масса вывода концевого (крайнего), кг

Масса полущита наружного, кг


2. Устройство и работа генератора

Общая функциональная схема работы

Генератор выполнен с непосредственным охлаждением обмотки статора дистиллированной водой (дистиллятом), а обмотки ротора и сердечника статора – водородом, заключенным внутри газонепроницаемого корпуса.

Дистиллят в обмотке статора циркулирует под напором насосов и охлаждается теплообменниками, расположенными вне генератора.

Охлаждающий водород циркулирует в генераторе под действием вентиляторов, установленных на валу ротора, и охлаждается газоохладителями, встроенными в концевые части корпуса генератора.

Циркуляция воды в газоохладителях и теплообменниках осуществляется насосами, расположенными вне генератора.

Маслоснабжение опорных подшипников и уплотнений вала производится от масляной системы турбины.

Для аварийного снабжения маслом опорных подшипников и уплотнений вала на выбеге агрегата предусмотрены резервные баки, установленные вне генератора.

Генератор возбуждается от высокочастотного индукторного генератора через полупроводниковые выпрямители.

Корпус статора и фундаментные плиты

Сварной газонепроницаемый корпус статора состоит из средней части, несущей сердечник с обмоткой, и двух концевых частей.

В концевых частях располагаются лобовые части обмотки и газоохладители.

В концевой части со стороны возбудителя установлены концевые выводы обмотки - вверху нулевые, а внизу линейные.

Механическая прочность корпуса достаточна, чтобы статор мог выдержать без остаточных деформаций внутреннее давление в случае взрыва водорода.

Наружные щиты статора непосредственно объединены с внутренними щитами, к которым прикреплены щиты вентилятора.

Половины щитов вентиляторов изолированы от внутренних щитов и между собой.

Разъемы щитов расположены в горизонтальной плоскости.

В щитах и в бочке ротора предусмотрены специальные каналы, по которым охлаждающий газ попадает в лобовые части обмотки ротора.

Газоплотность соединений соединения плоскостей корпуса и наружных щитов обеспечивается резиновым шнуром, приклеенным по дну канавок, выфрезерованных в наружных щитах.

Чтобы приникнуть внутрь корпуса, не разбирая наружных щитов, в нижней его части предусмотрен люк.

До установки генератора на фундамент статор опирается на транспортные лапы, приваренные к корпусу.

Статор устанавливается на фундамент посредством рым- лап, которые при транспортировании снимаются.

Основанием для генератора и возбудителя служат фундаментные плиты, выполненные из стальных листов. Они устанавливаются во время монтажа на закладные плиты и постоянные подкладки и подливаются бетоном.

Для крепления генератора к фундаменту используются фундаментные шпильки.

Основанием для подшипника генератора является фундаментная плита коробчатого типа.

Газоохладители

Выделяющееся в генераторе тепло отводится четырьмя вертикальными охладителями.

Каждый охладитель состоит из биметаллических, латунно-алюминиевых трубок с прокатанными алюминиевыми ребрами.

Трубки завальцованы с обеих сторон в трубные доски, к которым приболчены камеры, уплотненные резиной и связанные между собою рамами.

Охладители вставляются в статор сверху и верхними трубными досками опираются на концевые части статора.

Нижние камеры по отношению к корпусу статора уплотнены резиной таким образом, что обеспечивается свободное тепловое расширение охладителей в вертикальном направлении.

Съемные крышки водяных камер позволяют производить чистку трубок и контроль за их состоянием, не нарушая герметичности корпуса статора.

Напорные и сливные трубы присоединены к нижним крышкам.

Для выпуска воздуха из верхних камер охладителей предусмотрены контрольные дренажные трубки.

Каждая трубка, пропущенная через одну из охлаждающих трубок и нижнюю камеру, заканчивается фланцем, приваренным к камере.

К фланцам присоединяются отводящие трубки с кранами, которые во время работы генератора должны быть постоянно открыты с минимальным сливом воды в дренаж.

Сердечник статора

Сердечник статора собран на клиньях из сегментов электротехнической стали толщиной 0.5 мм и вдоль оси разделён вентиляционными каналами на пакеты.

Поверхность сегментов покрыта изоляционным лаком.

Клинья сердечника статора приварены к поперечным кольцам корпуса.

Спрессованный сердечник статора стягивается нажимными кольцами из немагнитной стали. Зубцовая зона крайних пакетов уплотнена нажимными пальцами из не магнитной стали, установленными между сердечником и нажимными кольцами.

Для демпфирования электромагнитных потоков рассеяния лобовых частей обмотки статора под нажимными кольцами установлены медные экраны.

Для уменьшения передачи на корпус и фундамент стопериодных колебаний сердечника в клиньях статора выполнены продольные прорези, что создаёт упругую связь сердечника статора с корпусом.

Обмотка статора

Обмотка статора-трехфазная, двухслойная, с укороченным шагом, стержневая, с транспозицией элементарных проводников. Лобовые части обмотки-корзиночного типа. Стержни обмотки сплетены из сплошных и полых элементарных изолированных проводников и в пазах сердечника закрепляются специальными клиньями.

Для охлаждения обмотки по полым проводникам проходит дистиллированная вода.

На концах стержней припаяны наконечники для подвода воды к полым проводникам. Наконечники припаяны к стержням твёрдым припоем типа П Ср. Электрическое соединение стержней осуществляется медным хомутом и клиньями с пайкой мягким припоем типа ПОС.

Начала и концы обмотки выведены наружу через концевые выводы. Обозначение линейных и нулевых концевых выводов указано на монтажном чертеже, входящем в комплект эксплуатационной документации.

Для подвода и слива охлаждающей воды из обмотки статора имеются кольцевые коллекторы, установленные на изоляторах. Соединение коллекторов со стержнями обмотки осуществляется водосоединительными трубками из изоляционного материала. Охлаждающая вода в обмотке проходит по двум стержням, шинам и выводам, соединенным последовательно. Для контроля заполнения коллекторов водой и для выпуска из них воздуха в верхних точках коллекторов установлены дренажные трубки, выведенные из корпуса статора наружу.

В период эксплуатации дренажные трубки должны быть открыты с минимальным сливом для непрерывного удаления воздуха из системы охлаждения обмотки статора. Контроль проходимости дистиллята в стержнях обмотки статора осуществляется измерением температуры термосопротивлениями, заложенными под клинья в каждом пазу сердечника статора.

Ротор изготовлен из цельной поковки специальной стали, обеспечивающей его механическую прочность при всех режимах работы генератора.

Обмотка ротора выполнена из полосовой меди с присадкой серебра. Её охлаждение осуществляется непосредственно водородом по схеме самовентиляции с забором газа из зазора машины.

Дюралюминиевые клинья, удерживающие обмотку в пазах, имеют заборные и выходные отверстия для охлаждающего газа, совпадающие с боковыми каналами, выфрезерованными в катушках.

Пазовая и витковая изоляции катушек выполнены из прессованного стеклополотна на теплостойком лаке. Контактные кольца, насаженные в горячем состоянии на промежуточную, изолированную от них втулку, установлены за подшипником со стороны возбудителя.

Стержни токоподвода, расположенные в центральном отверстии ротора, соединяются с обмоткой и контактными кольцами с помощью изолированных гибких шин и специальных изолированных болтов, которые для обеспечения газоплотности ротора имеют уплотнения сальникового типа.

Роторные бандажи, выполненные из специальной немагнитной стали, имеют горячепрессовую посадку на центрирующую заточку бочки ротора.

От осевых перемещений бандажное кольцо удерживается кольцевой шпонкой и гайкой, навинченной на носик бандажа с наружной стороны.

Лобовые части обмотки ротора изолированы от бандажей и центрирующих колец изоляционными сегментами.

Опорные подшипники

Опорный подшипник генератора, установленный со стороны возбудителя, является подшипником стоякового типа и имеет шаровой самоустанавливающийся вкладыш.

Смазка подшипника-принудительная. Масло подаётся под избыточным давлением из напорного маслопровода турбины.

В конструкции подшипника предусмотрен дистанционный контроль температуры баббита вкладыша и сливного масла с помощью термометров сопротивления. Визуальный контроль слива масла производится через стекло в патрубке.

На удлинённой части основания стояка подшипника установлена щеточная траверса, которая служит для подвода тока возбуждения к контактным кольцам ротора.

Для устранения подшипниковых токов предусмотрена изоляция этого подшипника от фундамента и от всех маслопроводов.

На стойке каркаса траверсы предусмотрена установка изолированной от корпуса щётки, которая используется при измерении сопротивления изоляции обмотки ротора и для введения защиты от двойного замыкания обмотки ротора на корпус.

Опорный подшипник генератора со стороны турбины поставляется турбинным заводом.

Уплотнения вала

Для предотвращения выхода водорода из статора на наружных щитах генератора установлены двухкамерные масляные уплотнения вала торцевого типа. В уплотнениях этого типа вкладыш с баббитовой заливкой постоянно прижимается к упорному кольцу вала ротора давлением прижимного масла и следует за всеми перемещениями ротора вдоль оси.

Уплотняющее масло под давлением, превышающим давление газа в генераторе, подаётся в напорную камеру и оттуда через отверстия во вкладыше поступает в кольцевую канавку, проточенную в баббитовой заливке вкладыша. Затем масло заполняет радиальные канавки и клиновые скосы и растекаясь в обе стороны от кольцевой канавки, образует при вращении сплошную пленку, которая препятствует утечке газа из корпуса генератора.

Камеры уплотняющего и прижимного масла, образованные между корпусом и вкладышем, уплотнены резиновыми шнурами, помещенными в кольцевые канавки на поверхности вкладыша.

Для защиты внутренней полости статора от попадания масла предусмотрены маслоуловители, установленные на наружных щитах между уплотнением вала и внутренней полостью статора, и дополнительные камеры в вентиляторных щитах.

Для устранения подшипниковых токов корпус уплотнения и маслоуловитель со стороны возбудителя изолированы от наружного щита и маслопроводов.

Необходимое давление уплотняющего и прижимного масла обеспечивается регуляторами, входящими в систему маслоснабжения.

Вентиляция

Вентиляция генератора осуществлена по замкнутому циклу. Газ охлаждается газоохладителями, встроенными в корпус статора. Необходимый напор газа создаётся двумя вентиляторами, установленными на валу ротора.

3. Указания по технике безопасности

На электростанциях, оборудованных генераторами с водородным охлаждением, руководствоваться ведомственными правилами по технике безопасности.

При работе генератора с водородным охлаждением в какой-то степени происходить утечка водорода в атмосферу. Образовавшаяся газовая смесь может загореться, а при содержании в ней пяти и более процентов водорода- взорваться.

Чтобы исключить возможность пожаров и взрывов во время монтажа, при подготовке к работе и в эксплуатации, принять меры к тому, чтобы поблизости от генератора не было невентилируемых объемов, куда может проникать водород.

При осуществлении вентиляции этих объёмов исключить возможность попадания водорода на узлы агрегата, работающего с искрением или имеющего высокую температуру.

Допуск обслуживающего персонала в корпус генератора производить после того, как из него полностью вытеснен углекислый газ и проведен химический анализ воздуха.

Заключение

В настоящее время электроэнергия в основном вырабатывается на тепловых, гидравлических и атомных электростанциях. Из них преимущественное развитие получили тепловые электростанции, что объясняется следующим. Стоимость электроэнергии, вырабатываемой гидроэлектростанциями, значительно ниже стоимости электроэнергии, вырабатываемой тепловыми станциями. Однако по размерам капиталовложений гидроэлектростанции в несколько раз дороже тепловых и сооружаются они более длительное время. Поэтому наращивание мощностей для покрытия всё возрастающих потребностей в электроэнергии более целесообразно за счет строительства тепловых электростанций. В этом случае, вместе с более быстрым ростом энерговооружаемости ускоряется рост производительности труда во всех народного хозяйства, что оказывает дополнительное влияние на сокращение сроков окупаемости производимых затрат. генератор котельный циркуляция маслоснабжение

Изложенное подтверждает актуальность установки на котельных турбогенераторов, главным образом, как для покрытия собственных нужд котельных, так и отдачи внешним потребителям электроэнергии.

Список литературы

1. Браймайстер Л.Г., Поздняков Б.И., Теймуразян Ю.В. и др. "Руководство по капитальному ремонту турбогенератора ТВВ-320-2", Москва: СПО ОРГРЭС, 1976 г.

2. Федоров В.А., Смирнов В.М. "Опыт разработки, строительства и ввода в эксплуатацию малых электростанций", Москва: Теплоэнергетика, №1, 2000 г.

3. Кореннов Б.Е. "Замена РОУ противодавленческой турбиной – эффективное энергосберегающее предприятие для котельных и ТЭЦ", Москва: Промышленная энергетика, №7, 1997 г.

4. Бушуев В.В., Громов Б.Н., Доброхотов В.И. и др. "Научно-технические и организационно-экономические проблемы внедрения энергосберегающих технологий", Москва: Теплоэнергетика, №11, 1997 г.

5. Хрилев Л.С. "Основные направления развития теплофикации", Москва: Теплоэнергетика, №4, 1998 г.

6. Доброхотов В.И. "Энергосбережение: проблемы и решения", Москва: Теплоэнергетика, №1, 2000 г.