Какую величину называют скалярной. Векторные величины и скаляры

Все величины, с которыми нам приходится встречаться в физике и, в частности, в одном из ее разделов механики, можно разделить на два типа:

а) скалярные, которые определяются одним действительным положительным или отрицательным числом. Примером таких величин могут служить время, температура;

б) векторные, которые определяются направленным пространственным отрезком прямой (или тремя скалярными величинами) и обладают свойствами, приведенными ниже.

Примером векторных величин служат сила, скорость, ускорение.

Декартова система координат

Когда речь идет о направленных отрезках, то следует указать объект, по отношению к которому это направление определяется. В качестве такого объекта принимается декартова система координат, составляющими которой являются оси.

Осью называется прямая, на которой указано направление. Три взаимно перпендикулярные оси, пересекающиеся в точке О, названные соответственно образуют прямоугольную декартову систему координат. Декартова система координат может быть правой (рис. 1) или левой (рис. 2). Эти системы являются зеркальным изображением друг друга и не могут быть совмещены каким-либо перемещением.

Во всем дальнейшем изложении всюду принимается правая система координат. В правой системе координат положительное направление отсчета всех углов принимается против часовой стрелки.

Это соответствует направлению совмещения осей х с у, если глядеть с положительного направления оси

Свободные векторы

Вектор, характеризуемый только длиной и направлением в заданной системе координат, носит название свободного. Свободный вектор изображается отрезком заданной длины и направления, начало которого расположено в любой точке пространства. На чертеже вектор изображается стрелкой (рис. 3).

Векторы обозначаются одной жирной буквой или двумя буквами, соответствующими началу и концу стрелки с черточкой над ними или

Величину вектора называют его модулем и обозначают одним из указанных способов

Равенство векторов

Так как основными характеристиками вектора считаются его длина и направление, то векторы называются равными, если их направления и величины совпадают. В частном случае равные векторы могут быть направлены вдоль одной прямой. Равенство векторов, например а и b (рис. 4), записывается в виде:

Если векторы (а и b) равны по модулю, но диаметрально противо положны по направлению (рис. 5), то это записывается в виде:

Векторы, имеющие одинаковое или диаметрально противоположное направление, называются коллинеарными.

Умножение вектора на скаляр

Произведение вектора а на скаляр К называется вектор по модулю, равный совпадающий по направлению с вектором а, если К положительно, и диаметрально ему противоположный, если К отрицательно.

Единичный вектор

Вектор, у которого модуль равен единице и направление совпадает с заданным вектором а, называется единичным вектором данного вектора или его ортом. Орт обозначается . Всякий вектор через его орт можно представить в виде

Единичные векторы, расположенные вдоль положительных направлений координатных осей, обозначаются соответственно (рис. 6).

Сложение векторов

Правило сложения векторов постулируется (оправданием для этого постулата служат наблюдения над реальными объектами векторной природы). Этот постулат заключается в том, что два вектора

Переносят в какую-либо точку пространства так, чтобы начала их совпадали (рис. 7). Направленная диагональ параллелограмма, построенного на этих векторах (рис. 7), называется суммой векторов сложение векторов записывается в виде

и носит название сложения по правилу параллелограмма.

Указанное правило сложения векторов можно осуществить еще и следующим образом: в любой точке пространства откладывается вектор далее, от конца вектора откладывается вектор (рис. 8). Вектор а, начало которого совпадает с началом вектора а конец - с концом вектора будет суммой векторов

Последнее правило сложения векторов удобно, если нужно сложить более чем два вектора. Действительно, если нужно сложить несколько векторов, то, используя указанное правило, следует построить ломаную, сторонами которой являются заданные векторы, причем начало какого-либо вектора совпадает с концом предыдущего вектора. Суммой этих векторов будет вектор, начало которого совпадает с началом первого вектора, а конец совпадает с концом последнего вектора (рис. 9). Если заданные векторы образуют замкнутый многоугольник, то говорят, что сумма векторов равна нулю.

Из правила построения суммы векторов следует, что сумма их не зависит от порядка, в котором взяты слагаемые, или сложение векторов коммутативно. Для двух векторов последнее может быть записано в виде:

Вычитание векторов

Вычитание вектора из вектора производится по следующему правилу: строится вектор и из конца его откладывается вектор - (рис. 10). Вектор а, начало которого совпадает с началом

вектора а конец - с концом вектора равен разности векторов и Проведенная операция может быть записана в виде:

Разложение вектора на составляющие

Разложить заданный вектор - это значит представить его как сумму нескольких векторов, которые называются его составляющими.

Рассмотрим задачу о разложении вектора а, если задано, что составляющие его должны быть направлены по трем координатным осям. Для этого построим параллелепипед, диагональю которого является вектор а и ребра параллельны координатным осям (рис. 11). Тогда, как очевидно из чертежа, сумма векторов расположенных по ребрам этого параллелепипеда, дает вектор а:

Проекция вектора на ось

Проекцией вектора на ось называется величина направленного отрезка, который ограничивают плоскости, перпендикулярные к оси, проходящие через начало и конец вектора (рис. 12). Точки пересечения указанных плоскостей с осью (А и В) называются проекцией соответственно начала и конца вектора.

Проекция вектора имеет знак плюс, если направления ее, считая от проекции начала вектора к проекции его конца, совпадают с направлением оси. Если эти направления не совпадают то проекция имеет знак минус.

Проекции вектора а на оси координат обозначаются соответственно

Координаты вектора

Составляющие вектора а, расположенные параллельно координатным осям через проекции вектора и единичные векторы могут быть записаны в виде:

Следовательно:

где полностью определяют вектор и носят название его координат.

Обозначая через углы, которые составляет вектор а с осями координат, проекции вектора а на оси можно записать в виде:

Отсюда для модуля вектора а имеем выражение:

Так как задание вектора его проекциями однозначно, то два равных вектора будут иметь равные координаты.

Сложение векторов через их координаты

Как следует из рис. 13, проекция суммы векторов на ось равна алгебраической сумме их проекций. Следовательно, из векторного равенства:

вытекают три следующих скалярных равенства:

или координаты суммарного вектора равны алгебраической сумме координат составляющих векторов.

Скалярное произведение двух векторов

Скалярное произведение двух векторов обозначается а b и определяется произведением их модулей на косинус угла между ними:

Скалярное произведение двух векторов можно также определить как произведение модуля одного из векторов на проекцию другого вектора на направление первого вектора.

Из определения скалярного произведения следует, что

т. е. имеет место переместительный закон.

По отношению к сложению скалярное произведение обладает свойством распределительности:

что непосредственно следует из свойства - проекция суммы векторов равна алгебраической сумме их проекций.

Скалярное произведение через проекции векторов можно записать в виде:

Векторное произведение двух векторов

Векторное произведение двух векторов обозначается axb. Это есть вектор с, модуль которого равен произведению модулей перемножаемых векторов на синус угла между ними:

Вектор с направлен перпендикулярно к плоскости, определяемой векторами а и b так, что если смотреть с конца вектора с, то для кратчайшего совмещения вектора а с вектором b первый вектор надо было вращать в положительном направлении (против часовой стрелки; рис. 14). Вектор, представляющий собой векторное произведение двух векторов, называется аксиальным вектором (или псевдовектором). Его направление зависит от выбора системы координат или условия о положительности направления отсчета углов. Указанное направление вектора с соответствует правой системе декартовых осей координат, выбор которой был оговорен ранее.

Нас окружает много различных материальных предметов. Материальных, потому что их возможно потрогать, понюхать, увидеть, услышать и еще много чего можно сделать. То, какие эти предметы, что с ними происходит, или будет происходить, если что-нибудь сделать: кинуть, разогнуть, засунуть в печь. То, почему с ними происходит что-либо и как именно происходит? Все это изучает физика . Поиграйте в игру: загадайте предмет в комнате, опишите его несколькими словами, друг должен угадать что это. Указываю характеристики задуманного предмета. Прилагательные: белый, большой, тяжелый, холодный. Догадались? Это холодильник. Названные характеристики - это не научные измерения вашего холодильника. Измерять у холодильника можно разное. Если длину, то он большой. Если цвет, то он белый. Если температуру, то холодный. А если его массу, то выйдет, что он тяжелый. Представляем, что один холодильник можно исследовать с разных сторон. Масса, длина, температура - это и есть физическая величина.

Но это лишь та небольшая характеристика холодильника, которая приходит на ум мгновенно. Перед покупкой нового холодильника можно ознакомиться еще с рядом физических величин, которые позволяют судить о том, какой он, лучше или хуже, и почему он стоит дороже. Представь масштабы того, на сколько все окружающее нас разнообразно. И на сколько разнообразны характеристики.

Обозначение физической величины

Все физические величины принято обозначать буквами, чаще греческого алфавита. НО! Одна и та же физическая величина может иметь несколько буквенных обозначений (в разной литературе).

И, наоборот, одной и той же буквой могут обозначаться разные физические величины.

Несмотря на то, что с такой буквой вы могли не сталкиваться, смысл физической величины, участие ее в формулах остается прежним.

Векторные и скалярные величины

В физике существует два вида физических величин: векторные и скалярные. Основное их отличие в том, что векторные физические величины имеют направление . Что значит физическая величина имеет направление? Например, число картофелин в мешке, мы будем называть обыкновенными числами, или скалярами. Еще одним примером такой величины может служить температура. Другие очень важные в физике величины имеют направление, это, например, скорость; мы должны задать не только быстроту перемещения тела, но и путь, по которому оно движется. Импульс и сила тоже имеют направление, как и смещение: когда кто-нибудь делает шаг, можно сказать не только, как далеко он шагнул, но и куда он шагает, то есть определить направление его движения. Векторные величины лучше запомнить.


Почему над буквами рисуют стрелку?

Рисуют стрелку только над буквами векторных физических величин. Согласно тому, как в математике обозначают вектор ! Действия сложения и вычитания над этими физическими величинами выполняются согласно математическим правилам действий с векторами . Выражение "модуль скорости" или "абсолютное значение" означает именно "модуль вектора скорости", то есть численное значение скорости без учета направления - знака "плюс" или "минус".

Обозначение векторных величин


Главное запомнить

1) Что такое векторная величина;
2) Чем скалярная величина отличается от векторной;
3) Векторные физические величины;
4) Обозначение векторной величины

Скалярные и векторные величины

  1. Векторное исчисление (например, перемещение (s),сила (F), ускорение (a), скорость (V)энергия (Е)) .

    скалярные величины, которые полностью определяются заданием их числовых значений (длина (L), площадь (S), объм (V),время (t), масса (m) и т. д.) ;

  2. Скалярные величины: температура, объм, плотность, электрический потенциал, потенциальная энергия тела (например, в поле силы тяжести) . Также модуль любого вектора (например, перечисленных ниже) .

    Векторные величины: радиус-вектор, скорость, ускорение, напряжнность электрического поля, напряжнность магнитного поля. И многие другие 🙂

  3. векторная величина имеет численное выражение и направление: скорость, ускорение, сила, электромагнитная индукция, перемещение и т. п. , а скалярная только численное выражение объем, плотность, длиа, ширина, высота, масса (не путать с весом) темпереатура
  4. векторные например скорость (v),сила (F),перемещение (s),импульс (р), энергия (Е). над каждой из этих букв ставится стрелочка-вектор. поэтому они векторные. а скалярные-это масса (m),объем (V),площадь (S),время (t),высота (h)
  5. Векторные это прямолинейные, касательные движения.
    Скалярные это замкнутые движения, которые экранируют векторные.
    Векторные движения передаются через скалярные, как через посредников, как ток передатся от атома к атому по проводнику.
  6. Скалярные величины: температура, объм, плотность, электрический потенциал, потенциальная энергия тела (например, в поле силы тяжести) . Также модуль любого вектора (например, перечисленных ниже) .

    Векторные величины: радиус-вектор, скорость, ускорение, напряжнность электрического поля, напряжнность магнитного поля. И многие другие:-

  7. Скалярная величина (скаляр) это физическая величина, которая имеет только одну характеристику численное значение.

    Скалярная величина может быть положительной или отрицательной.

    Примеры скалярных величин: масса, температура, путь, работа, время, период, частота, плотность, энергия, объем, электроемкость, напряжение, сила тока и т. д.

    Математические действия со скалярными величинами это алгебраические действия.

    Векторная величина

    Векторная величина (вектор) это физическая величина, которая имеет две характеристики модуль и направление в пространстве.

    Примеры векторных величин: скорость, сила, ускорение, напряженность и т. д.

    Геометрически вектор изображается как направленный отрезок прямой линии, длина которого в масштабе модуль вектора.

В курсе физике часто встречаются такие величины, для описания которых достаточно знать только числовые значения. Например, масса, время, длина.

Величины, которые характеризуются только числовым значением, называются скалярными или скалярами .

Кроме скалярных величин, используются величины, которые имеют и числовое значение и направление. Например, скорость, ускорение, сила.

Величины, которые характеризуются числовым значением и направлением, называются векторными или векторами .

Обозначаются векторные величины соответствующими буквами со стрелкой наверху или выделяются жирным шрифтом. Например, вектор силы обозначается \(\vec F\) или F . Числовое значение векторной величины называется модулем или длиной вектора. Значение вектора силы обозначают F или \(\left|\vec F \right|\).

Изображение вектора

Векторы изображают направленными отрезками. Началом вектора называют ту точку, откуда начинается направленный отрезок (точка А на рис. 1), концом вектора – точку, в которой заканчивается стрелка (точка B на рис. 1).

Рис. 1.

Два вектора называются равными , если они имеют одинаковую длину и направлены в одну сторону. Такие вектора изображают направленными отрезками, имеющими одинаковые длины и направления. Например, на рис. 2 изображены векторы \(\vec F_1 =\vec F_2\).

Рис. 2.

При изображении на одном рисунке двух и более векторов, отрезки строят в заранее выбранном масштабе. Например, на рис. 3 изображены вектора, длины которых \(\upsilon_1\) = 2 м/c, \(\upsilon_2\) = 3 м/c.

Рис. 3.

Способ задания вектора

На плоскости вектор можно задавать несколькими способами:

1. Указать координаты начала и конца вектора. Например, вектор \(\Delta\vec r\) на рис. 4 задан координатами начала вектора – (2, 4) (м), конца – (6, 8) (м).

Рис. 4.

2. Указать модуль вектора (его значение) и угол между направлением вектора и некоторым заранее выбранным направлением на плоскости. Часто за такое направление в положительную сторону оси 0Х . Углы, измеренные от этого направления против часовой стрелки, считаются положительными. На рис. 5 вектор \(\Delta\vec r\) задан двумя числами b и \(\alpha\) , указывающими длину и направление вектора.

Рис. 5.

При изучении различных разделов физики, механики и технических наук встречаются величины, которые полностью определяются заданием их числовых значений, более точно, которые полностью определяются при помощи числа, полученного в результате их измерения однородной величиной, принятой за единицу. Такие величины называются скалярными или, короче, скалярами. Ска­лярными величинами, например, являются длина, площадь, объ­ем, время, масса, температура тела, плотность, работа, электроёмкость и др. Так как скалярная величина определяется числом (положительным или отрицательным), то ее можно откладывать на соответствующей координатной оси. Так например, часто стро­ят ось времени, температуры, длины (пройденного пути) и другие.

Помимо скалярных величин, в различных задачах встречаются величины, для определения ко­торых, кроме числового значения, необходимо знать также их направление в пространстве. Такие величины называются векторными . Физиче­скими примерами векторных величин могут служить смещение материальной точки, двигающейся в пространстве, скорость и ускорение этой точки, а также действующая на нее сила, напряженность электрического или магнитного поля. Век­торные величины используются, например, и в климатологии. Рассмотрим простой пример из климатологии. Если мы скажем, что ветер дует со скоростью 10 м/с, то тем самым введем скаляр­ную величину скорости ветра, но если мы скажем, что дует се­верный ветер со скоростью 10 м/с, то в этом случае скорость ветра будет уже векторной величиной.

Векторные величины изображаются с помощью векторов.

Для геометрического изображения векторных величин слу­жат направленные отрезки, то есть отрезки, имеющие фикси­рованное направление в пространстве. При этом длина отрез­ка равна числовому значению векторной величины, а его на­правление совпадает с направлением векторной величины. Направленный отрезок, характеризующий данную векторную величину, называют геометрическим вектором или просто вектором.

Понятие вектора играет большую роль как в математике, так и во многих областях физики и механики. Многие физические величины могут быть представлены при помощи векторов, и это представление очень часто способствует обобщению и упрощению формул и результатов. Часто векторные величины и векторы, их изображающие, отождествляются друг с другом: так, например, говорят, что сила (или скорость) есть вектор.

Элементы векторной алгебры применяются в таких дисциплинах как: 1) электрические машины; 2) автоматизированный электропривод; 3) электроосвещение и облучение; 4) неразвлетвлённые цепи переменного тока; 5) прикладная механика; 6) теоретическая механика; 7) физика; 8) гидравлика:9) детали машин; 10) сопромат; 11) управление; 12) химия; 13) кинематика; 14) статика и др.

2. Определение вектора. Отрезок прямой задается дву­мя равноправными точками -его концами. Но можно рассматривать направленный отрезок, определяемый упо­рядоченной парой точек. Про эти точки известно, какая из них первая (начало), а какая вторая (конец).

Под направленным отрезком понимают упорядоченную пару точек, первая из которых - точка А - называется его началом, а вторая - В - его концом.

Тогда под вектором понимается в простейшем случае сам направленный отрезок, а в других случаях различные векторы - это разные классы эквивалентности направленных отрезков, определяемые неким конкретным отношением эквивалентности. Причем отношение эквивалентности может быть разным, определяя тип вектора («свободный», «фиксированный» и т.д.). Проще говоря, внутри класса эквивалентности все входящие в него направленные отрезки рассматриваются как совершенно равные, и каждый может равно представлять весь класс.

Большую роль играют векторы в изучении бесконечно малых трансформаций пространства.

Определение 1. Направленный отрезок (или, что то же, упорядоченную пару точек) мы будем называть вектором . Направление на отрезке принято отмечать стрелкой. Над буквенным обозначением вектора при письме ста­вится стрелка, например: (при этом буква, соответст­вующая началу вектора, обязательно ставится впереди). В книгах часто буквы, обозначающие вектор, набираются полужирным шрифтом, например: а .

К векторам будем относить и так называемый нулевой вектор, у которого начало и конец совпадают.

Вектор, начало которого совпадает с его концом, называют нулевым. Нулевой вектор обозначается или просто 0.

Расстояние между началом и концом вектора называ­ется его длиной (а также модулем и абсолютной величи­ной). Длина вектора обозначается | | или | |. Длиной вектора, или модулем вектора, называют длину соответствующего направленного отрезка: | | = .

Векторы называются коллинеарными , если они распо­ложены на одной прямой или на параллельных прямых, короче говоря, если существует прямая, которой они параллельны.

Векторы называются компланарными , если существует плоскость, которой они параллельны, их можно изобразить векторами, лежащими на одной плоскости. Нулевой вектор считается коллинеарным любому вектору, так как он не имеет определенного направления. Длина его, разумеется, равна нулю. Очевидно, любые два вектора компланарны; но, конечно, не каждые три вектора в пространстве компланарны. Так как векторы, параллельные друг другу, параллельны одной и той же плоскости, то коллинеарные векторы подавно компланарны. Разумеется, обратное неверно: компланарные векторы могут быть и не коллинеарными. В силу принятого выше условия нулевой вектор коллинеарен со всяким вектором и компланарен со всякой парой векторов, т.е. если среди трёх векторов хотя бы один нулевой, то они компланарны.

2) Слово «компланарные» означает в сущности: «имеющие общую плос­кость», т. е. «расположенные в одной плоскости». Но так как речь здесь идет о свободных векторах, которые можно переносить (не изменяя длины и направ­ления) произвольным образом, мы должны называть компланарными векторы, параллельные одной и той же плоскости, ибо в этом случае их можно пере­нести так, чтобы они оказались расположенными в одной плоскости.

Для сокращения речи условимся в одном термине: если несколько свободных векторов параллельны одной и той же плоскости, то мы будем говорить, что они компланарны. В частности, два вектора всегда компланарны; чтобы в этом убе­диться, достаточно отложить их от одной и той же точки. Ясно, далее, что направление плоскости, в которой параллельны два дан­ных вектора, вполне определено, если эти два вектора не парал­лельны между собою. Любую плоскость, которой параллельны данные компланарные векторы, мы будем называть просто пло­скостью данных векторов.

Определение 2. Два вектора называются равными , если они коллинеарны, одинаково направлены и имеют равные длины.

Необходимо всегда помнить, что равенство длин двух векторов ещё не означает равенства этих векторов.

По самому смыслу определения, два вектора, порознь равные третьему, равны между собой. Очевидно, все нулевые векторы равны между собой.

Из этого определения непосредственно вытекает, что, выбрав любую точку А", мы может построить (и притом только один) вектор А" В", равный некоторому заданному вектору , или, как говорят, перенести вектор в точку А" .

Замечание . Для векторов нет понятий «больше» или «меньше», т.е. они равны или не равны.

Вектор, длина которого равна единице, называется единичным вектором и обозначается через е. Единичный вектор, направление которого совпадает с направлением вектора а, называется ортом вектора и обозначается а .

3. О другом определении вектора . Заметим, что понятие равенства векторов существенно отличается от понятия равенства, например, чисел. Каждое число равно только самому себе, иначе говоря, два равных числа при всех обстоятельствах могут рассматриваться как одно и то же число. С векторами, как мы видим, дело обстоит по-другому: в силу определения существуют различные, но равные между собой векторы. Хотя в большинстве случаев у нас не будет необходимости различать их между собой, вполне может оказаться, что в какой-то момент нас будет интересовать именно вектор , а не другой, равный ему вектор А"В".

Для того чтобы упростить понятие равенства векторов (и снять некоторые связанные с ним трудности), иногда идут на усложнение определения вектора. Мы не будем пользоваться этим усложненным определением, но сформулируем его. Чтобы не путать, мы будем писать «Вектор» (с большой буквы) для обозначения определяемого ниже понятия.

Определение 3 . Пусть дан направленный отрезок. Множество всех направленных отрезков, равных данному в смысле определения 2, называется Вектором.

Таким образом, каждый направленный отрезок определяет Век­тор. Легко заметить, что два направленных отрезка определяют один и тот же Вектор тогда и только тогда, когда они равны. Для Векторов, как и для чисел, равенство означает совпадение: два Вектора равны в том и только в том случае, когда это один и тот же Век­тор.

При параллельном переносе пространства точка и ее образ сос­тавляют упорядоченную пару точек и определяют направленный отрезок, причем все такие направленные отрезки равны в смысле определения 2. Поэтому параллельный перенос пространства можно отождествить с Вектором, составленным из всех этих направленных отрезков.

Из начального курса физики хорошо известно, что сила может быть изображена направленным отрезком. Но она не может быть изображена Вектором, поскольку силы, изображаемые равными нап­равленными отрезками, производят, вообще говоря, различные дейст­вия. (Если сила действует на упругое тело, то изображающий ее направленный отрезок не может быть перенесён даже вдоль той прямой, на которой он лежит.)

Это только одна из причин, по которым наряду с Векторами, т. е. множествами (или, как говорят, классами) равных направлен­ных отрезков, приходится рассматривать и отдельных представителей этих классов. При этих обстоятельствах применение определения 3 усложняется большим числом оговорок. Мы будем придерживаться определения 1, причем по общему смыслу всегда будет ясно, идет ли речь о вполне определенном векторе, или на его место может быть подставлен любой, ему равный.

В связи с определением вектора стоит разъяснить значение не­которых слов, встречающихся в литературе.