Математические модели задач линейного программирования. Математическая модель Пример математической модели

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ - представление изучаемого в конкретно-научном знании явления или процесса на языке математических понятий. При этом ряд свойств исследуемого явления предполагается получить на пути исследования собственно математических характеристик модели. Построение М.м. чаще всего диктуется необходимостью иметь количественный анализ изучаемых явлений и процессов, без которого, в свою очередь, невозможно делать проверяемые на опыте предсказания об их протекании.

Процесс математического моделирования, как правило, проходит следующие этапы. На первом этапе происходит выявление связей между основными параметрами будущей М.м. Речь идет прежде всего о качественном анализе исследуемых явлений и формулировании закономерностей, связывающих основные объекты исследования. На этой основе проводится выявление объектов, допускающих количественное описание. Этап завершается построением гипотетической модели, другими словами, записью на языке математических понятий качественных представлений о взаимосвязях между основными объектами модели, которые могут быть количественно охарактеризованы.

На втором этапе происходит исследование собственно математических задач, к которым приводит построенная гипотетическая модель. Главное на данном этапе - получить в результате математического анализа модели эмпирически проверяемые теоретические следствия (решение прямой задачи). При этом нередки случаи, когда для построения и исследования М.м. в различных областях конкретно-научного знания применяется один и тот же математический аппарат (например, дифференциальные уравнения) и возникают однотипные, хотя и весьма нетривиальные в каждом конкретном случае, математические проблемы. Кроме того, на этом этапе огромное значение приобретает использование быстродействующей вычислительной техники (ЭВМ), которая дает возможность получить приближенное решение задач, часто невозможное в рамках чистой математики, с недоступной ранее (без применения ЭВМ) степенью точности.

Для третьего этапа характерна деятельность по выявлению степени адекватности построенной гипотетической М.м. тем явлениям и процессам, для исследования которых она была предназначена. А именно, в том случае, если все параметры модели были заданы, исследователи пытаются выяснить, насколько, в пределах точности наблюдений, их результаты согласуются с теоретическими следствиями модели. Отклонения, выходящие за пределы точности наблюдений, свидетельствуют о неадекватности модели. Однако нередки случаи, когда при построении модели ряд ее параметров остается

неопределенным. Задачи, в которых устанавливаются параметрические характеристики модели таким образом, чтобы теоретические следствия были сопоставимы в пределах точности наблюдений с результатами эмпирических проверок, называют обратными задачами.

На четвертом этапе с учетом выявления степени адекватности построенной гипотетической модели и появления новых экспериментальных данных об изучаемых явлениях происходит последующий анализ и модификация модели. Здесь принимаемое решение варьируется от безусловного отказа от применяемых математических средств до принятия построенной модели в качества фундамента для построения принципиально новой научной теории.

Первые М.м. появились еще в античной науке. Так, для моделирования Солнечной системы греческий математик и астроном Евдокс придал каждой планете четыре сферы, комбинация движения которых создавала гиппопеду - математическую кривую, сходную с наблюдаемым движением планеты. Поскольку, однако, эта модель не могла объяснить все наблюдаемые аномалии в движении планет, позже она была заменена эпициклической моделью Апполония из Перги. Последнюю модель использовал в своих исследованиях Гиппарх, а затем, подвергнув ее некоторой модификации, и Птолемей. Эта модель, как и ее предшественницы, основывалась на убеждении, что планеты совершают равномерные круговые движения, наложение которых и объясняло видимые нерегулярности. При этом следует отметить, что модель Коперника была принципиально новой лишь в качественном смысле (но не как М.м.). И лишь Кеплер, основываясь на наблюдениях Тихо Браге, построил новую М.м. Солнечной системы, доказав, что планеты движутся не по круговым, а по эллиптическим орбитам.

В настоящее время наиболее адекватными признаются М.м., построенные для описания механических и физических явлений. Об адекватности М.м. за пределами физики можно, за некоторыми исключениями, говорить с изрядной долей осторожности. Тем не менее, фиксируя гипотетичность, а часто и просто неадекватность М.м. в различных областях знания, не следует недооценивать их роль в развитии науки. Нередки случаи, когда даже далекие от адекватности модели в значительной мере организовывали и стимулировали дальнейшие исследования, наряду с ошибочными выводами содержавшими и те зерна истины, которые вполне оправдывали усилия, затраченные на разработку этих моделей.

Литература:

Математическое моделирование. М., 1979;

Рузавин Г.И. Математизация научного знания. М., 1984;

Тутубалин В.Н., Барабашева Ю.М., Григорян А.А., Девяткова Г.Н.,Угер Е. Г. Дифференциальные уравнения в экологии: историко-методологическое размышление // Вопросы истории естествознания и техники. 1997. №3.

Словарь философских терминов. Научная редакция профессора В.Г. Кузнецова. М., ИНФРА-М, 2007, с. 310-311.

Четыре седьмых класса.

В 7А учатся 15 девочек и 13 мальчиков,

в 7Б - 12 девочек и 12 мальчиков,

в 7В - 9 девочек и 18 мальчиков,

в 7Г - 20 девочек и 10 мальчиков.

Если нам нужно ответить на вопрос, сколько учеников в каждом из седьмых классов, то нам 4 раза придется осуществлять одну и ту же операцию сложения:

в 7А 15 + 13 = 28 учеников;
в 7Б 12 +12 = 24 ученика;
в 7В 9 + 18 = 27 учеников;
в 7Г 20 + 10 = 30 учеников.

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Понятие модели и моделирования.

Модель в широком смысле - это любой образ, аналог мысленный или установленный изображение, описание, схема, чертеж, карта и т. п. какого либо объема, процесса или явления, используемый в качестве его заменителя или представителя. Сам объект, процесс или явление называется оригиналом данной модели.

Моделирование - это исследование какого либо объекта или системы объектов путем построения и изучения их моделей. Это использование моделей для определения или уточнения характеристик и рационализации способов построения вновь конструируемых объектов.

На идее моделирования базируется любой метод научного исследования, при этом, в теоретических методах используются различного рода знаковые, абстрактные модели, в экспериментальных - предметные модели.

При исследовании сложное реальное явление заменяется некоторой упрощенной копией или схемой, иногда такая копия служит лишь только для того чтобы запомнить и при следующей встрече узнать нужное явление. Иногда построенная схема отражает какие - то существенные черты, позволяет разобраться в механизме явления, дает возможность предсказать его изменение. Одному и тому же явлению могут соответствовать разные модели.

Задача исследователя - предсказывать характер явления и ход процесса.

Иногда, бывает, что объект доступен, но эксперименты с ним дорогостоящи или привести к серьезным экологическим последствиям. Знания о таких процессах получают с помощью моделей.

Важный момент - сам характер науки предполагает изучение не одного конкретного явления, а широкого класса родственных явлений. Предполагает необходимость формулировки каких - то общих категорических утверждений, которые называются законами. Естественно, что при такой формулировке многими подробностями пренебрегают. Чтобы более четко выявить закономерность сознательно идут на огрубление, идеализацию, схематичность, то есть изучают не само явление, а более или менее точную ее копию или модель. Все законы- это законы о моделях, а поэтому нет ничего удивительного в том, что с течением времени некоторые научные теории признаются непригодными. Это не приводит к краху науки, поскольку одна модель заменилась другой более современной .

Особую роль в науке играют математические модели, строительный материал и инструменты этих моделей - математические понятия. Они накапливались и совершенствовались в течении тысячелетий. Современная математика дает исключительно мощные и универсальные средства исследования. Практически каждое понятие в математике, каждый математический объект, начиная от понятия числа, является математической моделью. При построении математической модели, изучаемого объекта или явления выделяют те его особенности, черты и детали, которые с одной стороны содержат более или менее полную информацию об объекте, а с другой допускают математическую формализацию. Математическая формализация означает, что особенностям и деталям объекта можно поставить в соответствие подходящие адекватные математические понятия: числа, функции, матрицы и так далее. Тогда связи и отношения, обнаруженные и предполагаемые в изучаемом объекте между отдельными его деталями и составными частями можно записать с помощью математических отношений: равенств, неравенств, уравнений. В результате получается математическое описание изучаемого процесса или явление, то есть его математическая модель.

Изучение математической модели всегда связанно с некоторыми правилами действия над изучаемыми объектами. Эти правила отражают связи между причинами и следствиями.

Построение математической модели - это центральный этап исследования или проектирования любой системы. От качества модели зависит весь последующий анализ объекта. Построение модели - это процедура не формальная. Сильно зависит от исследователя, его опыта и вкуса, всегда опирается на определенный опытный материал. Модель должна быть достаточно точной, адекватной и должна быть удобна для использования.

Математическое моделирование.

Классификация математических моделей.

Математические модели могут быть детерменированными и стохастическими .

Детерменированные модели- это модели, в которых установлено взаимно-однозначное соответствие между переменными описывающими объект или явления.

Такой подход основан на знании механизма функционирования объектов. Часто моделируемый объект сложен и расшифровка его механизма может оказаться очень трудоемкой и длинной во времени. В этом случае поступают следующим образом: на оригинале проводят эксперименты, обрабатывают полученные результаты и, не вникая в механизм и теорию моделируемого объекта с помощью методов математической статистики и теории вероятности, устанавливают связи между переменными, описывающими объект. В этом случае получают стахостическую модель. В стахостической модели связь между переменными носит случайный характер, иногда это бывает принципиально. Воздействие огромного количества факторов, их сочетание приводит к случайному набору переменных описывающих объект или явление. По характеру режимов модель бывают статистическими и динамическими .

Статистическая модель включает описание связей между основными переменными моделируемого объекта в установившемся режиме без учета изменения параметров во времени.

В динамической модели описываются связи между основными переменными моделируемого объекта при переходе от одного режима к другому.

Модели бывают дискретными и непрерывными , а также смешанного типа. В непрерывных переменные принимают значения из некоторого промежутка, в дискретных переменные принимают изолированные значения.

Линейные модели - все функции и отношения, описывающие модель линейно зависят от переменных и не линейные в противном случае.

Математическое моделирование.

Требования,п редъявляемые к моделям.

1. Универсальность - характеризует полноту отображения моделью изучаемых свойств реального объекта.

    1. Адекватность - способность отражать нужные свойства объекта с погрешностью не выше заданной.
    2. Точность - оценивается степенью совпадения значений характеристик реального объекта и значения этих характеристик полученных с помощью моделей.
    3. Экономичность - определяется затратами ресурсов ЭВМ памяти и времени на ее реализацию и эксплуатацию.

Математическое моделирование.

Основные этапы моделирования.

1. Постановка задачи.

Определение цели анализа и пути ее достижения и выработки общего подхода к исследуемой проблеме. На этом этапе требуется глубокое понимание существа поставленной задачи. Иногда, правильно поставить задачу не менее сложно чем ее решить. Постановка - процесс не формальный, общих правил нет.

2. Изучение теоретических основ и сбор информации об объекте оригинала.

На этом этапе подбирается или разрабатывается подходящая теория. Если ее нет, устанавливаются причинно - следственные связи между переменными описывающими объект. Определяются входные и выходные данные, принимаются упрощающие предположения.

3. Формализация.

Заключается в выборе системы условных обозначений и с их помощью записывать отношения между составляющими объекта в виде математических выражений. Устанавливается класс задач, к которым может быть отнесена полученная математическая модель объекта. Значения некоторых параметров на этом этапе еще могут быть не конкретизированы.

4. Выбор метода решения.

На этом этапе устанавливаются окончательные параметры моделей с учетом условия функционирования объекта. Для полученной математической задачи выбирается какой - либо метод решения или разрабатывается специальный метод. При выборе метода учитываются знания пользователя, его предпочтения, а также предпочтения разработчика.

5. Реализация модели.

Разработав алгоритм, пишется программа, которая отлаживается, тестируется и получается решение нужной задачи.

6. Анализ полученной информации.

Сопоставляется полученное и предполагаемое решение, проводится контроль погрешности моделирования.

7. Проверка адекватности реальному объекту.

Результаты, полученные по модели сопоставляются либо с имеющейся об объекте информацией или проводится эксперимент и его результаты сопоставляются с расчётными.

Процесс моделирования является итеративным. В случае неудовлетворительных результатов этапов 6. или 7. осуществляется возврат к одному из ранних этапов, который мог привести к разработке неудачной модели. Этот этап и все последующие уточняются и такое уточнение модели происходит до тех пор, пока не будут получены приемлемые результаты.

Математическая модель - это приближенное описание какого-либо класса явлений или объектов реального мира на языке математики. Основная цель моделирования - исследовать эти объекты и предсказать результаты будущих наблюдений. Однако моделирование - это еще и метод познания окружающего мира, дающий возможность управлять им.

Математическое моделирование и связанный с ним компьютерный эксперимент незаменимы в тех случаях, когда натурный эксперимент невозможен или затруднен по тем или иным причинам. Например, нельзя поставить натурный эксперимент в истории, чтобы проверить, «что было бы, если бы...» Невозможно проверить правильность той или иной космологической теории. В принципе возможно, но вряд ли разумно, поставить эксперимент по распространению какой-либо болезни, например чумы, или осуществить ядерный взрыв, чтобы изучить его последствия. Однако все это вполне можно сделать на компьютере, построив предварительно математические модели изучаемых явлений.

1.1.2 2. Основные этапы математического моделирования

1) Построение модели . На этом этапе задается некоторый «нематематический» объект - явление природы, конструкция, экономический план, производственный процесс и т. д. При этом, как правило, четкое описание ситуации затруднено. Сначала выявляются основные особенности явления и связи между ними на качественном уровне. Затем найденные качественные зависимости формулируются на языке математики, то есть строится математическая модель. Это самая трудная стадия моделирования.

2) Решение математической задачи, к которой приводит модель . На этом этапе большое внимание уделяется разработке алгоритмов и численных методов решения задачи на ЭВМ, при помощи которых результат может быть найден с необходимой точностью и за допустимое время.

3) Интерпретация полученных следствий из математической модели. Следствия, выведенные из модели на языке математики, интерпретируются на языке, принятом в данной области.

4) Проверка адекватности модели. На этом этапе выясняется, согласуются ли результаты эксперимента с теоретическими следствиями из модели в пределах определенной точности.

5) Модификация модели. На этом этапе происходит либо усложнение модели, чтобы она была более адекватной действительности, либо ее упрощение ради достижения практически приемлемого решения.

1.1.3 3. Классификация моделей

Классифицировать модели можно по разным критериям. Например, по характеру решаемых проблем модели могут быть разделены на функциональные и структурные. В первом случае все величины, характеризующие явление или объект, выражаются количественно. При этом одни из них рассматриваются как независимые переменные, а другие - как функции от этих величин. Математическая модель обычно представляет собой систему уравнений разного типа (дифференциальных, алгебраических и т. д.), устанавливающих количественные зависимости между рассматриваемыми величинами. Во втором случае модель характеризует структуру сложного объекта, состоящего из отдельных частей, между которыми существуют определенные связи. Как правило, эти связи не поддаются количественному измерению. Для построения таких моделей удобно использовать теорию графов. Граф - это математический объект, представляющий собой некоторое множество точек (вершин) на плоскости или в пространстве, некоторые из которых соединены линиями (ребрами).

По характеру исходных данных и результатов предсказания модели могут быть разделены на детерминистические и вероятностно-статистические. Модели первого типа дают определенные, однозначные предсказания. Модели второго типа основаны на статистической информации, а предсказания, полученные с их помощью, имеют вероятностный характер.

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ И ВСЕОБЩАЯ КОМПЬЮТЕРИЗАЦИЯ ИЛИ ИМИТАЦИОННЫЕ МОДЕЛИ

Сейчас, когда в стране происходит чуть ли не всеобщая компьютеризация, от специалистов различных профессий приходится слышать высказывания: "Вот внедрим у себя ЭВМ, тогда все задачи сразу же будут решены". Эта точка зрения совершенно не верна, сами по себе ЭВМ без математических моделей тех или иных процессов ничего сделать не смогут и о всеобщей компьютеризации можно лишь мечтать.

В подтверждение вышесказанного попытаемся обосновать необходимость моделирования, в том числе математического, раскроем его преимущества в познании и преобразовании человеком внешнего мира, выявим существующие недостатки и пойдем… к имитационному моделированию, т.е. моделированию с использованием ЭВМ. Но все по порядку.

Прежде всего, ответим на вопрос: что такое модель?

Модель – это материальный или мысленно представленный объект, который в процессе познания (изучения) замещает оригинал, сохраняя некоторые важные для данного исследования типичные свойства.

Хорошо построенная модель доступнее для исследования – нежели реальный объект. Например, недопустимы эксперименты с экономикой страны в познавательных целях, здесь без модели не обойтись.

Резюмируя сказанное можно ответить на вопрос: для чего нужны модели? Для того, чтобы

  • понять, как устроен объект (его структура, свойства, законы развития, взаимодействия с окружающим миром).
  • научиться управлять объектом (процессом) и определять наилучшие стратегии
  • прогнозировать последствия воздействия на объект.

Что положительного в любой модели? Она позволяет получить новые знания об объекте, но, к сожалению, в той или иной степени не полна.

Модель сформулированная на языке математики с использованием математических методов называется математической моделью.

Исходным пунктом ее построения обычно является некоторая задача, например экономическая. Широко распространены, как дескриптивные, так и оптимизационные математические, характеризующие различные экономические процессы и явления, например:

  • распределение ресурсов
  • рациональный раскрой
  • транспортные перевозки
  • укрупнение предприятий
  • сетевое планирование.

Каким образом происходит построение математической модели?

  • Во–первых , формулируется цель и предмет исследования.
  • Во–вторых , выделяются наиболее важные характеристики, соответствующие данной цели.
  • В–третьих, словесно описываются взаимосвязи между элементами модели.
  • Далее взаимосвязь формализуется.
  • И производится расчет по математической модели и анализ полученного решения.

Используя данный алгоритм можно решить любую оптимизационную задачу, в том числе и многокритериальную, т.е. ту в которой преследуется не одна, а несколько целей, в том числе противоречивых.

Приведем пример. Теория массового обслуживания – проблема образования очередей. Нужно уравновесить два фактора – затраты на содержание обслуживающих устройств и затраты на пребывание в очереди. Построив формальное описание модели производят расчеты, используя аналитические и вычислительные методы. Если модель хороша, то ответы найденные с ее помощью адекватны моделирующей системе, если плоха, то подлежит улучшению и замене. Критерием адекватности служит практика.

Оптимизационные модели, в том числе многокритериальные, имеют общее свойство– из вестна цель(или несколько целей) для достижения которой часто приходится иметь дело со сложными системами, где речь идет не столько о решении оптимизационных задач, сколько об исследовании и прогнозировании состояний в зависимости от избираемых стратегий управления. И здесь мы сталкиваемся с трудностями реализации прежнего плана. Они состоят в следующем:

  • сложная система содержит много связей между элементами
  • реальная система подвергается влиянию случайных факторов, учет их аналитическим путем невозможен
  • возможность сопоставления оригинала с моделью существует лишь в начале и после применения математического аппарата, т.к. промежуточные результаты могут не иметь аналогов в реальной системе.

В связи с перечисленными трудностями, возникающими при изучении сложных систем, практика потребовала более гибкий метод, и он появился – имитационное моделирование "Simujation modeling ".

Обычно под имитационной моделью понимается комплекс программ для ЭВМ, описывающий функционирование отдельных блоков систем и правил взаимодействия между ними. Использование случайных величин делает необходимым многократное проведение экспериментов с имитационной системой (на ЭВМ) и последующий статистический анализ полученных результатов. Весьма распространенным примером использования имитационных моделей является решение задачи массового обслуживания методом МОНТЕ–КАРЛО.

Таким образом, работа с имитационной системой представляет собой эксперимент, осуществляемый на ЭВМ. В чем же заключаются преимущества?

–Большая близость к реальной системе, чем у математических моделей;

–Блочный принцип дает возможность верифицировать каждый блок до его включения в общую систему;

–Использование зависимостей более сложного характера, не описываемых простыми математическими соотношениями.

Перечисленные достоинства определяют недостатки

–построить имитационную модель дольше, труднее и дороже;

–для работы с имитационной системой необходимо наличие подходящей по классу ЭВМ;

–взаимодействие пользователя и имитационной модели (интерфейс) должно быть не слишком сложным, удобным и хорошо известным;

–построение имитационной модели требует более глубокого изучения реального процесса, нежели математическое моделирование.

Встает вопрос: может ли имитационное моделирование заменить методы оптимизации? Нет, но удобно дополняет их. Имитационная модель – это программа, реализующая некоторый алгоритм, для оптимизации управления которым прежде решается оптимизационная задача.

Итак, ни ЭВМ, ни математическая модель, ни алгоритм для ее исследования порознь не могут решить достаточно сложную задачу. Но вместе они представляют ту силу, которая позволяет познавать окружающий мир, управлять им в интересах человека.

1.2 Классификация моделей

1.2.1
Классификация с учетом фактора времени и области использования (Макарова Н.А.)

Статическая модель - это как бы одномоментный срез информации по объекту (результат одного обследования)
Динамическая модель-позволяет увидеть изменения объекта во времени(Карточка в поликлинике)
Можно классифицировать модели и по тому, к какой области знаний они принадлежат (биологические,исторические , экологические и т.п.)
Возврат в начало

1.2.2 Классификация по области использования (Макарова Н.А.)

Учебные- наглядные пособия, тренажеры,о бучающие программы
Опытные модели-уменьшенные копии (автомобиль в аэродинамической трубе)
Научно-технические- синхрофазотрон , стенд для проверки электронной аппаратуры
Игровые- экономические , спортивные, деловые игры
Имитационные- не просто отражают реальность, но имитируют ее(на мышах испытываеется лекарство, в школах проводятся эксперементы и т.п. .Такой метод моделирования называется методом проб и ошибок
Возврат в начало

1.2.3 Классификация по способу представления Макарова Н.А.)

Материальные модели-иначе можно назвать предметными. Они воспринимают геометрические и физические свойства оригинала и всегда имеют реальное воплощение
Информационные модели-нельзя потрогать или увидеть. Они строятся только на информации.И нформационная модель совокупность информации, характеризующая свойства и состояния объекта, процесса, явления, а также взаимосвязь с внешним миром.
Вербальная модель - информационная модель в мысленной или разговорной форме.
Знаковая модель-информационная модель выраженная знаками,т .е . средствами любого формального языка.
Компьютерная модель -м одель, реализованная средствами программной среды.

1.2.4 Классификация моделей, приведенная в книге "Земля Информатика" (Гейн А.Г.))

"...вот нехитрая на первый взгляд задача: сколько потребуется времени, чтобы пересечь пустыню Каракумы? Ответ,разумеется зависит от способа передвижения. Если путешествоватьна верблюдах , то потребуется один срок, другой-если ехать на автомобиле, третий - если лететь самолетом. А самое главное - для планирования путешествия требуются разные модели. Для первого случая требуемую модель можно найти в мемуарах знаменитых исследователей пустынь: ведь здесь не обойтись без информации об оазисах и верблюжьих тропах. Во втором случае незаменимая информация, содержащаяся в атласе автомобильных дорог. В третьем - можно воспользоваться расписанием самолетных рейсов.
Отличаются эти три модели - мемуары, атлас и расписание и характером предьявления информации. В первом случае модель представлена словесным описанием информации (описательная модель) , во втором- как бы фотографией с натуры (натурная модель) , в третьем - таблицей содержащей условные обозначения: время вылета и прилета, день недели, цена билета (так называемая знаковая модель) Впрочем это деление весьма условно- в мемуарах могут встретиться карты и схемы (элементы натурной модели), на картах имеются условные обозначения (элементы знаковой модели), в расписании приводится расшифровка условных обозначений (элементы описательной модели). Так что эта классификация моделей... на наш взгля малопродуктивна"
На мой взгляд этот фрагмент демонстрирует общий для всех книг Гейна описательный (замечательный язык и стиль изложения) и как бы, сократовский стиль обучения (Все считают что это вот так. Я совершенно согласен с вами, но если приглядеться, то...). В таких книгах достаточно сложно найти четкую систему определений (она и не предполагается автором). В учебнике под редакцией Н.А. Макаровой демонстрируется другой подход - определения понятий четко выделены и несколько статичны.

1.2.5 Классификация моделей приведенная в пособии А.И.Бочкина

Способов классификации необычно много.П риведем лишь некоторые, наиболее известные основания и признаки:дискретность и непрерывность,матричные и скалярные модели, статические и динамические модели, аналитические и информационные модели, предметные и образно-знаковые модели, масштабные и немасштабные...
Каждый признак даетопределенное знание о свойствах и модели, и моделируемой реальности. Признак может служить подсказкой о способе выполненного или предстоящего моделирования.
Дискретность и непрерывностьДискретность - характерный признак именно компьютерных моделей.В едь компьютер может находиться в конечном, хотя и очень большом количестве состояний. Поэтому даже если объект непрерывен (время), в модели он будет изменяться скачками. Можно считать непрерывность признаком моделей некомпьютерного типа.
Случайность и детерминированность . Неопределенность, случайность изначально противостоит компьютерному миру: Запущенный вновь алгоритм должен повториться и дать те же результаты. Но для имитации случайных процессов используют датчики псевдослучайных чисел. Введение случайности в детерминированные задачи приводит к мощным и интересным моделям (Вычисление площади методом случайных бросаний).
Матричность - скалярность . Наличие параметров у матричной модели говорит о ее большей сложности и, возможно, точности по сравнению со скалярной . Например, если не выделить в населении страны все возрастные группы, рассматривая его изменение как целое, получим скалярную модель (например модель Мальтуса), если выделить, - матричную (половозрастную). Именно матричная модель позволила объяснить колебания рождаемости после войны.
Статичность динамичность . Эти свойства модели обычно предопределяются свойствами реального объекта. Здесь нет свободы выбора. Просто статическая модель может быть шагом к динамической , либо часть переменных модели может считаться пока неизменной. Например, спутник движется вокруг Земли, на его движение влияет Луна. Если считать Луну неподвижной за время оборота спутника, получим более простую модель.
Аналитические модели . Описание процессов аналитически , формулами и уравнениями. Но при попытке построить график удобнее иметь таблицы значений функции и аргументов.
Имитационные модели . Имитационные модели появились давно в виде масштабных копий кораблей, мостов и пр. появились давно, но в связи с компьютерами рассматриваются недавно. Зная как связаны элементы модели аналитически и логически, проще не решать систему неких соотношений и уравнений, а отобразить реальную систему в память компьютера, с учетом связей между элементами памяти.
Информационные модели . Информационные модели принято противополагать математическим , точнее алгоритмическим. Здесь важно соотношение объемов данные/алгоритмы. Если данных больше или они важнее имеем информационную модель, иначе - математичеескую .
Предметные модели . Это прежде всего детская модель - игрушка.
Образно-знаковые модели . Это прежде всего модель в уме человека: образная , если преобладают графические образы, и знаковая , если больше слов или (и) чисел. Образно-знаковые модели строятся на компьютере.
Масштабные модели . К масштабным моделям те из предметных или образных моделей, которые повторяют форму объекта (карта).



По учебнику Советова и Яковлева : «модель (лат. modulus - мера) - это объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала». (с. 6) «Замещение одного объекта другим с целью получения информации о важнейших свойствах объекта-оригинала с помощью объекта-модели называется моделированием». (с. 6) «Под математическим моделированием будем понимать процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристики рассматриваемого реального объекта. Вид математической модели зависит как от природы реального объекта, так и задач исследования объекта и требуемой достоверности и точности решения этой задачи».

Наконец, наиболее лаконичное определение математической модели: «Уравнение , выражающее идею ».

Классификация моделей

Формальная классификация моделей

Формальная классификация моделей основывается на классификации используемых математических средств. Часто строится в форме дихотомий . Например, один из популярных наборов дихотомий :

и так далее. Каждая построенная модель является линейной или нелинейной, детерминированной или стохастической, … Естественно, что возможны и смешанные типы: в одном отношении сосредоточенные (по части параметров), в другом - распределённые модели и т. д.

Классификация по способу представления объекта

Наряду с формальной классификацией, модели различаются по способу представления объекта:

  • Структурные или функциональные модели

Структурные модели представляют объект как систему со своим устройством и механизмом функционирования. Функциональные модели не используют таких представлений и отражают только внешне воспринимаемое поведение (функционирование) объекта. В их предельном выражении они называются также моделями «чёрного ящика» . Возможны также комбинированные типы моделей, которые иногда называют моделями «серого ящика ».

Содержательные и формальные модели

Практически все авторы, описывающие процесс математического моделирования, указывают, что сначала строится особая идеальная конструкция, содержательная модель . Устоявшейся терминологии здесь нет, и другие авторы называют этот идеальный объект концептуальная модель , умозрительная модель или предмодель . При этом финальная математическая конструкция называется формальной моделью или просто математической моделью, полученной в результате формализации данной содержательной модели (предмодели). Построение содержательной модели может производиться с помощью набора готовых идеализаций, как в механике, где идеальные пружины, твёрдые тела, идеальные маятники, упругие среды и т. п. дают готовые структурные элементы для содержательного моделирования. Однако в областях знания, где не существует полностью завершенных формализованных теорий (передний край физики , биологии , экономики , социологии , психологии , и большинства других областей), создание содержательных моделей резко усложняется.

Содержательная классификация моделей

Никакая гипотеза в науке не бывает доказана раз и навсегда. Очень чётко это сформулировал Ричард Фейнман :

«У нас всегда есть возможность опровергнуть теорию, но, обратите внимание, мы никогда не можем доказать, что она правильна. Предположим, что вы выдвинули удачную гипотезу, рассчитали, к чему это ведет, и выяснили, что все ее следствия подтверждаются экспериментально. Значит ли это, что ваша теория правильна? Нет, просто-напросто это значит, что вам не удалось ее опровергнуть».

Если модель первого типа построена, то это означает, что она временно признаётся за истину и можно сконцентрироваться на других проблемах. Однако это не может быть точкой в исследованиях, но только вре́менной паузой: статус модели первого типа может быть только вре́менным.

Тип 2: Феноменологическая модель (ведем себя так, как если бы …)

Феноменологическая модель содержит механизм для описания явления. Однако этот механизм недостаточно убедителен, не может быть достаточно подтверждён имеющимися данными или плохо согласуется с имеющимися теориями и накопленным знанием об объекте. Поэтому феноменологические модели имеют статус вре́менных решений. Считается, что ответ всё ещё неизвестен и необходимо продолжить поиск «истинных механизмов». Ко второму типу Пайерлс относит, например, модели теплорода и кварковую модель элементарных частиц.

Роль модели в исследовании может меняться со временем, может случиться так, что новые данные и теории подтвердят феноменологические модели и те будут повышены до статуса гипотезы. Аналогично, новое знание может постепенно прийти в противоречие с моделями-гипотезами первого типа и те могут быть переведены во второй. Так, кварковая модель постепенно переходит в разряд гипотез; атомизм в физике возник как временное решение, но с ходом истории перешёл в первый тип. А вот модели эфира , проделали путь от типа 1 к типу 2, а сейчас находятся вне науки.

Идея упрощения очень популярна при построении моделей. Но упрощение бывает разным. Пайерлс выделяет три типа упрощений в моделировании.

Тип 3: Приближение (что-то считаем очень большим или очень малым )

Если можно построить уравнения, описывающие исследуемую систему, то это не значит, что их можно решить даже с помощью компьютера. Общепринятый прием в этом случае - использование приближений (моделей типа 3). Среди них модели линейного отклика . Уравнения заменяются линейными. Стандартный пример - закон Ома .

А вот и тип 8, широко распространенный в математических моделях биологических систем.

Тип 8: Демонстрация возможности (главное - показать внутреннюю непротиворечивость возможности )

Это тоже мысленные эксперименты с воображаемыми сущностями, демонстрирующие, что предполагаемое явление согласуется с базовыми принципам и внутренне непротиворечиво. В этом основное отличие от моделей типа 7, которые вскрывают скрытые противоречия.

Один из самых знаменитых таких экспериментов - геометрия Лобачевского (Лобачевский называл её «воображаемой геометрией»). Другой пример - массовое производство формально - кинетических моделей химических и биологических колебаний, автоволн и др. Парадокс Эйнштейна - Подольского - Розена был задуман как модель 7 типа, для демонстрации противоречивости квантовой механики. Совершенно незапланированным образом он со временем превратился в модель 8 типа - демонстрацию возможности квантовой телепортации информации.

Пример

Рассмотрим механическую систему, состоящую из пружины, закрепленной с одного конца, и груза массой , прикрепленного к свободному концу пружины. Будем считать, что груз может двигаться только в направлении оси пружины (например, движение происходит вдоль стержня). Построим математическую модель этой системы. Будем описывать состояние системы расстоянием от центра груза до его положения равновесия. Опишем взаимодействие пружины и груза с помощью закона Гука () после чего воспользуемся вторым законом Ньютона , чтобы выразить его в форме дифференциального уравнения :

где означает вторую производную от по времени: .

Полученное уравнение описывает математическую модель рассмотренной физической системы. Эта модель называется «гармоническим осциллятором ».

По формальной классификации эта модель линейная, детерминисткая, динамическая, сосредоточенная, непрерывная. В процессе её построения мы сделали множество допущений (об отсутствии внешних сил, отсутствии трения, малости отклонений и т. д.), которые в реальности могут не выполняться.

По отношению к реальности это, чаще всего, модель типа 4 упрощение («опустим для ясности некоторые детали»), поскольку опущены некоторые существенные универсальные особенности (например, диссипация). В некотором приближении (скажем, пока отклонение груза от равновесия невелико, при малом трении, в течение не слишком большого времени и при соблюдении некоторых других условий), такая модель достаточно хорошо описывает реальную механическую систему, поскольку отброшенные факторы оказывают пренебрежимо малое влияние на её поведение. Однако модель можно уточнить, приняв во внимание какие-то из этих факторов. Это приведет к новой модели, с более широкой (хотя и снова ограниченной) областью применимости.

Впрочем, при уточнении модели сложность её математического исследования может существенно возрасти и сделать модель фактически бесполезной. Зачастую более простая модель позволяет лучше и глубже исследовать реальную систему, чем более сложная (и, формально, «более правильная»).

Если применять модель гармонического осциллятора к объектам, далёким от физики, её содержательный статус может быть другим. Например, при приложении этой модели к биологическим популяциям, её следует отнести, скорее всего, к типу 6 аналогия («учтём только некоторые особенности»).

Жёсткие и мягкие модели

Гармонический осциллятор - пример так называемой «жёсткой» модели. Она получена в результате сильной идеализации реальной физической системы. Для решения вопроса о её применимости необходимо понять, насколько существенными являются факторы, которыми мы пренебрегли. Иными словами, нужно исследовать «мягкую» модель, получающуюся малым возмущением «жёсткой». Она может задаваться, например, следующим уравнением:

Здесь - некоторая функция, в которой может учитываться сила трения или зависимость коэффициента жёсткости пружины от степени её растяжения, - некоторый малый параметр. Явный вид функции нас в данный момент не интересует. Если мы докажем, что поведение мягкой модели принципиально не отличается от поведения жёсткой (вне зависимости от явного вида возмущающих факторов, если они достаточно малы), задача сведется к исследованию жёсткой модели. В противном случае применение результатов, полученных при изучении жёсткой модели, потребует дополнительных исследований. Например, решением уравнения гармонического осциллятора являются функции вида , то есть колебания с постоянной амплитудой. Следует ли из этого, что реальный осциллятор будет бесконечно долго колебаться с постоянной амплитудой? Нет, поскольку рассматривая систему со сколь угодно малым трением (всегда присутствующим в реальной системе), мы получим затухающие колебания . Поведение системы качественно изменилось.

Если система сохраняет свое качественное поведение при малом возмущении, говорят, что она структурно устойчива. Гармонический осциллятор - пример структурно-неустойчивой (негрубой) системы. Тем не менее, эту модель можно применять для изучения процессов на ограниченных промежутках времени.

Универсальность моделей

Важнейшие математические модели обычно обладают важным свойством универсальности : принципиально разные реальные явления могут описываться одной и той же математической моделью. Скажем, гармонический осциллятор описывает не только поведение груза на пружине, но и другие колебательные процессы, зачастую имеющие совершенно иную природу: малые колебания маятника, колебания уровня жидкости в -образном сосуде или изменение силы тока в колебательном контуре. Таким образом, изучая одну математическую модель, мы изучаем сразу целый класс описываемых ею явлений. Именно этот изоморфизм законов, выражаемых математическими моделями в различных сегментах научного знания, подвиг Людвига фон Берталанфи на создание «Общей теории систем ».

Прямая и обратная задачи математического моделирования

Существует множество задач, связанных с математическим моделированием. Во-первых, надо придумать основную схему моделируемого объекта, воспроизвести его в рамках идеализаций данной науки. Так, вагон поезда превращается в систему пластин и более сложных тел из разных материалов, каждый материал задается как его стандартная механическая идеализация (плотность, модули упругости, стандартные прочностные характеристики), после чего составляются уравнения, по дороге какие-то детали отбрасываются, как несущественные, производятся расчёты, сравниваются с измерениями, модель уточняется, и так далее. Однако для разработки технологий математического моделирования полезно разобрать этот процесс на основные составные элементы.

Традиционно выделяют два основных класса задач, связанных с математическими моделями: прямые и обратные.

Прямая задача : структура модели и все её параметры считаются известными, главная задача - провести исследование модели для извлечения полезного знания об объекте. Какую статическую нагрузку выдержит мост? Как он будет реагировать на динамическую нагрузку (например, на марш роты солдат, или на прохождение поезда на различной скорости), как самолёт преодолеет звуковой барьер, не развалится ли он от флаттера , - вот типичные примеры прямой задачи. Постановка правильной прямой задачи (задание правильного вопроса) требует специального мастерства. Если не заданы правильные вопросы, то мост может обрушиться, даже если была построена хорошая модель для его поведения. Так, в 1879 г. в Великобритании обрушился металлический мост через реку Тей , конструкторы которого построили модель моста, рассчитали его на 20-кратный запас прочности на действие полезной нагрузки, но забыли о постоянно дующих в тех местах ветрах. И через полтора года он рухнул.

В простейшем случае (одно уравнение осциллятора, например) прямая задача очень проста и сводится к явному решению этого уравнения.

Обратная задача : известно множество возможных моделей, надо выбрать конкретную модель на основании дополнительных данных об объекте. Чаще всего, структура модели известна, и необходимо определить некоторые неизвестные параметры. Дополнительная информация может состоять в дополнительных эмпирических данных, или в требованиях к объекту (задача проектирования ). Дополнительные данные могут поступать независимо от процесса решения обратной задачи (пассивное наблюдение ) или быть результатом специально планируемого в ходе решения эксперимента (активное наблюдение ).

Одним из первых примеров виртуозного решения обратной задачи с максимально полным использованием доступных данных был построенный И. Ньютоном метод восстановления сил трения по наблюдаемым затухающим колебаниям.

В качестве другого примера можно привести математическую статистику . Задача этой науки - разработка методов регистрации, описания и анализа данных наблюдений и экспериментов с целью построения вероятностных моделей массовых случайных явлений . Т.е. множество возможных моделей ограничено вероятностными моделями. В конкретных задачах множество моделей ограничено сильнее.

Компьютерные системы моделирования

Для поддержки математического моделирования разработаны системы компьютерной математики, например, Maple , Mathematica , Mathcad , MATLAB , VisSim и др. Они позволяют создавать формальные и блочные модели как простых, так и сложных процессов и устройств и легко менять параметры моделей в ходе моделирования. Блочные модели представлены блоками (чаще всего графическими), набор и соединение которых задаются диаграммой модели.

Дополнительные примеры

Модель Мальтуса

Скорость роста пропорциональна текущему размеру популяции . Она описывается дифференциальным уравнением

где - некоторый параметр, определяемый разностью между рождаемостью и смертностью. Решением этого уравнения является экспоненциальная функция . Если рождаемость превосходит смертность (), размер популяции неограниченно и очень быстро возрастает. Понятно, что в действительности этого не может происходить из-за ограниченности ресурсов. При достижении некоторого критического объёма популяции модель перестает быть адекватной, поскольку не учитывает ограниченность ресурсов. Уточнением модели Мальтуса может служить логистическая модель , которая описывается дифференциальным уравнением Ферхюльста

где - «равновесный» размер популяции, при котором рождаемость в точности компенсируется смертностью. Размер популяции в такой модели стремится к равновесному значению , причем такое поведение структурно устойчиво.

Система хищник-жертва

Допустим, что на некоторой территории обитают два вида животных : кролики (питающиеся растениями) и лисы (питающиеся кроликами). Пусть число кроликов , число лис . Используя модель Мальтуса с необходимыми поправками, учитывающими поедание кроликов лисами, приходим к следующей системе, носящей имя модели Лотки - Вольтерра :

Эта система имеет равновесное состояние , когда число кроликов и лис постоянно. Отклонение от этого состояния приводит к колебаниям численности кроликов и лис, аналогичным колебаниям гармонического осциллятора . Как и в случае гармонического осциллятора, это поведение не является структурно устойчивым : малое изменение модели (например, учитывающее ограниченность ресурсов, необходимых кроликам) может привести к качественному изменению поведения . Например, равновесное состояние может стать устойчивым, и колебания численности будут затухать . Возможна и противоположная ситуация, когда любое малое отклонение от положения равновесия приведет к катастрофическим последствиям, вплоть до полного вымирания одного из видов. На вопрос о том, какой из этих сценариев реализуется, модель Вольтерра - Лотки ответа не дает: здесь требуются дополнительные исследования.

Примечания

  1. «A mathematical representation of reality»(Encyclopaedia Britanica)
  2. Новик И. Б. , О философских вопросах кибернетического моделирования. М., Знание, 1964.
  3. Советов Б. Я., Яковлев С. А. , Моделирование систем: Учеб. для вузов - 3-е изд., перераб. и доп. - М.: Высш. шк., 2001. - 343 с. ISBN 5-06-003860-2
  4. Самарский А. А. , Михайлов А. П. Математическое моделирование. Идеи. Методы. Примеры . - 2-е изд., испр. - М .: Физматлит, 2001. - ISBN 5-9221-0120-X
  5. Мышкис А. Д. , Элементы теории математических моделей. - 3-е изд., испр. - М.: КомКнига, 2007. - 192 с ISBN 978-5-484-00953-4
  6. Севостьянов, А.Г. Моделирование технологических процессов: учебник / А.Г. Севостьянов, П.А. Севостьянов. – М.: Легкая и пищевая промышленность, 1984. - 344 с.
  7. Wiktionary: mathematical model
  8. CliffsNotes.com. Earth Science Glossary. 20 Sep 2010
  9. Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena, Springer, Complexity series, Berlin-Heidelberg-New York, 2006. XII+562 pp. ISBN 3-540-35885-4
  10. «Теория считается линейной или нелинейной в зависимости от того, какой - линейный или нелинейный - математический аппарат, какие - линейные или нелинейные - математические модели она использует. … ез отрицание последней. Современный физик, доведись ему заново создавать определение столь важной сущности, как нелинейность, скорее всего, поступил бы иначе, и, отдав предпочтение нелинейности как более важной и распространенной из двух противоположностей, определил бы линейность как „не нелинейность“.» Данилов Ю. А. , Лекции по нелинейной динамике. Элементарное введение. Серия «Синергетика: от прошлого к будущему». Изд.2. - M.: URSS, 2006. - 208 с. ISBN 5-484-00183-8
  11. «Динамические системы, моделируемые конечным числом обыкновенных дифференциальных уравнений, называют сосредоточенными или точечными системами. Они описываются с помощью конечномерного фазового пространства и характеризуются конечным числом степеней свободы. Одна и та же система в различных условиях может рассматриваться либо как сосредоточенная, либо как распределенная. Математические модели распределенных систем - это дифференциальные уравнения в частных производных, интегральные уравнения или обыкновенные уравнения с запаздывающим аргументом. Число степеней свободы распределенной системы бесконечно, и требуется бесконечное число данных для определения ее состояния.» Анищенко В. С. , Динамические системы, Соросовский образовательный журнал, 1997, № 11, с. 77-84.
  12. «В зависимости от характера изучаемых процессов в системе S все виды моделирования могут быть разделены на детерминированные и стохастические, статические и динамические, дискретные, непрерывные и дискретно-непрерывные. Детерминированное моделирование отображает детерминированные процессы, то есть процессы, в которых предполагается отсутствие всяких случайных воздействий; стохастическое моделирование отображает вероятностные процессы и события. … Статическое моделирование служит для описания поведения объекта в какой-либо момент времени, а динамическое моделирование отражает поведение объекта во времени. Дискретное моделирование служит для описания процессов, которые предполагаются дискретными, соответственно непрерывное моделирование позволяет отразить непрерывные процессы в системах, а дискретно-непрерывное моделирование используется для случаев, когда хотят выделить наличие как дискретных, так и непрерывных процессов.» Советов Б. Я., Яковлев С. А. ISBN 5-06-003860-2
  13. Обычно в математической модели отражается структура (устройство) моделируемого объекта, существенные для целей исследования свойства и взаимосвязи компонентов этого объекта; такая модель называется структурной. Если же модель отражает только то, как объект функционирует - например, как он реагирует на внешние воздействия,- то она называется функциональной или, образно, черным ящиком. Возможны и модели комбинированного типа. Мышкис А. Д. ISBN 978-5-484-00953-4
  14. «Очевидный, но важнейший начальный этап построения или выбора математической модели - это получение по возможности более четкого представления о моделируемом объекте и уточнение его содержательной модели, основанное на неформальных обсуждениях. Нельзя жалеть времени и усилий на этот этап, от него в значительной мере зависит успех всего исследования. Не раз бывало, что значительный труд, затраченный на решение математической задачи, оказывался малоэффективным или даже потраченным впустую из-за недостаточного внимания к этой стороне дела.» Мышкис А. Д. , Элементы теории математических моделей. - 3-е изд., испр. - М.: КомКнига, 2007. - 192 с ISBN 978-5-484-00953-4 , с. 35.
  15. «Описание концептуальной модели системы. На этом подэтапе построения модели системы: а) описывается концептуальная модель М в абстрактных терминах и понятиях; б) дается описание модели с использованием типовых математических схем; в) принимаются окончательно гипотезы и предположения; г) обосновывается выбор процедуры аппроксимации реальных процессов при построении модели.» Советов Б. Я., Яковлев С. А. , Моделирование систем: Учеб. для вузов - 3-е изд., перераб. и доп. - М.: Высш. шк., 2001. - 343 с. ISBN 5-06-003860-2 , с. 93.
  16. Блехман И. И., Мышкис А. Д.,

Математическое моделирование

1. Что такое математическое моделирование?

С середины XX в. в самых различных областях человеческой деятельности стали широко применять математические методы и ЭВМ. Возникли такие новые дисциплины, как «математическая экономика», «математическая химия», «математическая лингвистика» и т. д., изучающие математические модели соответствующих объектов и явлений, а также методы исследования этих моделей.

Математическая модель - это приближенное описание какого-либо класса явлений или объектов реального мира на языке математики. Основная цель моделирования - исследовать эти объекты и предсказать результаты будущих наблюдений. Однако моделирование - это еще и метод познания окружающего мира, дающий возможность управлять им.

Математическое моделирование и связанный с ним компьютерный эксперимент незаменимы в тех случаях, когда натурный эксперимент невозможен или затруднен по тем или иным причинам. Например, нельзя поставить натурный эксперимент в истории, чтобы проверить, «что было бы, если бы...» Невозможно проверить правильность той или иной космологической теории. В принципе возможно, но вряд ли разумно, поставить эксперимент по распространению какой-либо болезни, например чумы, или осуществить ядерный взрыв, чтобы изучить его последствия. Однако все это вполне можно сделать на компьютере, построив предварительно математические модели изучаемых явлений.

2. Основные этапы математического моделирования

1) Построение модели . На этом этапе задается некоторый «нематематический» объект - явление природы, конструкция, экономический план, производственный процесс и т. д. При этом, как правило, четкое описание ситуации затруднено. Сначала выявляются основные особенности явления и связи между ними на качественном уровне. Затем найденные качественные зависимости формулируются на языке математики, то есть строится математическая модель. Это самая трудная стадия моделирования.

2) Решение математической задачи, к которой приводит модель . На этом этапе большое внимание уделяется разработке алгоритмов и численных методов решения задачи на ЭВМ, при помощи которых результат может быть найден с необходимой точностью и за допустимое время.

3) Интерпретация полученных следствий из математической модели. Следствия, выведенные из модели на языке математики, интерпретируются на языке, принятом в данной области.

4) Проверка адекватности модели. На этом этапе выясняется, согласуются ли результаты эксперимента с теоретическими следствиями из модели в пределах определенной точности.

5) Модификация модели. На этом этапе происходит либо усложнение модели, чтобы она была более адекватной действительности, либо ее упрощение ради достижения практически приемлемого решения.

3. Классификация моделей

Классифицировать модели можно по разным критериям. Например, по характеру решаемых проблем модели могут быть разделены на функциональные и структурные. В первом случае все величины, характеризующие явление или объект, выражаются количественно. При этом одни из них рассматриваются как независимые переменные, а другие - как функции от этих величин. Математическая модель обычно представляет собой систему уравнений разного типа (дифференциальных, алгебраических и т. д.), устанавливающих количественные зависимости между рассматриваемыми величинами. Во втором случае модель характеризует структуру сложного объекта, состоящего из отдельных частей, между которыми существуют определенные связи. Как правило, эти связи не поддаются количественному измерению. Для построения таких моделей удобно использовать теорию графов. Граф - это математический объект, представляющий собой некоторое множество точек (вершин) на плоскости или в пространстве, некоторые из которых соединены линиями (ребрами).

По характеру исходных данных и результатов предсказания модели могут быть разделены на детерминистические и вероятностно-статистические. Модели первого типа дают определенные, однозначные предсказания. Модели второго типа основаны на статистической информации, а предсказания, полученные с их помощью, имеют вероятностный характер.

4. Примеры математических моделей

1) Задачи о движении снаряда.

Рассмотрим следующую задачу механики.

Снаряд пущен с Земли с начальной скоростью v 0 = 30 м/с под углом a = 45° к ее поверхности; требуется найти траекторию его движения и расстояние S между начальной и конечной точкой этой траектории.

Тогда, как это известно из школьного курса физики, движение снаряда описывается формулами:

где t - время, g = 10 м/с 2 - ускорение свободного падения. Эти формулы и дают математическую модель поставленной задачи. Выражая t через x из первого уравнения и подставляя во второе, получим уравнение траектории движения снаряда:

Эта кривая (парабола) пересекает ось x в двух точках: x 1 = 0 (начало траектории) и (место падения снаряда). Подставляя в полученные формулы заданные значения v0 и a, получим

ответ: y = x – 90x 2 , S = 90 м.

Отметим, что при построении этой модели использован ряд предположений: например, считается, что Земля плоская, а воздух и вращение Земли не влияют на движение снаряда.

2) Задача о баке с наименьшей площадью поверхности.

Требуется найти высоту h 0 и радиус r 0 жестяного бака объема V = 30 м 3 , имеющего форму закрытого кругового цилиндра, при которых площадь его поверхности S минимальна (в этом случае на его изготовление пойдет наименьшее количество жести).

Запишем следующие формулы для объема и площади поверхности цилиндра высоты h и радиуса r:

V = p r 2 h, S = 2p r(r + h).

Выражая h через r и V из первой формулы и подставляя полученное выражение во вторую, получим:

Таким образом, с математической точки зрения, задача сводится к определению такого значения r, при котором достигает своего минимума функция S(r). Найдем те значения r 0 , при которых производная

обращается в ноль:Можно проверить, что вторая производная функции S(r) меняет знак с минуса на плюс при переходе аргумента r через точку r 0 . Следовательно, в точке r0 функция S(r) имеет минимум. Соответствующее значение h 0 = 2r 0 . Подставляя в выражение для r 0 и h 0 заданное значение V, получим искомый радиус и высоту

3) Транспортная задача.

В городе имеются два склада муки и два хлебозавода. Ежедневно с первого склада вывозят 50 т муки, а со второго - 70 т на заводы, причем на первый - 40 т, а на второй - 80 т.

Обозначим через a ij стоимость перевозки 1 т муки с i-го склада на j-й завод (i, j = 1,2). Пусть

a 11 = 1,2 р., a 12 = 1,6 р., a 21 = 0,8 р., a 22 = 1 р.

Как нужно спланировать перевозки, чтобы их стоимость была минимальной?

Придадим задаче математическую формулировку. Обозначим через x 1 и x 2 количество муки, которое надо перевезти с первого склада на первый и второй заводы, а через x 3 и x 4 - со второго склада на первый и второй заводы соответственно. Тогда:

x 1 + x 2 = 50, x 3 + x 4 = 70, x 1 + x 3 = 40, x 2 + x 4 = 80. (1)

Общая стоимость всех перевозок определяется формулой

f = 1,2x 1 + 1,6x 2 + 0,8x 3 + x 4 .

С математической точки зрения, задача заключается в том, чтобы найти четыре числа x 1 , x 2 , x 3 и x 4 , удовлетворяющие всем заданным условиям и дающим минимум функции f. Решим систему уравнений (1) относительно xi (i = 1, 2, 3, 4) методом исключения неизвестных. Получим, что

x 1 = x 4 – 30, x 2 = 80 – x 4 , x 3 = 70 – x 4 , (2)

а x 4 не может быть определено однозначно. Так как x i і 0 (i = 1, 2, 3, 4), то из уравнений (2) следует, что 30Ј x 4 Ј 70. Подставляя выражение для x 1 , x 2 , x 3 в формулу для f, получим

f = 148 – 0,2x 4 .

Легко видеть, что минимум этой функции достигается при максимально возможном значении x 4 , то есть при x 4 = 70. Соответствующие значения других неизвестных определяются по формулам (2): x 1 = 40, x 2 = 10, x 3 = 0.

4) Задача о радиоактивном распаде.

Пусть N(0) - исходное количество атомов радиоактивного вещества, а N(t) - количество нераспавшихся атомов в момент времени t. Экспериментально установлено, что скорость изменения количества этих атомов N"(t) пропорциональна N(t), то есть N"(t)=–l N(t), l >0 - константа радиоактивности данного вещества. В школьном курсе математического анализа показано, что решение этого дифференциального уравнения имеет вид N(t) = N(0)e –l t . Время T, за которое число исходных атомов уменьшилось вдвое, называется периодом полураспада, и является важной характеристикой радиоактивности вещества. Для определения T надо положить в формуле Тогда Например, для радона l = 2,084 · 10 –6 , и следовательно, T = 3,15 сут.

5) Задача о коммивояжере.

Коммивояжеру, живущему в городе A 1 , надо посетить города A 2 , A 3 и A 4 , причем каждый город точно один раз, и затем вернуться обратно в A 1 . Известно, что все города попарно соединены между собой дорогами, причем длины дорог b ij между городами A i и A j (i, j = 1, 2, 3, 4) таковы:

b 12 = 30, b 14 = 20, b 23 = 50, b 24 = 40, b 13 = 70, b 34 = 60.

Надо определить порядок посещения городов, при котором длина соответствующего пути минимальна.

Изобразим каждый город точкой на плоскости и пометим ее соответствующей меткой Ai (i = 1, 2, 3, 4). Соединим эти точки отрезками прямых: они будут изображать дороги между городами. Для каждой «дороги» укажем ее протяженность в километрах (рис. 2). Получился граф - математический объект, состоящий из некоторого множества точек на плоскости (называемых вершинами) и некоторого множества линий, соединяющих эти точки (называемых ребрами). Более того, этот граф меченый, так как его вершинам и ребрам приписаны некоторые метки - числа (ребрам) или символы (вершинам). Циклом на графе называется последовательность вершин V 1 , V 2 , ..., V k , V 1 такая, что вершины V 1 , ..., V k - различны, а любая пара вершин V i , V i+1 (i = 1, ..., k – 1) и пара V 1 , V k соединены ребром. Таким образом, рассматриваемая задача заключается в отыскании такого цикла на графе, проходящего через все четыре вершины, для которого сумма всех весов ребер минимальна. Найдем перебором все различные циклы, проходящие через четыре вершины и начинающиеся в A 1:

1) A 1 , A 4 , A 3 , A 2 , A 1 ;
2) A 1 , A 3 , A 2 , A 4 , A 1 ;
3) A 1 , A 3 , A 4 , A 2 , A 1 .

Найдем теперь длины этих циклов (в км): L 1 = 160, L 2 = 180, L 3 = 200. Итак, маршрут наименьшей длины - это первый.

Заметим, что если в графе n вершин и все вершины попарно соединены между собой ребрами (такой граф называется полным), то число циклов, проходящих через все вершины, равно Следовательно, в нашем случае имеется ровно три цикла.

6) Задача о нахождении связи между структурой и свойствами веществ.

Рассмотрим несколько химических соединений, называемых нормальными алканами. Они состоят из n атомов углерода и n + 2 атомов водорода (n = 1, 2 ...), связанных между собой так, как показано на рисунке 3 для n = 3. Пусть известны экспериментальные значения температур кипения этих соединений:

y э (3) = – 42°, y э (4) = 0°, y э (5) = 28°, y э (6) = 69°.

Требуется найти приближенную зависимость между температурой кипения и числом n для этих соединений. Предположим, что эта зависимость имеет вид

y » a n + b,

где a , b - константы, подлежащие определению. Для нахождения a и b подставим в эту формулу последовательно n = 3, 4, 5, 6 и соответствующие значения температур кипения. Имеем:

– 42 » 3a + b, 0 » 4a + b, 28 » 5a + b, 69 » 6a + b.

Для определения наилучших a и b существует много разных методов. Воспользуемся наиболее простым из них. Выразим b через a из этих уравнений:

b » – 42 – 3a , b » – 4a , b » 28 – 5a , b » 69 – 6a .

Возьмем в качестве искомого b среднее арифметическое этих значений, то есть положим b » 16 – 4,5a . Подставим в исходную систему уравнений это значение b и, вычисляя a , получим для a следующие значения: a » 37, a » 28, a » 28, a » 36. Возьмем в качестве искомого a среднее значение этих чисел, то есть положим a » 34. Итак, искомое уравнение имеет вид

y » 34n – 139.

Проверим точность модели на исходных четырех соединениях, для чего вычислим температуры кипения по полученной формуле:

y р (3) = – 37°, y р (4) = – 3°, y р (5) = 31°, y р (6) = 65°.

Таким образом, ошибка расчетов данного свойства для этих соединений не превышает 5°. Используем полученное уравнение для расчета температуры кипения соединения с n = 7, не входящего в исходное множество, для чего подставим в это уравнение n = 7: y р (7) = 99°. Результат получился довольно точный: известно, что экспериментальное значение температуры кипения y э (7) = 98°.

7) Задача об определении надежности электрической цепи.

Здесь мы рассмотрим пример вероятностной модели. Сначала приведем некоторые сведения из теории вероятностей - математической дисциплины, изучающей закономерности случайных явлений, наблюдаемых при многократном повторении опыта. Назовем случайным событием A возможный исход некоторого опыта. События A 1 , ..., A k образуют полную группу, если в результате опыта обязательно происходит одно из них. События называются несовместными, если они не могут произойти одновременно в одном опыте. Пусть при n-кратном повторении опыта событие A произошло m раз. Частотой события A называется число W = . Очевидно, что значение W нельзя предсказать точно до проведения серии из n опытов. Однако природа случайных событий такова, что на практике иногда наблюдается следующий эффект: при увеличении числа опытов значение практически перестает быть случайным и стабилизируется около некоторого неслучайного числа P(A), называемого вероятностью события A. Для невозможного события (которое никогда не происходит в опыте) P(A)=0, а для достоверного события (которое всегда происходит в опыте) P(A)=1. Если события A 1 , ..., A k образуют полную группу несовместимых событий, то P(A 1)+...+P(A k)=1.

Пусть, например, опыт состоит в подбрасывании игральной кости и наблюдении числа выпавших очков X. Тогда можно ввести следующие случайные события A i ={X = i}, i = 1, ..., 6. Они образуют полную группу несовместных равновероятных событий, поэтому P(A i) = (i = 1, ..., 6).

Суммой событий A и B называется событие A + B, состоящее в том, что в опыте происходит хотя бы одно из них. Произведением событий A и B называется событие AB, состоящее в одновременном появлении этих событий. Для независимых событий A и B верны формулы

P(AB) = P(A) P(B), P(A + B) = P(A) + P(B).

8) Рассмотрим теперь следующую задачу . Предположим, что в электрическую цепь последовательно включены три элемента, работающие независимо друг от друга. Вероятности отказов 1-го, 2-го и 3-го элементов соответственно равны P 1 = 0,1, P 2 = 0,15, P 3 = 0,2. Будем считать цепь надежной, если вероятность того, что в цепи не будет тока, не более 0,4. Требуется определить, является ли данная цепь надежной.

Так как элементы включены последовательно, то тока в цепи не будет (событие A), если откажет хотя бы один из элементов. Пусть A i - событие, заключающееся в том, что i-й элемент работает (i = 1, 2, 3). Тогда P(A1) = 0,9, P(A2) = 0,85, P(A3) = 0,8. Очевидно, что A 1 A 2 A 3 - событие, заключающееся в том, что одновременно работают все три элемента, и

P(A 1 A 2 A 3) = P(A 1) P(A 2) P(A 3) = 0,612.

Тогда P(A) + P(A 1 A 2 A 3) = 1, поэтому P(A) = 0,388 < 0,4. Следовательно, цепь является надежной.

В заключение отметим, что приведенные примеры математических моделей (среди которых есть функциональные и структурные, детерминистические и вероятностные) носят иллюстративный характер и, очевидно, не исчерпывают всего разнообразия математических моделей, возникающих в естественных и гуманитарных науках.