Относительная магнитная проницаемость вещества. Магнитная проницаемость

Многочисленные опыты свидетельствуют о том, что все вещества, помещенные в магнитное поле, намагничиваются и создают собственное магнитное поле, действие которого складывается с действием внешнего магнитного поля:

$$\boldsymbol{\vec{B}={\vec{B}}_{0}+{\vec{B}}_{1}}$$

где $\boldsymbol{\vec{B}}$ - магнитная индукция поля в веществе; $\boldsymbol{{\vec{B}}_{0}}$ - магнитная индукция поля в вакууме, $\boldsymbol{{\vec{B}}_{1}}$ - магнитная индукция поля, возникшего благодаря намагничиванию вещества. При этом вещество может либо усиливать, либо ослаблять магнитное поле. Влияние вещества на внешнее магнитное поле характеризуется величиной μ , которая называется магнитной проницаемостью вещества

$$ \boldsymbol{\mu =\frac{B}{{B}_{0}}}$$

  • Магнитная проницаемость - это физическая скалярная величина, показывающая, во сколько раз индукция магнитного поля в данном веществе отличается от индукции магнитного поля в вакууме.

Все вещества состоят из молекул, молекулы - из атомов. Электронные оболочки атомов можно условно рассматривать состоящими из круговых электрических токов, образованных движущимися электронами. Круговые электрические токи в атомах должны создавать собственные магнитные поля. На электрические токи должно оказывать действие внешнее магнитное поле, в результате чего можно ожидать либо усиления магнитного поля при сонаправленности атомных магнитных полей с внешним магнитным полем, либо их ослабления при их противоположной направленности.
Гипотеза о существовании магнитных полей в атомах и возможности изменения магнитного поля в веществе полностью соответствует действительности. Все вещества по действию на них внешнего магнитного поля можно разделить на три основные группы: диамагнетики, парамагнетики и ферромагнетики.

Диамагнетиками называются вещества, в которых внешнее магнитное поле ослабляется. Это значит, что магнитные поля атомов таких веществ во внешнем магнитном поле направлены противоположно внешнему магнитному полю (µ < 1). Изменение магнитного поля даже в самых сильных диамагнетиках составляет лишь сотые доли процента. Например, висмут обладает магнитной проницаемостью µ = 0,999826.

Для понимания природы диамагнетизма рассмотрим движение электрона, который влетает со скоростью v в однородное магнитное поле перпендикулярно вектору В магнитного поля.

Под действием силы Лоренца электрон станет двигаться по окружности, направление его вращения определяется направлением вектора силы Лоренца. Возникший круговой ток создаёт своё магнитное поле В" . Это магнитное поле В" направлено противоположно магнитному полю В . Следовательно, любое вещество, содержащее свободно движущиеся заряженные частицы, должно обладать диамагнитными свойствами.
Хотя в атомах вещества электроны не свободны, изменение их движения внутри атомов под действием внешнего магнитного поля оказывается эквивалентным круговому движению свободных электронов. Поэтому любое вещество в магнитном поле обязательно обладает диамагнитными свойствами.
Однако диамагнитные эффекты очень слабы и обнаруживаются только у веществ, атомы или молекулы которых не обладают собственным магнитным полем. Примерами диамагнетиков являются свинец, цинк, висмут (μ = 0,9998).

Впервые объяснение причин, вследствие которых тела обладают магнитными свойствами, дал Анри Ампер (1820 г.). Согласно его гипотезе, внутри молекул и атомов циркулируют элементарные электрические токи, которые и определяют магнитные свойства любого вещества.

Рассмотрим причины магнетизма атомов более подробно:

Возьмем некоторое твердое вещество. Его намагниченность связана с магнитными свойствами частиц (молекул и атомов), из которых оно состоит. Рассмотрим, какие контуры с током возможны на микроуровне. Магнетизм атомов обусловлен двумя основными причинами:

1) движением электронов вокруг ядра по замкнутым орбитам (орбитальный магнитный момент ) (рис. 1);

Рис. 2

2) собственным вращением (спином) электронов (спиновой магнитный момент ) (рис. 2).

Для любознательных . Магнитный момент контура равен произведению силы тока в контуре на площадь, охватываемую контуром. Его направление совпадает с направлением вектора индукции магнитного поля в середине контура с током.

Так как в атоме плоскости орбит различных электронов не совпадают, то вектора индукций магнитных полей , созданные ими (орбитальные и спиновые магнитные моменты), направлены под разными углами друг к другу. Результирующий вектор индукции многоэлектронного атома равен векторной сумме векторов индукций полей, создаваемых отдельными электронами. Не скомпенсированными полями обладают атомы с частично заполненными электронными оболочками. В атомах с заполненными электронными оболочками результирующий вектор индукции равен 0.

Во всех случаях изменение магнитного поля обусловлено появлением токов намагниченности (наблюдается явление электромагнитной индукции). Иными словами принцип суперпозиции для магнитного поля остается справедливым: поле внутри магнетика является суперпозицией внешнего поля $\boldsymbol{{\vec{B}}_{0}}$ и поля $\boldsymbol{\vec{B"}}$ токов намагничивания i" , которые возникают под действием внешнего поля. Если поле токов намагниченности направлено так же, как и внешнее поле, то индукция суммарного поля будет больше внешнего поля (Рис. 3, а) – в этом случае мы говорим, что вещество усиливает поле; если же поле токов намагниченности направлено противоположно внешнему полю, то суммарное поле будет меньше внешнего поля (Рис. 3, б) – именно в этом смысле мы говорим, что вещество ослабляет магнитное поле.

Рис. 3

В диамагнетиках молекулы не обладают собственным магнитным полем. Под действием внешнего магнитного поля в атомах и молекулах поле токов намагниченности направлено противоположно внешнему полю, поэтому модуль вектора магнитной индукции $ \boldsymbol{\vec{B}}$ результирующего поля будет меньше модуль вектора магнитной индукции $ \boldsymbol{{\vec{B}}_{0}} $ внешнего поля.

Вещества, в которых внешнее магнитное поле усиливается в результате сложения с магнитными полями электронных оболочек атомов вещества из-за ориентации атомных магнитных полей в направлении внешнего магнитного поля, называются парамагнетиками (µ > 1).

Парамагнетики очень слабо усиливают внешнее магнитное поле. Магнитная проницаемость парамагнетиков отличается от единицы лишь на доли процента. Например, магнитная проницаемость платины равна 1,00036. Из – за очень малых значений магнитной проницаемости парамагнетиков и диамагнетиков их влияние на внешнее поле или воздействие внешнего поля на парамагнитные или диамагнитные тела очень трудно обнаружить. Поэтому в обычной повседневной практике, в технике парамагнитные и диамагнитные вещества рассматриваются как немагнитные, то есть вещества, не изменяющие магнитное поле и не испытывающие действия со стороны магнитного поля. Примерами парамагнетиков являются натрий, кислород, алюминий (μ = 1,00023).

В парамагнетиках молекулы обладают собственным магнитным полем. В отсутствии внешнего магнитного поля из-за теплового движения вектора индукций магнитных полей атомов и молекул ориентированы хаотически, поэтому их средняя намагниченность равна нулю (рис. 4, а). При наложении внешнего магнитного поля на атомы и молекулы начинает действовать момент сил, стремящийся повернуть их так, чтобы их поля были ориентированы параллельно внешнему полю. Ориентация молекул парамагнетика приводит к тому, что вещество намагничивается (рис. 4, б).

Рис. 4

Полной ориентации молекул в магнитном поле препятствует их тепловое движение, поэтому магнитная проницаемость парамагнетиков зависит от температуры. Очевидно, что с ростом температуры магнитная проницаемость парамагнетиков уменьшается.

Ферромагнетики

Вещества, значительно усиливающие внешнее магнитное поле, называются ферромагнетиками (никель, железо, кобальт и др.). Примерами ферромагнетиков являются кобальт, никель, железо (μ достигает значения 8·10 3).

Само название этого класса магнитных материалов происходит от латинского имени железа - Ferrum. Главная особенность этих веществ заключается в способности сохранять намагниченность в отсутствии внешнего магнитного поля, все постоянные магниты относятся к классу ферромагнетикам. Кроме железа ферромагнитными свойствами обладают его «соседи» по таблице Менделеева - кобальт и никель. Ферромагнетики находят широкое практическое применение в науке и технике, поэтому разработано значительное число сплавов, обладающих различными ферромагнитными свойствами.

Все приведенные примеры ферромагнетиков относятся к металлам переходной группы, электронная оболочка которых содержит несколько не спаренных электронов, что и приводит к тому, что эти атомы обладают значительным собственным магнитным полем. В кристаллическом состоянии благодаря взаимодействию между атомами в кристаллах возникают области самопроизвольной (спонтанной) намагниченности - домены. Размеры этих доменов составляют десятые и сотые доли миллиметра (10 -4 − 10 -5 м), что значительно превышает размеры отдельного атома (10 -9 м). В пределах одного домена магнитные поля атомов ориентированы строго параллельно, ориентация магнитных полей других доменов при отсутствии внешнего магнитного поля меняется произвольно (рис. 5).

Рис. 5

Таким образом, и в не намагниченном состоянии внутри ферромагнетика существуют сильные магнитные поля, ориентация которых при переходе от одного домена к другому меняется случайным хаотическим образом. Если размеры тела значительно превышают размеры отдельных доменов, то среднее магнитное поле, создаваемое доменами этого тела, практически отсутствует.

Если поместить ферромагнетик во внешнее магнитное поле B 0 , то магнитные моменты доменов начинают перестраиваться. Однако механического пространственного вращения участков вещества не происходит. Процесс перемагничивания связан с изменением движения электронов, но не с изменением положения атомов в узлах кристаллической решетки. Домены, имеющие наиболее выгодную ориентацию относительно направления поля, увеличивают свои размеры за счет соседних «неправильно ориентированных» доменов, поглощая их. При этом поле в веществе возрастает весьма существенно.

Свойства ферромагнетиков

1) ферромагнитные свойства вещества проявляются только тогда, когда соответствующее вещество находится в кристаллическом состоянии ;

2) магнитные свойства ферромагнетиков сильно зависят от температуры, так как ориентации магнитных полей доменов препятствует тепловое движение. Для каждого ферромагнетика существует определенная температура, при котором доменная структура полностью разрушается, и ферромагнетик превращается в парамагнетик. Это значение температуры называется точкой Кюри . Так для чистого железа значение температуры Кюри приблизительно равно 900°C;

3) ферромагнетики намагничиваются до насыщения в слабых магнитных полях. На рисунке 6 показано, как изменяется модуль индукции магнитного поля B в стали с изменением внешнего поля B 0 :

Рис. 6

4) магнитная проницаемость ферромагнетика зависит от внешнего магнитного поля (рис. 7).

Рис. 7

Это объясняется тем, что вначале с увеличением B 0 магнитная индукция B растет сильнее, а, следовательно, μ будет увеличиваться. Затем при значении магнитной индукции B" 0 наступает насыщение (μ в этот момент максимальна) и при дальнейшем увеличении B 0 магнитная индукция B 1 в веществе перестает изменяться, а магнитная проницаемость уменьшается (стремится к 1):

$$\boldsymbol{\mu = \frac B{B_0} = \frac {B_0 + B_1}{B_0} = 1 + \frac {B_1}{B_0};} $$

5) у ферромагнетиков наблюдается остаточная намагниченность. Если, например, ферромагнитный стержень поместить в соленоид, по которому проходит ток, и намагнитить до насыщения (точка А ) (рис. 8), а затем уменьшать ток в соленоиде, а вместе с ним и B 0 , то можно заметить, что индукция поля в стержне в процессе его размагничивания остается все время большей, чем в процессе намагничивания. Когда B 0 = 0 (ток в соленоиде выключен), индукция будет равна B r (остаточная индукция). Стержень можно вынуть из соленоида и использовать как постоянный магнит. Чтобы окончательно размагнитить стержень, нужно пропустить по соленоиду ток противоположного направления, т.е. приложить внешнее магнитное поле с противоположным направлением вектора индукции. Увеличивая теперь по модулю индукцию этого поля до B oc , размагничивают стержень (B = 0).

  • Модуль B oc индукции магнитного поля, размагничивающего намагниченный ферромагнетик, называют коэрцитивной силой .

Рис. 8

При дальнейшем увеличении B 0 можно намагнитить стержень до насыщения (точка А" ).

Уменьшая теперь B 0 до нуля, получают опять постоянный магнит, но с индукцией B r (противоположного направления). Чтобы вновь размагнитить стержень, нужно снова включить в соленоид ток первоначального направления, и стержень размагнитится, когда индукция B 0 станет равной B oc . Продолжая увеличивать я B 0 , снова намагничивают стержень до насыщения (точка А ).

Таким образом, при намагничивании и размагничивании ферромагнетика индукция B отстает от B 0. Это отставание называется явлением гистерезиса . Изображенная на рисунке 8 кривая называется петлей гистерезиса .

Гистерезис (греч. ὑστέρησις - «отстающий») - свойство систем, которые не сразу следуют за приложенными силам.

Вид кривой намагничивания (петли гистерезиса) существенно различается для различных ферромагнитных материалов, которые нашли очень широкое применение в научных и технических приложениях. Некоторые магнитные материалы имеют широкую петлю с высокими значениями остаточной намагниченности и коэрцитивной силы, они называются магнитно-жесткими и используются для изготовления постоянных магнитов. Для других ферромагнитных сплавов характерны малые значения коэрцитивной силы, такие материалы легко намагничиваются и перемагничиваются даже в слабых полях. Такие материалы называются магнитно-мягкими и используются в различных электротехнических приборах - реле, трансформаторах, магнитопроводах и др.

Литература

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C.330- 335.
  2. Жилко, В. В. Физика: учеб. пособие для 11-го кл. общеобразоват. шк. с рус. яз. обучения / В. В. Жилко, А.В. Лавриненко, Л. Г. Маркович. - Мн.: Нар. асвета, 2002. - С. 291-297.
  3. Слободянюк А.И. Физика 10. §13 Взаимодействие магнитного поля с веществом

Примечания

  1. Рассматриваем направление вектора индукции магнитного поля только в середине контура.

6. МАГНИТНЫЕ МАТЕРИАЛЫ

Все вещества являются магнетиками и намагничиваются во внешнем магнитном поле.

По магнитным свойствам материалы подразделяются на слабомагнитные (диамагнетики и парамагнетики ) и сильномагнитные (ферромагнетики и ферримагнетики ).

Диамагнетики μ r < 1, значение которой не зависит от напряженности внешнего магнитного поля. Диамагнетиками являются вещества, атомы (молекулы) которых в отсутствие намагничивающего поля имеют магнитный момент равный нулю: водород, инертные газы, большинство органических соединений и некоторые металлы ( Cu , Zn , Ag , Au , Hg ), а также Вi , Gа , Sb .

Парамагнетики – вещества с магнитной проницаемостью μ r > 1, которая в слабых полях не зависит от напряженности внешнего магнитного поля. К парамагнетикам относятся вещества, атомы (молекулы) которых в отсутствие намагничивающего поля обладают магнитным моментом отличным от нуля: кислород, оксид азота, соли железа, кобальта, никеля и редкоземельных элементов, щелочные металлы, алюминий, платина.

У диамагнетиков и парамагнетиков магнитная проницаемость μ r близка к единице. Применение в технике в качестве магнитных материалов носит ограниченный характер.

У сильномагнитных материалов магнитная проницаемость значительно больше единицы (μ r >> 1) и зависит от напряженности магнитного поля. К ним относятся: железо, никель, кобальт и их сплавы, а также сплавы хрома и марганца, гадолиний, ферриты различного состава.

6.1. Магнитные характеристики материалов

Магнитные свойства материалов оценивают физическими величинами, называемыми магнитными характеристиками.

Магнитная проницаемость

Различают относительную и абсолютную магнитные проницаемости вещества (материала), которые между собой связаны соотношением

μ a = μ o ·μ , Гн/м

μ o – магнитная постоянная, μ o = 4π ·10 -7 Гн/м;

μ – относительная магнитная проницаемость (безразмерная величина).

Для описания свойств магнитных материалов применяют относительную магнитную проницаемость μ (чаще называемую магнитная проницаемость) , а для практических расчетов используют абсолютную магнитную проницаемость μ a , вычисляемую по уравнению

μ a = В /Н ,Гн/м

Н – напряженность намагничивающего (внешнего) магнитного поля, А/м

В магнитная индукция поля в магнетике.

Большая величина μ показывает, что материал легко намагничивается в слабых и сильных магнитных полях. Магнитная проницаемость у большинства магнетиков зависит от напряженности намагничивающего магнитного поля.

Для характеристики магнитных свойств широко используется безразмерная величина, называемая магнитной восприимчивостью χ .

μ = 1 + χ

Температурный коэффициент магнитной проницаемости

Магнитные свойства вещества зависят от температуры μ = μ (T ) .

Для описания характера изменения магнитных свойств с температурой используют температурный коэффициент магнитной проницаемости.

Зависимость магнитной восприимчивости парамагнетиков от температуры T описывается законом Кюри

где C - постоянная Кюри .

Магнитные характеристики ферромагнетиков

Зависимость магнитных свойств ферромагнетиков имеет более сложный характер, показанный на рисунке, и достигает максимума при температуре близкой к Q к .

Температура, при которой магнитная восприимчивость резко снижается, почти до нуля, носит название температуры Кюри - Q к . При температурах выше Q к процесс намагничивания ферромагнетика нарушается из-за интенсивного теплового движения атомов и молекул и материал перестает быть ферромагнитным и становится парамагнетиком.

Для железа Q к = 768 ° C , для никеля Q к = 358 ° C , для кобальта Q к = 1131 ° C .

Выше температуры Кюри зависимость магнитной восприимчивости ферромагнетика от температуры T описывается законом Кюри-Вейса

Процесс намагничивания сильномагнитных материалов (ферромагнетиков) обладает гистерезисом . Если производить намагничивание размагниченного ферромагнетика во внешнем поле, то он намагничивается по кривой намагничивания B = B (H ) . Если затем, начиная с некоторого значения H начать уменьшать напряженность поля, то индукция B будет уменьшаться с некоторым запаздыванием (гистерезисом ) по отношению к кривой намагничивания. При увеличении поля противоположного направления ферромагнетик размагничивается, затем перемагничивается , и при новой смене направления магнитного поля может вернуться в исходную точку, откуда начинался процесс размагничивания. Получившаяся петля, изображенная на рисунке, называется петлей гистерезиса .

При некоторой максимальной напряженности Н м намагничивающего поля вещество намагничивается до состояния насыщения, индукция в котором достигает значения В Н , которое называется индукцией насыщения.

Остаточная магнитная индукция В О наблюдается в ферромагнитном материале, намагниченном до насыщения, при его размагничивании, когда напряженность магнитного поля равна нулю. Для размагничивания образца материала надо, чтобы напряженность магнитного поля изменила свое направление на обратное (- Н ). Напряженность поля Н К , при которой индукция равна нулю, называется коэрцитивной силой (удерживающая сила).

Перемагничивание ферромагнетика в переменных магнитных полях всегда сопровождается тепловыми потерями энергии, которые обусловлены потерями на гистерезис и динамическими потерями . Динамические потери связаны с вихревыми токами, индуцированными в объеме материала, и зависят от электрического сопротивления материала, уменьшаясь с ростом сопротивления. Потери на гистерезис W в одном цикле перемагничивания определяются площадью петли гистерезиса

и могут быть вычислены для единицы объема вещества по эмпирической формуле

Дж/м 3

где η – коэффициент зависящий от материала, B Н – максимальная индукция, достигаемая в течение цикла, n – показатель степени, равный в зависимости от материала 1,6 ¸ 2.

Удельные потери энергии на гистерезис Р Г потери, затраченные на перемагничивание единицы массы в единице объема материала за секунду.

где f – частота переменного тока, T – период колебаний.

Магнитострикция

Магнитострикция – явление изменения геометрических размеров и формы ферромагнетика при изменении величины магнитного поля, т.е. при намагничивании. Относительное изменение размеров материала Δ l / l может быть положительным и отрицательным. У никеля магнитострикция меньше нуля и достигает величины 0,004 %.

В соответствии с принципом Ле Шателье о противодействии системы влиянию внешних факторов, стремящихся изменить это состояние, механическая деформация ферромагнетика, приводящая к изменению его размера должна оказывать влияние на намагничивание этих материалов.

Если при намагничивании тело испытывает в данном направлении сокращение своих размеров, то приложение механического напряжения сжатия в этом направлении способствует намагничиванию, а растяжение – затрудняет намагничивание.

6.2. Классификация ферромагнитных материалов

Все ферромагнитные материалы по поведению в магнитном поле делятся на две группы.

Магнитомягкие с большой магнитной проницаемостью μ и малой величиной коэрцитивной силы Н К < 10 А /м. Они легко намагничиваются и размагничиваются. Обладают малыми потерями на гистерезис, т.е. узкой петлей гистерезиса.

Магнитные характеристики зависят от химической чистоты и степени искажения кристаллической структуры. Чем меньше примесей (С, Р , S, О, N ) , тем выше уровень характеристик материала, поэтому необходимо при производстве ферромагнетика их и оксиды удалять, и стараться не искажать кристаллическую структуру материала.

Магнитотвердые материалы – обладают большой Н К > 0,5 · МА/м и остаточной индукцией (В О ≥ 0,1Т). Им соответствует широкая петля гистерезиса. Они с большим трудом намагничиваются, зато могут несколько лет сохранять магнитную энергию, т.е. служить источником постоянного магнитного поля. Поэтому из них изготовляются постоянные магниты.

По составу все магнитные материалы делятся на :

· металлические;

· неметаллические;

· магнитодиэлектрики .

Металлические магнитные материалы - это чистые металлы (железо, кобальт, никель) и магнитные сплавы некоторых металлов.

К неметаллическим материалам относятся ферриты, получаемые из порошков оксидов железа и других металлов. Их прессуют и обжигают при 1300 – 1500 °С и они превращаются в твердые монолитные магнитные детали. Ферриты, как и металлические магнитные материалы, могут быть магнитомягкими и магнитотвердыми.

Магнитодиэлектрики это композиционные материалы из 60 – 80 % порошка магнитного материала и 40 – 20 % органического диэлектрика. Ферриты и магнитодиэлектрики имеют большое значение удельного электрического сопротивления (ρ = 10 ÷ 10 8 Ом·м), Высокое сопротивление этих материалов обеспечивает низкие динамические потери энергии в переменных электромагнитных полях и позволяет широко использовать их в высокочастотной технике.

6.3. Металлические магнитные материалы

6.3.1. Металлические магнитомягкие материалы

К металлическим магнитомягким материалам относятся карбонильное железо, пермаллои, альсиферы и низкоуглеродистые кремнистые стали.

Карбонильное железо получают термическим разложением жидкости пентакарбонила железа Fе ( СО ) 5 с получением частиц чистого порошкообразного железа:

Fе ( СО ) 5 → + 5 СО,

при температуре около 200 °С и давлении 15 МПа. Частицы железа имеют сферическую форму размером 1 – 10 мкм. Для освобождения от частиц углерода порошок железа подвергают термической обработке в среде Н 2 .

Магнитная проницаемость карбонильного железа достигает 20000, коэрцитивная сила составляет 4,5 ¸ 6,2 А /м. Применяют порошок железа для изготовления высокочастотных магнитодиэлектрических сердечников, в качестве наполнителя в магнитных лентах.

Пермаллои – пластичные железоникелевые сплавы. Для улучшения свойств вводят Мо, Сr , Сu , получая легированные пермаллои. Обладают высокой пластичностью, легко прокатываются в листы и ленты до 1 мкм.

Если содержание никеля в пермаллое 40 – 50 %, то он называется низконикелевым, если 60 – 80 % – высоконикелевым .

Пермаллои имеют высокий уровень магнитных характеристик, который обеспечивается не только составом и высокой химической чистотой сплава, но и специальной тепловой вакуумной обработкой. Пермаллои имеют очень высокий уровень начальной магнитной проницаемости от 2000 до 30000 (в зависимости от состава) в области слабых полей, который обусловлен низкой величиной магнитострикции и изотропностью магнитных свойств. Особенно высокие характеристики имеет супермаллой, начальная магнитная проницаемость которого имеет значение 100000, а максимальная достигает 1,5 · 10 6 при B = 0,3 Тл.

Пермаллои поставляют в виде лент, листов и прутков. Низконикелевые пермаллои применяют для изготовления сердечников дросселей, малогабаритных трансформаторов и магнитных усилителей, высоконикелевые пермаллоидля деталей аппаратуры, работающих на звуковых и сверхзвуковых частотах. Магнитные характеристики пермаллоев стабильны при –60 +60°С.

Альсиферы нековкие хрупкие сплавы состава Al – Si – Fe , состоящие из 5,5 – 13 % Аl , 9 – 10 % Si , остальное – железо. Альсифер близок по свойствам к пермаллою, но более дешев. Из него изготовляют литые сердечники, отливают магнитные экраны и другие полые детали с толщиной стенок не менее 2 – 3 мм. Хрупкость альсифера ограничивает области его применения. Используя хрупкость альсифера , его размалывают в порошок, который используется в качестве ферромагнитного наполнителя в прессованных высочастотных магнитодиэлектриках (сердечники, кольца).

Кремнистая низкоуглеродистая сталь (электротехническая сталь) – сплав железа и кремния (0,8 – 4,8 % Si ). Основной магнитомягкий материал массового применения. Она легко прокатывается в листы и ленты 0,05 – 1 мм и является дешевым материалом. Кремний, находящийся в стали в растворенном состоянии, выполняет две функции.

· Повышая удельное сопротивление стали, кремний вызывает снижение динамических потерь, связанных с вихревыми токами. Сопротивление повышается за счет образования кремнезема SiO 2 в результате протекания реакции

2 FeO + S i → 2 Fe + SiO 2 .

· Наличие кремния, растворенного в стали , способствует распаду цементита Fе 3 С – вредной примеси, снижающей магнитные характеристики, и выделению углерода в виде графита. При этом образуется чистое железо, рост кристаллов которого повышает уровень магнитных характеристик стали .

Введение кремния в сталь в количестве, превышающем 4,8 %, не рекомендуется, так как, способствуя улучшению магнитных характеристик, кремний резко повышает хрупкость стали и снижает ее механические свойства.

6.3.2. Металлические магнитотвердые материалы

Магнитотвердые материалы - это ферромагнетики с высокой коэрцитивной силой (более 1 кА/м) и большой величиной остаточной магнитной индукции В О . Применяются для изготовления постоянных магнитов.

Подразделяются в зависимости от состава, состояния и способа получения на :

· легированные мартенситные стали;

· литые магнитотвердые сплавы.

Легированные мартенситные стали эт о углеродистые стали и стали, легированные Сr , W, Со, Мо . Углеродистые стали быстро стареют и изменяют свои свойства, поэтому редко применяются для изготовления постоянных магнитов. Для изготовления постоянных магнитов используют легированные стали – вольфрамовую и хромистую (Н С ≈ 4800 А /м, В О ≈ 1 Т), которые изготавливаются в виде прутков с различной формой сечения. Кобальтовая сталь обладает более высокой коэрцитивной силой (Н С ≈ 12000 А /м, В О ≈ 1 Т) по сравнению с вольфрамовой и хромистой. Коэрцитивная сила Н С кобальтовой стали растет с увеличением содержания С о .

Литые магнитотвердые сплавы. Улучшенные магнитные свойства сплавов обусловлены специально подобранным составом и специальной обработкой – охлаждением магнитов после отливки в сильном магнитном поле, а также специальной многоступенчатой тепловой обработкой в виде закалки и отпуска в сочетании с магнитной обработкой, называемой дисперсионным твердением.

Для изготовления постоянных магнитов находят применение три основных группы сплавов:

· Железо – кобальт – молибденовый сплав типа ремаллой с коэрцитивной силой Н К = 12 – 18 кА/м.

· Группа сплавов:

§ медь – никель – железо;

§ медь – никель – кобальт;

§ железо – марганец, легированные алюминием или титаном;

§ железо – кобальт – ванадий (F е – Со – V ).

Сплав медь – никель – железо называется кунифе (Сu Ni - ). Сплав F е – Со – V (железо – кобальт - ванадий) называется викалой . Сплавы этой группы имеют коэрцитивную силу Н К = 24 – 40 кА/м. Выпускаются в виде проволоки и в листах.

· Сплавы системы железо – никель – алюминий (F е Ni Аl ), известные ранее под названием сплав альни . Сплавсодержит 20 - 33 % Ni + 11 – 17 % Al , остальное железо. Добавление в сплавы кобальта, меди, титана, кремния, ниобия улучшает их магнитные свойства, облегчает технологию изготовления, обеспечивает повторяемость параметров, улучшает механические свойства. Современная маркировка марки содержит буквы, обозначающие добавляемые металлы (Ю – алюминий, Н – никель, Д – медь, К - кобальт, Т – титан, Б – ниобий, С – кремний), цифры - содержание элемента, буква которого стоит перед цифрой, например, ЮНДК15.

Сплавы обладают высоким значением коэрцитивной силы Н К = 40 – 140 кА/м и большой запасенной магнитной энергией.

6.4. Неметаллические магнитные материалы. Ферриты

Ферриты представляют собой керамические ферромагнитные материалы с малой электронной электропроводностью. Низкая электропроводность в сочетании с высокими магнитными характеристиками позволяет широко использовать ферриты на высоких частотах.

Изготовляют ферриты из порошкообразной смеси, состоящей из окиси железа и специально подобранных окислов других металлов. Их прессуют, а затем спекают при высоких температурах. Общая химическая формула имеет вид:

МеО ·Fе 2 О 3 или МеFе 2 О 4 ,

где Ме символ двухвалентного металла.

Например,

ZnO · Fe 2 O 3 или

NiO · Fe 2 O 3 или NiFe 2 O 4

Ферриты обладают кубической решеткой типа шпинели MgOAl 2 O 3 - алюмината магния. Не все ферриты обладают магнитными свойствами. Наличие магнитных свойств св язано с расположением ионов металловв кубической решетке шпинели. Так система ZnFe 2 O 4 не обладает ферромагнитными свойствами.

Ферриты изготовляют по керамической технологии. Исходные порошкообразные окислы металлов измельчают в шаровых мельницах, прессуют и обжигают в печах. Спекшиеся брикеты размалывают в тонкодисперсный порошок, вводят пластификатор, например раствор поливинилового спирта. Из полученной массы прессуют ферритовые изделия – сердечники, кольца, которые обжигают на воздухе при 1000 – 1400 °С. Полученные твердые хрупкие изделия в основном черного цвета можно обрабатывать только шлифованием и полированием.

Магнитомягкие ферриты

Магнитомягкие ферриты широко применяют в области высоких частот электронной техники и приборостроении для изготовления фильтров, трансформаторов усилителей низких и высоких частот, антенн радиопередающих и радиоприемных устройств, импульсных трансформаторов, магнитных модуляторов. Промышленностью выпускаются следующие виды магнитомягких ферритов с широким спектром магнитных и электрических свойств: никель – цинковые, марганец – цинковые и литий – цинковые. Верхняя граничная частота применения феррита зависит от их состава и изменяется у разных марок ферритов от 100 кГц до 600 МГц, коэрцитивная сила составляет около 16 А /м.

Достоинством ферритов является стабильность магнитных характеристик, относительнаяпростота изготовления радиодеталей. Как все ферромагнитные материалы ферриты сохраняют свои магнитные свойства только до температуры Кюри, которая зависит от состава ферритов и колеблется в пределах от 45 ° до 950 °С.

Магнитотвердые ферриты

Для изготовления постоянных магнитов используют магнитотвердые ферриты, наибольшее применение имеют ферриты бария (ВаО ·6 Fе 2 О 3 ). Они имеют гексагональную кристаллическую структуру с большой Н К . Ферриты бария представляют собой поликристаллический материал. Могут быть изотропными - одинаковость свойств феррита во всех направлениях обусловлена тем, что кристаллические частицы ориентированы произвольно. Если в процессе прессования магнитов порошкообразную массу подвергнуть воздействию внешнего магнитного поля большой напряженности, то кристаллические частицы феррита будут ориентированы в одном направлении, и магнит будет являться анизотропным.

Бариевые ферриты отличаются хорошей стабильностью своих характеристик, но чувствительны к изменению температуры и механическим воздействиям. Магниты из бариевых ферритов дешевы.

6.5. Магнитодиэлектрики

Магнитодиэлектрики - это композиционные материалы, состоящие из мелкодисперсных частиц магнитомягкого материала, связанных друг с другом органическим или неорганическим диэлектриком. В качестве магнитомягких материалов применяют карбонильное железо, альсифер и некоторые сорта пермаллоев, измельченные до порошкообразного состояния.

В качестве диэлектриков применяют полистирол, бакелитовые смолы, жидкое стекло и др.

Назначение диэлектрика не только в том, чтобы соединить частицы магнитного материала, но и изолировать их друг от друга, а, следовательно, резко повысить величину удельного электрического сопротивления магнитодиэлектрика . Удельное электрическое сопротивление r магнитодиэлектриков составляет10 3 – 10 4 Ом × м

Магнитодиэлектрики применяют для изготовления сердечников высокочастотных узлов радиоаппаратуры. Процесс производства изделий проще, чем из ферритов, т.к. они не нуждаются в высокотемпературной тепловой обработке. Изделия из магнитодиэлектриков отличаются высокой стабильностью магнитных свойств, высоким классом чистоты поверхности и точностью размеров.

Наиболее высокими магнитными характеристиками обладают магнитодиэлектрики, наполнителем в которых служит молибденовый пермаллой или карбонильное железо.

Суммарный магнитный поток, пронизывающий все витки, называется потокосцеплением контура.

Если все витки одинаковы, то суммарный магнитный поток, т.е. потокосцепление:

где
- магнитный поток через один виток; - число витков. Поэтому, потокосцепление соленоида, например, при индукции В =0,2 Т, количестве витков соленоида
и сечении окна соленоида
дм 2 будет Вб.

Абсолютная магнитная проницаемость измеряется в единицах «генри на метр»
.

Магнитная проницаемость вакуума в системе единиц СИ принята равной
Гн/м.

Отношение
абсолютной магнитной проницаемости к магнитной проницаемости вакуума называется относительной магнитной проницаемостью .

Соответственно значению все материалы делятся на три группы:

Если диа- и парамагнитное вещества поместить в однородное магнитное поле, то в диамагнитном - поле будет ослабляться, а в парамагнитном - усиливаться. Это объясняется тем, что в диамагнитном веществе поля элементарных токов направлены навстречу внешнему полю, а в парамагнитном - согласно ему.

В табл. 1 приведены значения относительной магнитной проницаемости некоторых материалов. Видно, что значения относительной магнитной проницаемости диамагнитных и парамагнитных материалов очень мало отличается от единицы, поэтому для практики принимают их магнитную проницаемость, равной единице.


Размерность напряженности поля Н (табл. 2):

.

1 А/м - это напряженность такого магнитного поля, индукция которого в вакууме равна
Тл.

Таблица 1. Относительная магнитная проницаемость некоторых материалов

Парамагнитные

Диамагнитные

Ферромагнитные

Сталь Армко

Пермаллой

Алюминий

Электротехническая сталь

Марганец

Палладий

Иногда напряженность поля измеряют также в

    «эрстедах» (Э),

    «амперах на сантиметр» (А/см),

    «килоамперах на метр» (кА/м).

Соотношение между этими величинами следующее:

1 А/см = 100 А/м; 1 Э = 0,796 А/см; 1 кА/м = 10 А/см;

1 А/см = 0,1 кА/м; 1 Э = 79,6 А/см; 1 кА/м = 12,56 Э;

1 А/см = 1,256 Э; 1 Э = 0,0796 кА/см; 1 кА/м = 1000 А/м.

Интересно знать значения напряженности некоторых магнитных полей.

    Напряженность поля Земли в районе Москвы составляет 0,358 А/см.

    Напряженность поля для намагничивания деталей из конструкционных сталей составляет 100...200 А/см,

    на полюсах постоянного магнита - 1000...2000 А/см.

Иногда пользуются так называемым магнитным моментом
контура с током . Он равен произведению силы тока на площадь , ограниченную контуром
(рис. 4).

При делении магнита на части каждая из них представляет собой магнит с двумя полюсами. Это видно из рис. 5. По данным табл. 2 можно определить, что одна единица магнитного момента равна 1
м 2 = 1
. Эта единица называется «ампер-квадратный метр». Амперквадратный метр - это магнитный момент контура, по которому течет ток силой 1 А и который ограничивает площадь, равную 1 м 2 .

Рис. 4. Контур (1) с током ; Рис. 5. Деление постоянного магнита на части.

2 - источник тока:

- магнитный момент;

- напряженность поля.

Таблица 2. Основные и производные единицы измерений системы СИ, применяемые в неразрушающем контроле

Основные единицы СИ

Величина

Размерность

наименование

обозначение

русское

международное

килограмм

Сила электрического тока

Количество вещества

Сила света

Производные единицы СИ, имеющие собственные наименования

Величина

наименование

обозначение

Величина производной единицы через основные единицы СИ

международное

Давление

Мощность

Поток магнитной индукции

Магнитная индукция

Индуктивность

Количество электричества

Электрическое напряжение

Электрическая емкость

Электрическое сопротивление

Электрическая проводимость

Световой поток

Активность радионуклида

беккерель

Поглощенная доза излучения

Эквивалентная доза излучения

Магнитный момент электрона равен

, так как
, а
,
.

Относительно недавно взаимодействие полюсов магнитов объясняли наличием особого вещества - магнетизма. С развитием науки было показано, что никакого вещества не существует. Источником магнитных полей являются электрические токи. Поэтому при делении постоянного магнита в каждом куске электронные токи создают магнитное поле (рис. 5). Магнитный заряд рассматривают только как некоторую математическую величину, не имеющую физи ческого содержания.

Единицу магнитного заряда можно получить по формуле:

,
,

где - работа по обводу магнитного полюса вокруг проводника током .

Одна условная единица магнитного заряда будет
.

В системе Гаусса за единицу магнитного заряда принимают такую величину, которая действует на равный магнитный заряд на расстоянии 1 см в вакууме с силой, равной 1 дине.

Способность материалов намагничиваться объясняется существованием в них токов:

    вращение электрона вокруг ядра в атоме,

    вокруг собственных осей (спин электрона) и

    вращение орбит электронов (прецессия электронных орбит) (рис. 6).

Ферромагнитный материал состоит из малых областей (с линейными размерами около 0,001 мм), в которых элементарные токи направлены самопроизвольно. Эти области самопроизвольной намагниченности называют доменами. В каждом домене образуется результирующее поле элементарных токов.

В размагниченном материале магнитные поля доменов направлены хаотично и компенсируют друг друга так, что результирующее поле в детали практически равно нулю.

В результате внешнего воздействия поля отдельных областей (доменов) устанавливаются по направлению внешнего поля и таким образом образуется сильное поле намагниченной детали.

Следовательно, намагниченность - это степень сог ласованной ориентировки магнитных полей доменов в металле, или иначе, это индукция, создаваемая элементарными токами.

Поскольку элементарные токи обладают магнитными моментами, то намагниченность также определяют как отношение суммарного магнитного момента тела к его объему, т.е.:

.

Намагниченность измеряется в «амперах на метр» (А/м).

Знакопеременное нагружение структуры металла, например в продолжительно работающих турбинных лопатках, в болтах и т.п. деталях приводит к определенному упорядочению внутреннего магнитного поля в зоне иагружения, к появлению следов этого поля на поверхности детали. Это явление используется для оценки остаточного ресурса, определения механических напряжений.

Намагниченность проверяемой детали зависит от напряженности поля
, действующего на эту деталь. Ферромагнитные свойства материала зависят также от температуры. Для каждого ферромагнитного материала существует температура, при которой области спонтанной намагниченности под действием теплового движения разрушаются и ферромагнитный материал становится парамагнитным. Эта температура называется точкой Кюри. Точка Кюри для железа равна 753 0 С. При снижении этой температуры ниже этой точки магнитные свойства восстанавливаются.

Рис. 6. Виды элементарных токов:

    а - движение электрона 1 вокруг ядра 4;

    б - вращение электрона вокруг своей оси;

    в - прецессия электронной орбиты;

5 - электронная орбита;

6 - плоскость электронной орбиты;

8 - траектория прецессионного движения электронной орбиты.

Индукция результирующего поля детали может быть определена по известной формуле:

,

где - намагниченность, т.е. индукция, создаваемая молекулярными токами;
- напряженность внешнего поля. Из приведенной формулы видно, что индукция в детали представляет сумму двух составляющих:
- определяемой внешним полем
и - намагниченностью, которая также зависит от
.

На рис. 7 показаны зависимости
, и
ферромагнитного материала от напряженности внешнего поля.

Рис. 7. Зависимость магнитной индукции и намагниченности от намагничивающего поля
.

Кривая
показывает, что при относительно слабых полях намагниченность растет весьма быстро (участок а-б). Затем рост замедляется (участок б-в). Далее рост снижается, кривая
переходит в прямую линию в-д, имеющую малый наклон к горизонтальной оси
. При этом величина
постепенно приближается к своему предельному значению
. Составляющая
изменяется пропорционально напряженности поля
. На рис. 7 эта зависимость показана прямой линией о-е.

Чтобы получить кривую зависимости магнитной индукции от напряженности внешнего поля, необходимо сложить соответствующие ординаты кривых
и
. Эта зависимость изображается кривой
, называемой кривой первоначального намагничивания. В отличие от намагниченности магнитная индукция растет до тех пор, пока растет величина
, так как по прекращении роста намагниченности величина
продолжает увеличиваться пропорционально
.

Перемагничивание детали происходит переменным или периодически изменяющимся по направлению постоянным полем.

На рис. 8 показана полная магнитная характеристика образца - петля гистрезиса. В исходном состоянии образец размагничен. Ток в обмотке увеличивают по прямой 0-8. Напряженность поля, создаваемого этим током, изменяется по прямой 0-1. При этом индукция и намагниченность в образце будут увеличиваться по кривым первоначального намагничивания 16 и 17 до точек 16" и 17", соответствующим магнитному насыщению, при котором все магнитные поля доменов направлены по внешнему полю.

При уменьшении тока по прямой 8-9 напряженность поля уменьшается по 1-0 (рис. 8, а). При этом индукция и намагниченность изменяются до значения .

При увеличении тока в отрицательном направлении по 9-10 напряженность поля также увеличивается в отрицательном направлении по 0-2, перемагиничивая образец.

В точке 6 индукция
, так как
, т.е.
. Напряженность поля, соответствующая точке 6, называется коэрцитивной силой
по индукции.

В точке 4 намагниченность
, а
.

Напряженность поля, соответствующая точке 4, называется коэрцитивной силой Н си по намагниченности. При магнитном контроле считают коэрцитивную силу
.

При дальнейшем увеличении напряженности поля до точки 2 индукция и намагниченность достигают наибольших отрицательных значений
и
(точки 16" и 17"), соответствующих магнитному насыщению
образца. При уменьшении тока по прямой 10-11 индукция и намагниченность примут значения, соответствующие
.

Таким образом, в результате изменения внешнего поля
по 0-1, 1-0, 0-2, 2-0 (рис. 8), а магнитное состояние образца изменяется по замкнутой кривой - петле магнитного гистерезиса.

Рис. 8. Зависимость индукции и намагниченности от напряженности
(а), изменение тока в обмотке намагничивания (б).

По петле магнитного гистерезиса определяют следующие характеристики, используемые при магнитном контроле:

Н т - максимальная напряженность магнитного поля, при которой достигается состояние насыщения образца;

В r - остаточная индукция в образце после снятия поля;

Н с - коэрцитивная сила - это напряженность магнитного поля, которое нужно приложить встречно намагниченности образца, чтобы его полностью размагнитить;

В т - индукция технического насыщения. Принято считать В т = 0,95 B max , где B max - теоретически возможная индукция насыщения первоначального намагничивания.

Если ферромагнитное тело подвергается действию полей одного знака, то петля гистерезиса, которая в этом случае несимметрична относительно начала координат, называется частной (рис. 9).

Различают статическую и динамическую петли гистерезиса.

Статической петлей гистерезиса называется петля, полученная при медленном изменении Н, при котором можно пренебречь действием вихревых токов.

Динамической петлей гистерезиса называется петля, полученная при периодическом изменении Н с некоторой конечной скоростью, при которой влияние вихревых токов становится значительным. Это приводит к тому, что динамическая петля имеет значительно большую ширину, чем статическая. С увеличением амплитуды приложенного напряжения ширина динамической петли гистерезиса увеличивается.

На рис. 10 показана зависимость
. При Н= 0 магнитная проницаемость равна ее начальному значению.

Рис. 9. Несимметричные петли гистерезиса 1-3 - промежуточные петли; 4 - предельная петля; 5 - кривая начального намагничивания.

По кривой намагничивания В(Н) абсолютная магнитная проницаемость в заданном поле Н определяется как
, а относительная как
.

Часто упоминают дифференциальную магнитную проницаемость:





.

Первая из них равна тангенсу наклона линии 1, а вторая - тангенсу наклона касательной 2.

Магнитодвижущая сила (МДС) равна F = Iw , произведению тока I в обмотке на ее число витков.

Магнитный поток равен:

где F - МДС, измеряемая в ампер-витках; l ср - длина средней линии магнитопровода, м; S - сечение магнитопровода, м 2 .

Величина
определяет магнитное сопротивление R m .

Рис. 10. Магнитные проницаемости , и индукция В в зависимости от напряженности поля
:
,
;
.

Магнитный поток прямо пропорционален току I и обратно пропорционален магнитному сопротивлению R m . Допустим, надо определить силу тока в тороидной обмотке из 10 витков кабеля для намагничивания кольца подшипника при индукции 1 Тл.


Используя формулу Ф = F / R m , найдем:

Картина поля вокруг проводника представляет собой концентрические окружности с центрами на оси проводника (рис. 11).

Рис. 11. Картина распределения порошка (а) и индукции вокруг проводника с током (б)

Направление поля вокруг проводника или созданного витками кабеля соленоида может быть определено по правилу буравчика.

Если расположить штопор вдоль оси проводника и вращать его по часовой стрелке так, чтобы его поступательное движение совпало с направлением тока в проводнике, то направление вращения ручки штопора укажет направление поля.

Изменение напряженности поля Н внутри и вне проводника 3 при прохождении по нему постоянного тока от расстояния от точки измерения до оси проводника радиусом показано на рис. 12.

Рис.12. Распределение напряженности поля Н внутри (1) и вне (2) проводника с током.

Откуда видно, что поле на оси проводника равно нулю, а внутри проводника (при > ) оно изменяется по линейному закону:

,

а вне его (при > ) по гиперболе
, где - расстояние от оси проводника до точки измерения, м; - ток в проводнике, А.

Если задана напряженность поля H в точке, находящейся на расстоянии от оси провода, то для получения этой напряженности силу тока определяют, используя формулу:


,

где H [А/м], [м].

Если проводник с током проходит через полую деталь, например, кольцо подшипника, то в отличие от предыдущего случая резко растет индукция в зоне ферромагнитной детали (рис. 13).

Рис. 13- Индукция при намагничивании детали при пропускании тока по центральному проводнику.

Поле изменяется на участках: 0-1 по закону Н = 0 ; 1-2 по закону
; 2-3 по закону
.

Магнитная индукция B изменяется: на участке 0-2 по закону
; на участках 2-3; 6-7 по закону
.

Скачки индукции В на участках 3-4; 5-6 обусловлены ферромагнетизмом детали 8 ( - радиус проводника; - расстояние от центра проводника).

Допустим, что цилиндрическую полую деталь намагничивают центральным проводником. Определить силу тока в проводнике для получения индукции В = 12,56 мТл на внутренней поверхности детали диаметром 80 мм.

Силу тока в проводнике определим по формуле:


Распределение поля внутри и вне полой детали 4, намагничиваемой пропусканием по ней тока, показано на рис. 14. Видно, что поле внутри детали радиусом R 1 равно нулю. Поле на участке 1-2 (внутри материала детали) изменяется по закону

а на участке 2-3 - по закону
. По этой формуле определяют напряженность поля на внешней поверхности детали или на некотором расстоянии от нее.

Рис. 14. Распределение поля Н внутри и вне детали.

Если по цилиндрической детали диаметром 50 мм пропускают ток силой 200,0 А и надо определить напряженность поля в точках, находящихся от поверхности детали на расстоянии 100 мм. Напряженность поля на расстоянии 100 мм от поверхности детали определяется по формуле:

.

Напряженность поля на поверхности детали составит:

.

На рис. 15 показана схема магнитного поля вокруг и внутри соленоида. Из рисунка видно также, что магнитные силовые линии внутри соленоида направлены вдоль его продольной оси. У выходных окон соленоида образуются магнитные полюсы N и S .

Напряженность поля в центре на оси у края соленоида определяют по приведенным формулам.

Напряженность поля в центре витка радиусом R определяют по формуле H = I / R , А/м, где I - ток в витке проводника, А.

Если надо определить напряженность поля в центре приставного соленоида с током 200 А, и при этом число витков w = =-6, длина 210 мм, диаметр 100 мм, то напряженность поля будет:

.

Если в соленоиде ток равен 200 А, а длина соленоида 400 мм, диаметр 100 мм, число витков 8,
,
(см. рис. 15), то можно вычислить напряженности в отдельных точках соленоида.

Распределение напряженности поля внутри соленоида складывается:

а - в центре соленоида:

,

где Н - напряженность поля в центре соленоида, А/см; l , с - длина и радиус соленоида, см; w - число витков;

б - на оси соленоида:

,

где l - длина соленоида, см;

в - у края соленоида:

,

где l , с - длина и радиус соленоида, см; w - число витков.

Напряженность поля, создаваемая током в тороидной обмотке:
, А/см; I - ток, А; l - длина средней линии обмотки, см; w - число витков. В данном примере:

а) напряженность Н 1 , в центре на оси соленоида:

б) напряженность поля в точке А - Н 2 :

в) напряженность поля у края соленоида - Н 3:

Если диаметр витка равен 160 мм при общем токе, равном 180,0 А, то напряженность поля в центре витка будет:

Рис. 15. Магнитное поле соленоида и распределение напряженности в его центре (а), на оси (б) и у края (в).

Магнитный момент- это основная векторная величина, характеризующая магнитные свойства вещества. Поскольку источником магнетизма является замкнутый ток, то значение магнитного момента М определяется как произведение силы тока I на площадь, охватываемую контуром токаS:

М = I×S А×м 2 .

Магнитными моментами обладают электронные оболочки атомов и молекул. Электроны и другие элементарные частицы имеют спиновый магнитный момент, определяемый существованием собственного механического момента – спина. Спиновый магнитный момент электрона может ориентироваться во внешнем магнитном поле так, что возможны только две равные и противоположно направленные проекции момента на направление вектора напряженности магнитного поля, равные магнетону Бора – 9,274×10 -24 А×м 2 .

  1. Определите понятие «намагниченность» вещества.

Намагниченность – J – это суммарный магнитный момент единицы объема вещества:

  1. Определите понятие «магнитная восприимчивость».

Магнитная восприимчивость вещества, א v – отношение намагниченности вещества к напряженности магнитного поля, относящаяся к единице объема:

א v = , безразмерная величина.

Удельная магнитная восприимчивость, אотношение магнитной восприимчивости к плотности вещества,т.е. магнитная восприимчивость единицы массы, измеряемая в м 3 /кг.

  1. Определите понятие «магнитная проницаемость».

Магнитная проницаемость, μ – это физическая величина, характеризующая изменение магнитной индукции при воздействии магнитного поля. Для изотропных сред магнитная проницаемость равна отношению индукции в среде В к напряженности внешнего магнитного поля Н и к магнитной постоянной μ 0 :

Магнитная проницаемость – величина безразмерная. Её значение для конкретной среды на 1 больше магнитной восприимчивости той же среды:

μ = א v + 1, так какВ = μ 0 (Н+J).

  1. Дайте классификацию материалов по магнитным свойствам.

По магнитному строению и значению магнитной проницаемости (восприимчивости) материалы подразделяются на:

Диамагнетики μ< 1 (материал «сопротивляется» магнитному полю);

Парамагнетики μ > 1 (материал слабо воспринимает магнитное поле);

Ферромагнетики μ >> 1 (магнитное поле в материале усиливается);

Ферримагнетики μ >> 1 (магнитное поле в материале усиливается, но магнитная структура материала отличается от структуры ферромагнетиков);

Антиферромагнетики μ ≈ 1 (материал слабо реагирует на магнитное поле, хотя по магнитной структуре схож с ферримагнетиками).

  1. Опишите природу диамагнетизма.

Диамагнетизм – это свойство вещества намагничиваться навстречу направлению действующего на него внешнего магнитного поля (в соответствии с законом электромагнитной индукции и правилом Ленца). Диамагнетизм свойственен всем веществам, но в «чистом виде» он проявляется у диамагнетиков. Диамагнетики – вещества, молекулы которых не имеют собственных магнитных моментов (их суммарный магнитный момент равен нулю), поэтому других свойств, кроме диамагнетизма у них нет. Примеры диамагнетиков:


Водород, א= - 2×10 -9 м 3 /кг.

Вода, א= - 0,7×10 -9 м 3 /кг.

Алмаз, א= - 0,5×10 -9 м 3 /кг.

Графит, א= - 3×10 -9 м 3 /кг.

Медь, א= - 0,09×10 -9 м 3 /кг.

Цинк, א= - 0,17×10 -9 м 3 /кг.

Серебро, א= - 0,18×10 -9 м 3 /кг.

Золото, א= - 0,14×10 -9 м 3 /кг.

43. Опишите природу парамагнетизма.

Парамагнетизм – это свойство веществ, называемых парамагнетиками, которые, будучи помещены во внешнее магнитное поле, приобретают магнитный момент, совпадающий с направлением этого поля. Атомы и молекулы парамагнетиков в отличие от диамагнетиков имеют собственные магнитные моменты. При отсутствии поля ориентация этих моментов хаотична (из-за теплового движения) и суммарный магнитный момент вещества равен нулю. При наложении внешнего поля происходит частичная ориентация магнитных моментов частиц в направлении поля, и к напряженности внешнего поля Н добавляется намагниченность J: В = μ 0 (Н+J). Индукция в веществе усиливается. Примеры парамагнетиков:

Кислород, א= 108×10 -9 м 3 /кг.

Титан, א= 3×10 -9 м 3 /кг.

Алюминий, א= 0,6×10 -9 м 3 /кг.

Платина, א= 0,97×10 -9 м 3 /кг.

44.Опишите природу ферромагнетизма.

Ферромагнетизм – это магнитоупорядоченное состояние вещества, при котором все магнитные моменты атомов в определенном объеме вещества (домене) параллельны, что обусловливает самопроизвольную намагниченность домена. Появление магнитного порядка связано с обменным взаимодействием электронов, имеющим электростатическую природу (закон Кулона). В отсутствии внешнего магнитного поля ориентация магнитных моментов различных доменов может быть произвольной, и рассматриваемый объем вещества может иметь в целом слабую или нулевую намагниченность. При приложении магнитного поля магнитные моменты доменов ориентируются по полю тем больше, чем выше напряженность поля. При этом изменяется значение магнитной проницаемости ферромагнетика и усиливается индукция в веществе. Примеры ферромагнетиков:

Железо, никель, кобальт, гадолиний

и сплавы этих металлов между собой и другими металлами (Al, Au, Cr, Si и др.). μ ≈ 100…100000.

45. Опишите природу ферримагнетизма.

Ферримагнетизм – это магнитоупорядоченное состояние вещества, в котором магнитные моменты атомов или ионов образуют в определенном объеме вещества (домене) магнитные подрешетки атомов или ионов с суммарными магнитными моментами не равными друг другу и направленными антипараллельно. Ферримагнетизм можно рассматривать как наиболее общий случай магнитоупорядоченного состояния, а ферромагнетизм как случай с одной подрешеткой. В состав ферримагнетиков обязательно входят атомы ферромагнетиков. Примеры ферримагнетиков:

Fe 3 O 4 ; MgFe 2 O 4 ; CuFe 2 O 4 ; MnFe 2 O 4 ; NiFe 2 O 4 ; CoFe 2 O 4 …

Магнитная проницаемость ферримагнетиков имеет тот же порядок, что и у ферромагнетиков: μ ≈ 100…100000.

46.Опишите природу антиферромагнетизма.

Антиферромагнетизм – это магнитоупорядоченное состояние вещества, характеризующееся тем, что магнитные моменты соседних частиц вещества ориентированы антипараллельно, и в отсутствии внешнего магнитного поля суммарная намагниченность вещества равна нулю. Антиферромагнетик в отношении магнитного строения можно рассматривать как частный случай ферримагнетика, в котором магнитные моменты подрешеток равны по модулю и антипараллельны. Магнитная проницаемость антиферромагнетиков близка к 1. Примеры антиферромагнетиков:

Cr 2 O 3 ; марганец; FeSi; Fe 2 O 3 ; NiO……… μ ≈ 1.

47.Какое значение магнитной проницаемости у материалов в сверхпроводящем состоянии?

Сверхпроводники ниже температуры сверхперехода являются идеальными диамагнетиками:

א= - 1; μ = 0.

Магнитная проницаемость. Магнитные свойства веществ

Магнитные свойства веществ

Подобно тому, как электрические свойства вещества характеризуются диэлектрической проницаемостью, магнитные свойства вещества характеризуются магнитной проницаемостью.

Благодаря тому, что все вещества, находящиеся в магнитном поле, создают собственное магнитное поле, вектор магнитной индукции в однородной среде отличается от вектора в той же точке пространства в отсутствие среды, т. е. в вакууме.

Отношение называется магнитной проницаемостью среды.

Итак, в однородной среде магнитная индукция равна:

Величина m у железа очень велика. В этом можно убедиться на опыте. Если вставить в длинную катушку железный сердечник, то магнитная ин­дукция, согласно формуле (12.1), увеличится в m раз. Сле­довательно, во столько же раз увеличится поток магнитной индукции. При размыкании цепи, питающей намагничи­вающую катушку постоянным током, во второй, небольшой катушке, намотанной поверх основной, возникает индукцион­ный ток, регистрируемый гальванометром (рис. 12.1).

Если в катушку вставлен железный сердечник, то отклоне­ние стрелки гальванометра при размыкании цепи будет в m раз больше. Измерения показывают, что магнитный поток при внесении в катушку железного сердечника может увеличиться в тысячи раз. Следовательно, магнитная проницаемость железа огромна.

Существует три основных класса веществ с резко разли­чающимися магнитными свойствами: ферромагнетики, парамагнетики и диамагнетики.

Ферромагнетики

Вещества, у которых, подобно железу, m >> 1, называются ферромагнетиками. Кроме железа, ферромагнетиками явля­ются кобальт и никель, а также ряд редкоземельных элемен­тов и многие сплавы. Важнейшее свойство ферромагнетиков – существование у них остаточного магнетизма. Ферромагнитное вещество может находиться в намагничен­ном состоянии и без внешнего намагничивающего поля.

Железный предмет (например, стержень), как известно, втя­гивается в магнитное поле, т. е. перемещается в область, где магнитная индукция больше. Соответственно, он притягивает­ся к магниту или электромагниту. Это происходит потому, что элементарные токи в железе ориентируются так, что направ­ление магнитной индукции их поля совпадает с направлением индукции намагничивающего поля. В результате железный стержень превращается в магнит, ближайший полюс которого противоположен полюсу электромагнита. Противоположные же полюса магнитов притягиваются (рис. 12.2).

Рис. 12.2

СТОП! Решите самостоятельно: А1–А3, В1, В3.

Парамагнетики

Существуют вещества, которые ведут себя подобно железу, т. е. втягиваются в магнитное поле. Эти вещества называются парамагнитными . К их числу относятся некоторые ме­таллы (алюминий, натрий, калий, марганец, платина и др.), кислород и многие другие элементы, а также различные рас­творы электролитов.

Так как парамагнетики втягиваются в поле, то линии ин­дукции создаваемого ими собственного магнитного поля и намагничивающего поля направлены одинаково, поэтому поле усиливается. Таким образом, у них m > 1. Но от единицы m от­личается крайне незначительно, всего на величину порядка 10 –5 ...10 –6 . Поэтому для наблюдения парамагнитных явлений требуются мощные магнитные поля.

Диамагнетики

Особый класс веществ представляют собой диамагне­тики , открытые Фарадеем. Они выталкиваются из магнит­ного поля. Если подвесить диамагнитный стерженек возле по­люса сильного электромагнита, то он будет отталкиваться от него. Следовательно, линии индукции созданного им поля на­правлены противоположно линиям индукции намагничиваю­щего поля, т. е. поле ослабляется (рис. 12.3). Соответственно у диамагнетиков m < 1, причем отличается от единицы на вели­чину порядка 10 –6 . Магнитные свойства у диамагнетиков вы­ражены слабее, чем у парамагнетиков.