Отопление и вентиляция зимнего сада — особенности и правила. Управление микроклиматом в зимних садах

Как уже отмечалось в предыдущих главах, большие рекреационные помещения за панорамными стеклянными стенами, внутренние дворики-атриумы под стеклянными кровлями и зимние сады являются неотъемлемой частью современной архитектуры. В таких помещениях обеспечивается особое, специфическое чувство зрительного контакта с окружающей средой, а прилегающий парк или участок леса становятся своеобразным элементом интерьера. Условия микроклимата, формируемые в помещении зимнего сада, должны отвечать требованиям комфортности для человека, а также обеспечивать условия жизни и роста экзотических растений, выращиваемых в искусственных условиях.

Помещение, располагаемое за лёгкими светопрозрачными ограждениями, имеет минимальный уровень защищённости от негативных факторов наружной среды: стеклянная оболочка практически мгновенно передаёт во внутреннее пространство изменения внешнего климата. Поэтому при проектировании зимнего сада принципиально важно включение в него специальных приспособлений и устройств, при помощи которых можно было бы быстро и эффективно выравнивать пиковые климатические нагрузки.

В зимнее время температура и влажность наружного воздуха не претерпевают резких скачкообразных изменений на протяжении суток. Стабильность параметров микроклимата внутри зимнего сада поддерживается за счёт регулирования мощности системы отопления и элементов переменной теплоизоляции (рольставен и жалюзей), закрываемых в ночное время для сбережения дополнительного тепла от солнца, поступающего в помещение зимнего сада в течение светового дня. Основным негативным фактором в зимнее время является возможное падение или повышение влажности внутреннего воздуха, неблагоприятное для людей и провоцирующее возникновение болезней растений.

В летнее время внутри зимнего сада возникает накопление солнечного тепла, проникающего через стеклянные стены и кровлю и вызывающего повышение температуры внутри помещения за счёт «парникового эффекта», возникающего за счёт дифференцированного пропускания стеклом теплового излучения с различной длиной волны.

В естественном природном теплообмене каждое тело излучает тепловую энергию. При этом длина волны излучения зависит от температуры тела. Стекло, установленное в наружной ограждающей конструкции здания, подвергается воздействию двухстороннего теплового излучения, идущего с одной стороны — от Солнца, а с другой — от внутренних поверхностей помещения.

Абсолютная температура внутренних поверхностей помещения близка к абсолютной температуре поверхности Земли (для данного климатического района) и составляет в среднем 293 К (20 °С). При этом максимум теплового излучения находится в диапазоне от 1600 до 2000 нм. Температура поверхности Солнца составляет около 6000 К. Его тепловое излучение приходится на диапазон длин волн от 300 до 2500 нм. Спектры теплового излучения Солнца и внутренних поверхностей помещения (условно — Земли) показаны на рис. 6.2.3.1.

Рис. 6.2.3.1.

Рис. 6.2.3.2. Накопление тепловой энергии Солнца в пределах замкнутого остеклённого пространства. Перегрев помещения зимнего сада за счёт воздействия солнечной радиации

Обычное оконное стекло хорошо пропускает ультрафиолетовое излучение, видимый свет и коротковолновое инфракрасное излучение Солнца и, гораздо хуже — длинноволновое инфракрасное излучение, исходящее от нагретых поверхностей помещения. Тепло, таким образом, не может выйти наружу и аккумулируется в пределах замкнутого пространства (рис. 6.2.3.2) — происходит перегрев помещения.

Многие растения плохо переносят температуру выше 27 °С, а у многих яркое солнце обжигает листья. Очевидно, что высокая температура внутри зимнего сада является совершенно неприемлемой для человека. Для регулирования параметров микроклимата в зимних садах применяются автоматизированные системы, включающие в себя группу устройств, управляемых с единого пульта, программируемого вручную или при помощи компьютера.

Система автоматической вентиляции зимнего сада SI-WIGa-Bus-System , производимая предприятием ”SIEGENIA-AUBI” , позволяет обеспечить эффективный режим проветривания помещения зимнего сада приоритетно — в летний период, когда зимнему саду требуется наиболее интенсивная вентиляция. Кроме того, отдельные элементы системы могут быть задействованы для организации зимнего проветривания помещения.

Интегрированная система вентиляции SI-WIGa-Bus-System включает в себя группу устройств, предназначенных для выполнения определённых функций и управляемых от единого центрального пульта (рис. 6.2.3.3) . На конкретном строительном объекте может применяться как весь системный комплекс, так и отдельные устройства, целенаправленно группируемые для решения определённых задач. Система очень проста в монтаже и эксплуатации; отдельные блоки соединяются между собой при помощи обычного телефонного кабеля. Основным элементом системы, её «мозговым центром», является центральный управляющий блок AEROTRONIC (поз.1 рис. 6.2.3.3) , который, как правило, монтируется внутри зимнего сада на стене основного дома, к которому примыкает зимний сад. В блоке AEROTRONIC установлены датчики, считывающие значения температуры и относительной влажности внутреннего воздуха соответственно в интервале t = 0 … 50 °С и f = 30 … 80 %. В соответствии с функциональным назначением помещения (зимний сад, бассейн, тренажёрный зал и др.) программируются критические значения контролируемых параметров, определяющих граничные условия комфортности в помещении зимнего сада.

При наступлении какого-либо критического значения из запрограммированных параметров: температуры (например, t крит = + 30 °С — предельно допустимая температура для растений, произрастающих в зимнем саду) или влажности (например, f крит = 60% - максимально допустимая влажность для человека) или запрограммированного критического сочетания температуры и влажности (например, t крит = + 25 °С при f крит = 60%), с блока AEROTRONIC уходит сигнал на включение вентиляторов и открывание заслонок и клапанов приточных устройств типа AEROMAT , располагаемых на стенах зимнего сада и кровельных вытяжных устройств АЕROJET (см. раздел 6.1.2) .

При включении приточных и вытяжных устройств осуществляется интенсивное проветривание помещения зимнего в режиме принудительной вентиляции (рис. 10.2.2.4) в течение определенного интервала времени. Проветривание будет осуществляться в непрерывном или прерывистом режиме до тех пор, пока значения контролируемых параметров не достигнут нижнего значения, запрограммированного на управляющем блоке AEROTRONIC .

Рис. 6.2.3.3.
1 — центральный управляющий блок (АЕROTRONIC)
2 — приточное устройство (AEROMAT)
3 — вытяжное кровельное устройство (АЕROJET)
4а и 4б — метеостанция
5 — блок управления открыванием-закрыванием окон
6 — блок управления открыванием-закрыванием затеняющих маркиз
7 — затеняющие маркизы

Рис. 6.2.3.4. Схема принудительной вентиляция зимнего сада за счет группы стеновых и кровельных приборов. Воздух удаляется из верхней — наиболее перегретой зоны помещения

Рис. 6.2.3.5. Метеостанция AEROTRONIC Wetterstation. Общий вид.
1 — устройство для измерения скорости ветра
2 — датчик температуры и влажности
3 — датчик дождя
4 — датчик солнечной радиации, ориентированный по четырём сторонам света

При необходимости в системе SI-WIGa-Bus-System в качестве приточных элементов могут быть задействованы окна, управляемые электроприводами дистанционного открывания (см. раздел 6.1.1) , а на крыше зимнего сада установлен блок метеостанции — AEROTRONIC Wetter-station (поз. 4 рис. 6.2.3.3 и рис. 6.2.3.5) , предназначенной для считывания параметров наружного климата и оснащенной устройством для измерения скорости ветра, датчиком дождя и датчиком солнечной радиации. При помощи блока AEROTRONIC Wetter-station осуществляется интегрированная работа приточно-вытяжных устройств и системы затенения кровли при помощи дополнительных солнцезащитных устройств — маркиз (поз.7 рис. 6.2.3.3) .

Измеритель скорости ветра представляет из себя классический анемомометр, снабжённый крыльчаткой в виде креста Робинзона. В кресте Робинзона на концах крестовины укреплены четыре полых полушария, обращённых выпуклостью в одну сторону. Под действием ветра крестовина вращается т.к. на чашку, обращенную к направлению ветра вогнутой стороной давление больше, чем давление на чашку, обращённую выпуклой стороной. В отличие от стандартного анемометра, датчик ветра, устанавливаемый на крыше зимнего сада, снабжён тахометрической машиной, преобразующей энергию вращения в электрический сигнал.

Датчик дождя является ёмкостным. Электрическая ёмкость датчика образована системой из двух плоских гребёнок, защищённых сверху тонким слоем диэлектрика. При попадании воды на поверхность датчика происходит изменение межэлектродной диэлектрическая проницаемости, что приводит к изменению электрической ёмкости и регистрируется соответствующей электронной схемой. Датчик является обогреваемым для удаления влаги с поверхности с целью приведения его в рабочее состояния для последующих измерений.

При ураганном ветре или дожде метеостанция подаёт сигнал на управляющий блок AEROTRONIC , с которого в свою очередь уходит сигнал на закрытие всех открытых люков и окон, подключенных к распределительному блоку AEROTRONIC Fenstermodul (поз. 5 рис. 6.2.3.3) .

Датчик солнечной радиации считывает данные о наличии прямого облучения солнечными лучами какой-либо из стен зимнего сада в зависимости от их ориентации и положении Солнца на его траектории в данный момент времени (рис. 6.2.3.6) . Сигнал подаётся на управляющий блок AEROTRONIC , с которого уходит команда на закрытие маркиз (затенение) зимнего сада на стороне, подверженной воздействию прямого солнечного облучения. Управление открытием-закрытием маркиз осуществляется при помощи распределительного блока AEROTRONIC Beschattungsmodul (поз. 6 рис. 6.2.3.3) , к которому могут быть подключены три маркизы.

Дополнительные солнцезащитные приспособления могут быть выполнены как в наружном, так и во внутреннем вариантах. Солнцезащитные конструкции, как правило, выполняются из композитных тканевых материалов, основу которых составляют переплетенные нити из стекловолокна, с оболочкой на основе ПВХ или акрила. Как и у всех композитов, стекловолокно в данном случае обеспечивает разрывную прочность, необходимую для мобильных штор, подверженных частым переменным нагрузкам, а ПВХ — стойкость к УФ солнечному излучению, предохраняя тент от выгорания. Переплетение нитей выполняется таким образом, чтобы 10 … 20 % естественного дневного света проникало в помещение, создавая эффект мягкого затенения.

Рис. 6.2.3.6.

Поскольку стеклянная оболочка практически мгновенно передает во внутреннее пространство изменения внешнего климата, - при при-нципиально важно включение в него специальных приспособлений и устройств, при помощи которых можно было бы быстро и эффективно выравнивать пиковые кли-матические нагрузки.

В зимнее время температура и влажность наружного воздуха не претерпевают резких скачкообразных изменений на протяжении суток. Стабильность параметров микроклимата внутри поддерживается за счет регулирования мощности системы отопления и элементов переменной теплоизоляции (рольставен и жалюзей), закрываемых в ночное время для сбережения дополнительного тепла от солнца, пос-тупающего в помещение зимнего сада в течение светового дня. Основным негатив-ным фактором в зимнее время является возможное падение или повышение влажности внутреннего воздуха, неблагоприятное для людей и провоцирующее возникновение болезней растений.

В летнее время температура наружного воздуха характеризуется высокими амп-литудами на протяжении суток. В жаркие летние дни перепад температур наружного воздуха в дневное и ночное время достигает в Москве 15 - 20 °С. Доля солнечной ра-диации, падающей на горизонтальную поверхность (кровля) на 48° с.ш. (г.Москва), в июле составляет 877 МДж/м2; на вертикальную поверхность (стена) - 398 МДж/м2 при ориентации ее на юг, и 197 МДж/м2 при ориентации ее на север.

В жаркий солнечный день внутри зимнего сада возникает накопление солнечного тепла, проникающего через стеклянные стены и кровлю и вызывающего повышение температуры внутри помещения за счет «парникового эффекта». Многие растения плохо переносят тем-пературу выше 27 °С, а у многих яркое солнце обжигает листья. Очевидно, что высокая температура внутри зимнего сада является совершенно неприемлемой для человека.

Для регулирования параметров микроклимата в зимних садах применяются , включающие в себя группу устройств, управляемых с единого пульта, программируемого вручную или при помощи компьютера. В России такие системные решения пока еще относительно малоизвестны, однако в настоящее время они постепенно занимают определенную нишу рынка интеллектуальных окон-ных технологий.

Наибольшую известность на сегодняшний день в нашей стране получила сис-тема вентиляции зимнего сада SI-WIGa-Bus-System, производимая предприятием «SIEGENIA-AUBI», смонтированная и эксплуатирующаяся на ряде частных объектов в г. Москве.

Перегрев помещения зимнего сада за счет воздействия солнечной радиации.

Интегрированная система вентиляции SI-WIGa-Bus-System включает в себя груп-пу устройств, предназначенных для выполнения определенных функций и управляемых от единого центрального пульта. На конкретном строительном объекте может применяться как весь системный комплекс, так и отдельные устройства, целе-направленно группируемые для решения определенных задач. Система очень проста в монтаже и эксплуатации; отдельные блоки соединяются между собой при помощи обычного телефонного кабеля.

Основным элементом системы, ее «мозговым центром», является центральный уп-равляющий блок AEROTRONIC, который, как правило, монтирует-ся внутри зимнего сада на стене основного дома, к которому примыкает зимний сад.

В блоке AEROTRONIC установлены датчики, считывающие значения темпера-туры и относительной влажности внутреннего воздуха соответственно в интервале t = 0 .... 50 °С и f = 30 ... 80 %. В соответствии с функциональным назначением поме-щения (зимний сад, кафе, помещение культурно-бытового назначения и др.) программи-руются критические значения контролируемых параметров, определяющих граничные условия комфортности в помещении зимнего сада.

При наступлении какого-либо критического значения из запрограммированных параметров: температуры (например, tкрит = + 30 °С - предельно допустимая тем-пература для растений, произрастающих в зимнем саду) или влажности (например, fkрит = 60% - максимально допустимая влажность для человека) или запрограммирован-ного критического сочетания температуры и влажности (например, t крит = + 25 °С при fkрит = 60%), с блока AEROTRONIC уходит сигнал на включение вентиляторов и от-крывание заслонок и клапанов приточных устройств типа AEROMAT (см. главу 6), рас-полагаемых на стенах зимнего сада и кровельных вытяжных устройств AEROJET или AEROSTAR .

При включении приточных и вытяжных устройств осуществляется интенсивное проветривание помещения зимнего в режиме принудительной вентиляции в течение определенного интервала времени. Проветривание будет осуществляться в непрерывном или прерывистом режиме до тех пор, пока значения контролируемых па-раметров не достигнут нижнего значения, запрограммированного на управляющем бло-ке AEROTRONIC.

Схема принудительной вентиляция зимнего сада за счет группы стеновых и кровельных приборов. Воздух удаляется из верхней - наиболее перегретой зоны помещения.

При необходимости в системе SI-WIGa-Bus-System в качестве приточных элемен-тов могут быть задействованы окна, управляемые электроприводами дистанционного открывания, а на крыше зимнего сада установлен блок метеостанции

AEROTRONIC Wetter-station, предназначенной для считывания пара-метров наружного климата и оснащенной устройством для измерения скорости ветра, датчиком дождя и датчиком солнечной радиации. При помощи блока AEROTRONIC Wetter-station осуществляется интегрированная работа приточно-вытяжных устройств и системы затенения кровли при помощи дополнительных солнцезащитных устройств

МетеостанцияAEROTRONIC Wetter-station.Общий вид.

1 - устройство для измерения скорости ветра; 2 - датчик температуры и влажности; 3 - дат-чик дождя; 4 - датчик солнечной радиации, ориентированный по четырем сторонам света.

Автоматизированный контроль за степенью облученности поверхностей зимнего сада солнечной радиацией и затенение кровли зимнего сада маркизами

При ураганном ветре или дожде метеостанция подает сигнал на управляющий блок AEROTRONIC, с которого в свою очередь уходит сигнал на закрытие всех от-крытых люков и окон, подключенных к распределительному блоку AEROTRONIC Fenstermodul.

Датчик солнечной радиации считывает данные о наличии прямого облучения сол-нечными лучами какой-либо из стен зимнего сада в зависимости от их ориентации и положении Солнца на его траектории в данный момент времени. Сиг-нал подается на управляющий блок AEROTRONIC, с которого уходит команда на за-крытие маркиз (затенение) зимнего сада на стороне, подверженной воздействию пря-мого солнечного облучения. Управление открытием-закрытием маркиз осуществляется при помощи распределительного блока AEROTRONIC Beschattungsmodul, к которому могут быть подключены три маркизы.

Дополнительные солнцезащитные приспособления могут быть выполнены как в на-ружном, так и во внутреннем вариантах. В частности, на рисунке показан вариант внутреннего затенения - с использованием солнцезащитного тента. Солнцезащитные конструкции, как правило, выполняются из композитных тканевых материалов, осно-ву которых составляют переплетенные нити из стекловолокна, с оболочкой на основе ПВХ или акрила. Как и у всех композитов, стекловолокно в данном случае обеспечивает разрывную прочность, необходимую для мобильных штор, подверженных частым пере-менным нагрузкам, а ПВХ - стойкость к УФ солнечному излучению, предохраняя тент от выгорания. Переплетение нитей выполняется таким образом, чтобы 10 ... 20 % естес-твенного дневного света проникало в помещение, создавая эффект мягкого затенения.

Компания "Сибирь" может предложить Вам:

Атмосферу в зимнем саду и возможности его использования определяют не только особенности конструкции и наличие отопления, но и то, на какую сторону света сад ориентирован.

Расположение

Зимние сады, ориентированные на эту сторону, самые светлые и теплые. Даже если в них нет стационарного отопления, в солнечные весенние и осенние дни они аккумулируют достаточно тепла, чтобы можно было, завернувшись в плед, с удовольствием выпить чашку чая фактически под открытым небом.

Южное ориентирование замечательно тем, что позволяет наслаждаться солнечным теплом в холодное время года, но вот летом палящие лучи могут стать настоящей проблемой.

Поэтому в светопрозрачной конструкции, выходящей на юг, нужно непременно предусмотреть вентиляцию (лучше - принудительную). Если проветривание будет естественным, важно разместить минимум одно открывающееся окно в каждой из стеклянных стен и обязательно одно в крыше. Следует также позаботиться о надежной солнцезащите.

Запад

Западные светопрозрачные конструкции не такие жаркие, как южные, но все же аккумулируют достаточно много тепла, поэтому хорошие вентиляция и солнцезащита для них также актуальны.

Больше всего солнечных лучей они получают после полудня, потому летом эти прозрачные комнаты комфортны для утреннего отдыха, а в холодную пору - для вечернего.

Восток

Зимний сад, ориентированный на восток, получает утреннее солнце. Летом в нем будет приятно находиться ранним утром и вечером, весной и осенью - в обеденное время.

Север

Зимний сад, ориентированный на север, играет роль и зоны отдыха, и своеобразного буфера, утепляющего помещения, расположенные в самой холодной части дома.

Такая прозрачная комната комфортна летом в течение дня. Если дневная зона в доме выходит на юг, зимний сад можно использовать как прохладную летнюю гостиную.

Ориентированная на север конструкция не требует интенсивной вентиляции и затенения, зато зимой ее почти невозможно использовать, если только она не отапливается.

Желая устроить с северной стороны остекленную комнату для круглогодичного использования, помните, что на отопление придется тратить больше, чем в аналогичном саду с южной стороны. Кроме того, для стен нужно будет использовать одно- или даже двухкамерные стеклопакеты.

Лиственные деревья улучшают микроклимат: летом листва защищает конструкцию от палящих лучей, а зимой голые ветви не мешают ее прогреванию.

Микроклимат

Чтобы создать в зимнем саду оптимальный микроклимат и избежать образования конденсата, нужно обеспечить достаточную вентиляцию пространства.

Для этого применяют специальный профиль, имеющий отверстия, а также окна.

Площадь открывающихся вентиляционных форточек должна составлять как минимум 3 % от всей площади остекления.

Лучше всего проветривание будет происходить, если открывающиеся сворки расположены по диагонали друг к другу (то есть важно наличие открывающихся окон в крыше).

Следует помнить, что естественная вентиляция работает, когда наружная температура ниже внутренней минимум на 5 °С.

Если у вас ориентированный на юг зимний сад, лучше предусмотреть принудительное проветривание , обеспечиваемое электродвигателем и вентилятором. Система включается и выключается автоматически по сигналу от датчиков температуры и давления.

Отапливать или не отапливать

Зимний сад может быть как отапливаемым, так и неотапливаемым помещением дома. Если вы планируете активно использовать его только в теплое время года, можно обойтись переносным обогревателем для редких прохладных вечеров.

В случае когда помещение будет периодически использоваться в холодный период, разумно сделать автономное отопление с помощью системы «теплый пол». Если же в зимнем саду планируют устроить полноценную жилую комнату, осуществляют подключение к центральной системе дома.

Важно помнить, что для сохранения комфортной температуры в конструкции должны быть применены материалы с низким коэффициентом теплопередачи - стеклопакеты, а не одинарное стекло, сотовый поликарбонат толще 24 мм, а также теплоизолирующий каркас.

Для зимнего сада, в котором выращивают экзотические растения, предусматривают систему климат-контроля . Эффективная вентиляция важна также для светопрозрачной конструкции, используемой в качестве бассейна.

Теперь давайте представим интересную ситуацию. Точнее, отгадаем загадку. Как ходить по прекрасному саду с папоротниками в минус двадцать? Правильно. Нужно завести зимний сад. Дело это не простое, я бы даже сказал очень сложное, но оно того однозначно стоит. Представьте, как классно гулять среди тропических растений в январе, в заснеженной Москве.

Но в понимании большинства людей, зимний сад - это что-то сильно заоблачное, невообразимое, очень трудно реализуемое. В этом есть доля правды, но умный дом способен решить массу проблем. Он сделает так, чтобы вашей единственной проблемой, связанной с зимним садом было то, что у вас мало времени, чтобы по нему гулять. Сложная и кропотливая работа предстоит только на этапе постройки. Итак, давайте разберемся поподробнее.

Первое, и самое важное, что нужно понять – что будет расти в вашем зимнем саду. Исходя из этого нужно выбирать и помещение. Может, вы захотите построить оранжерею, почему бы и нет? В чем разница? Спросите вы. Оранжерея – отдельно стоящее здание, которое имеет свою, отдельную систему кондиционирования и отопления. Зимний сад, в свою очередь, соединен с домом и отапливается с домом единой системой отопления. Далее, про все, что будем говорить, справедливо будет и по отношению к оранжерее.

Итак, с растениями определились, помещение подобрано, но это только начало пути. Вы наверняка что-то отдаленно знаете про специальные лампы для растений. Да, да, нам понадобятся лампы для освещения зимнего сада, причем лампы нужны специально для выращивания растений. Такие лампы имеют специальную цветовую температуру и световой поток, оптимальные для скорейшего роста растений. Теперь мы еще и установили свет для растений, но и это еще не все. Нам нужна система кондиционирования и отопления. В летнее время можно просто проветрить через окно, но такой вариант не всегда оптимален. Хорошо настроенная система климат контроля будет поддерживать оптимальную температуру именно для тех растений, которые вы выбрали для посадки в своем зимнем саду. Ведь для каждого растения характерна та или иная температура воздуха.

И вот только вы выдохнули, но до финиша еще бежать и бежать. Нужны осушители и увлажнители воздуха. Возникает совершенно логичный вопрос – зачем? А вот зачем. Например, у вас в саду тропические растения, а они в своей естественной среде обитания живут во влажных тропиках. А осушитель нужен, как бы это не было логично для кактусов, и поддержания оптимальной влажности.

Как мы с вами помним, умный дом – совершенная система, управляющая всем в доме, и зимние сады не исключение. Так что все заботы, связанные с поддержанием жизнеспособности зимнего сада, можно возложить на систему умного дома. Вам достаточно задать необходимые параметры и дом сделает все за вас. У вас к тому же никто не отбирает право ручного управления всеми системами зимнего сада. Все, кто обладают зимним садом, говорят, что эмоции от него перекрывают все физические и финансовые затраты на его постройку.

Как правило, для зимнего сада выбираются растения, не требующие повышенной температуры и влажности или дополнительного освещения зимой до окончания светового дня. Однако частый полив и неизбежные опрыскивания листвы для защиты ее от сухости воздуха или препаратами-инсектицидами все же приводят к образованию конденсата на конструкциях помещения. К тому же, в зимнем саду, как в неотъемлемой части жилого пространства, необходимо создать комфортные условия и для содержания домашнего уголка природы, и для проживания хозяев под его сенью.

Наряду со встроенной в стеклопакеты системой внутренних и внешних водостоков необходимо запроектировать и систему вентиляции . Наиболее эффективный способ обеспечения естественной вентиляции – устройство горизонтально расположенных отверстий (или открывающихся створок) для подачи наружного воздуха в нижней части зимнего сада, а также фрамуг для проветривания на наклонной крыше. Но в наше время в зимних садах все чаще применяется система принудительной вентиляции, состоящей из приточных и вытяжных узлов.

Для каждого зимнего сада вентиляционные системы проектируются инд ивидуально и должны быть точно рассчитаны на конкретную кубатуру помещения и заданный температурно-влажностный режим.

Возможно и применение системы кондиционирования , которая, наряду с ионизаторами, очистителями и увлажнителями воздуха, поможет создать и поддержать микроклимат на должном уровне (оптимальная температура воздуха для зимовки растений – +18−20°С при относительной влажности 40%). С этой же целью желательно применение в зимних садах систем обогрева «теплый пол», так как обычные радиаторы отопления слишком сильно пересушивают воздух в помещении.

Автомобилистам хорошо известно такое явление, как парниковый эффект , когда салон машины, оставленной под яркими лучами солнца, сильно нагревается. Все дело в том, что стекло пропускает коротковолновое излучение, которое, в свою очередь, нагревает предметы, находящиеся в помещении. Нагревшись, эти предметы начинают сами излучать длинные волны в инфракрасном диапазоне.

Площадь остекления в зимнем саду намного больше, чем у лобового стекла автомобиля , и температура в нем может подняться до +70°С. Поэтому, проектируя зимний сад, необходимо подумать и о системах защиты от излишней солнечной энергии.

Поддержание заданной температуры и управление многочисленными приборами – довольно трудоемкий процесс. В современном доме заботу о людях и растениях берет на себя компьютер. А если в управляющую программу заложить данные о местоположении солнца в тот или иной час дня, то, даже в отсутствие хозяев, послушные компьютеру жалюзи будут опускаться и подниматься, предохраняя листву от солнечных ожогов.

Некоторые группы растений (кактусы, суккуленты или экзотические бутылочные деревья) требуют редкого полива, другие же – как, например, папирус, – хорошо развиваются только в сильно увлажненной почве. Подключенная к общей сети система капельного полива изо дня в день будет ухаживать за капризными растениями должным образом.

Несмотря на большие финансовые затраты , система климат-контроля для зимнего сада вполне оправдывает себя, создавая комфортную среду обитания для всех обитателей загородного дома.