Способы измерения углов и конусов. Способы угловых измерений

Государственный стандарт ГОСТ 10529-86 выделяет три группы теодолитов: высокоточные, точные и технические.

Высокоточные теодолиты обеспечивают измерение углов с ошибкой не более 1"; типы Т1, Т05.

Точные теодолиты обеспечивают измерение углов с ошибкой от 2" до 7"; типы Т2, Т5.

Технические теодолиты обеспечивают измерение углов с ошибкой от 10" до 30"; типы Т15, Т30.

Дополнительная буква в шифре теодолита указывает на его модификацию или конструктивное решение: А - астрономический, М - маркшейдерский, К - с компенсатором при вертикальном круге,П - труба прямого изображения (земная).

Государственным стандартом на теодолиты предусмотрена, кроме того, унификация отдельных узлов и деталей теодолитов; вторая модификация имеет цифру 2 на первой позиции шифра - 2Т2, 2Т5 и т.д., третья модификация имеет цифру 3 - 3Т2, 3Т5КП и т.д.

Перед измерением угла необходимо привести теодолит в рабочее положение, то-есть, выполнить три операции: центрирование, горизонтирование и установку зрительной трубы.

Центрирование теодолита - это установка оси вращения алидады над вершиной измеряемого угла; операция выполняется с помощью отвеса, подвешиваемого на крючок станового винта, или с помощью оптического центрира.

Горизонтирование теодолита - это установка оси вращения алидады в вертикальное положение; операция выполняется с помощью подъемных винтов и уровня при алидаде горизонтального круга.

Установка трубы - это установка трубы по глазу и по предмету; операция выполняется с помощью подвижного окулярного кольца (установка по глазу - фокусирование сетки нитей) и винта фокусировки трубы на предмет (поз.15 на рис.4.4).

Измерения угла выполняется строго по методике, соответствующей способу измерения; известно несколько способов измерения горизонтальных углов: это способ отдельного угла (способ приемов), способ круговых приемов, способ во всех комбинациях и др.

Способ отдельного угла. Измерение отдельного угла складывается из следующих действий:

наведение трубы на точку, фиксирующую направление первой стороны угла (рис.4.16), при круге лево (КЛ), взятие отсчета L1;

поворот алидады по ходу часовой стрелки и наведение трубы на точку, фиксирующую направление второй стороны угла; взятие отсчета L2,

вычисление угла при КЛ (рис.4.16):

перестановка лимба на 1o - 2o для теодолитов с односторонним отсчитыванием и на 90o - для теодолитов с двухсторонним отсчитыванием,

переведение трубы через зенит и наведение ее на точку, фиксирующую направление первой стороны угла, при круге право (КП); взятие отсчета R1,

поворот алидады по ходу часовой стрелки и наведение трубы на точку, фиксирующую направление второй стороны угла; взятие отсчета R2,

вычисление угла при КП:

при выполнении условия |вл - вп| < 1.5 * t, где t - точность теодолита, вычисление среднего значения угла:

вср = 0.5 * (вл + вп).

Измерение угла при одном положении круга (КЛ или КП) составляет один полуприем; полный цикл измерения угла при двух положениях круга составляет один прием.

Запись отсчетов по лимбу и вычисление угла производятся в журналах установленной формы.

Способ круговых приемов. Если с одного пункта наблюдается более двух направлений, то часто применяют способ круговых приемов. Для измерения углов этим способом необходимо выполнить следующие операции (рис.4.17):

при КЛ установить на лимбе отсчет, близкий к нулю, и навести трубу на первый пункт; взять отсчет по лимбу.

вращая алидаду по ходу часовой стрелки, навести трубу последовательно на второй, третий и т.д. пункты и затем снова на первый пункт; каждый раз взять отсчеты по лимбу.

перевести трубу через зенит и при КП навести ее на первый пункт; взять отсчет по лимбу.

вращая алидаду против хода часовой стрелки, навести трубу последовательно на (n-1), ..., третий, второй пункты и снова на первый пункт; каждый раз взять отсчеты по лимбу.

Затем для каждого направления вычисляют средние из отсчетов при КЛ и КП и после этого - значения углов относительно первого (начального) направления.

Способ круговых приемов позволяет ослабить влияние ошибок, действующих пропорционально времени, так как средние отсчеты для всех направлений относятся к одному физическому моменту времени.

Влияние внецентренности теодолита на отсчеты по лимбу. Пусть на рис.4.18 ось вращения алидады пересекает горизонтальную плоскость в точке B", а точка B - проекция вершины измерямого угла на ту же плоскость. Расстояние между точками B и B" обозначим l, расстояние между пунктами B и A - S.


Если бы теодолит стоял в точке B, то при наведении трубы на точку A отсчет по лимбу был бы равен b. Перенесем теодолит в точку B", сохранив ориентировку лимба; при этом отсчет по лимбу при наведении трубы на точку A изменится и станет равным b"; различие этих отсчетов называется ошибкой центрировки теодолита и обозначается буквой c.

Из треугольника BB"A имеем:

или по малости угла c

Величина l называется линейным элементом центрировки, а угол Q - угловым элементом цетрировки; угол Q строится при проекции оси вращения теодолита и отсчитывается от линейного элемента по ходу часовой стрелки до направления на наблюдаемый пункт A.

Правильный отсчет по лимбу будет:

b = b" + c . (4.19)

Влияние редукции визирной цели на отсчеты по лимбу.

Если проекция визирной цели A" на горизонтальную плоскость не совпадает с проекцией центра наблюдаемого пункта A, то возникает ошибка редукции визирной цели (рис.4.19). Отрезок AA" называется линейным элементом редукции и обозначается l1; угол Q1 называется угловым элементом редукции; он строится при проекции визирной цели и отсчитывается от линейного элемента по ходу часовой стрелки до направления на пункт установки теодолита. Обозначим правильный отсчет по лимбу - b, фактический - b", ошибка в направлении BA равна r. Из треугольника BAA" можно написать:

или по малости угла r

Правильный отсчет по лимбу будет

b = b" + r . (4.21)

Наибольшего значения поправки c и r достигают при И = И1 = 90o (270o), когда.

В этом случае

В практике измерения углов применяют два способа учета внецентренности теодолита и визирной цели.

Первый способ заключается в том, что центрирование выполняют с такой точностью, которая позволяет не учитывать ошибку внецентренности. Например, при работе с техническими теодолитами допустимое влияние ошибок центрирования теодолита и визирной цели можно принять c = r = 10"; при среднем расстоянии между точками S = 150 м получается, что l = l1 = 0.9 см, то-есть, теодолит или визирную цель достаточно устанавливать над центром пункта с ошибкой около 1 см. Для центрирования с такой точностью можно применить обычный отвес. Центрирование теодолита или визирной цели с точностью 1-2 мм можно выполнить лишь с помощью оптического центрира. Второй способ заключается в непосредственном измерении элементов l и И, l1 и И1, вычислении поправок c и r по формулам (4.18) и (4.20) и исправлении результатов измерений этими поправками по формулам (4.19) и (4.21). Методика измерений элементов центрировки теодолита и визирной цели описана в .

В полигонометрическом ходе измеряют примычные углы, углы поворота и засечки боковых пунктов.

Существует два основных способа измерения углов на пунктах полигонометрии: способ круговых приемов; способ отдельного угла.

Способ круговых приемов

Измерение углов в данном способе начинается с подготовки теодолита для измерения углов, состоящего из:

Центрирования, которое выполняется с помощью оптического отвеса с точностью 1 мм;

Приведения основной оси в отвесное положение с помощью уровня при алидаде горизонтального круга и трёх подъемных винтов;

Установки трубы для наблюдений, состоящей из установки трубы по глазу, установки трубы по предмету и устранение параллакса сетки нитей;

Работа на станции выполняется в следующей последовательности:

Наводят визирную ось зрительной трубы при КЛ на визирную марку, которую при измерении принимают за начальное направление;

Устанавливают лимб и оптический микрометр на отсчёт, близкий к нулю (лучше несколько больше нуля); для этого сначала вращением рукоятки микрометра устанавливают отсчёт по шкале последнего, близкий к нулю, затем вращением рукоятки перестановки лимба тщательно совмещают изображение штрихов противоположных краёв лимба, после чего производят отсчёт и записывают в журнал;

Разводят рукояткой микрометра изображение совмещённых штрихов и снова их соединяют (второе совмещение), производят отсчёт и записывают в журнал; разность двух отсчётов не должна превышать 2;

Открепляют алидаду и наводят визирную ось трубы (вращая алидаду по ходу часовой стрелки) на вторую, а затем третью и т.д. марки; при двух совмещениях производят отсчёты, которые записывают в журнал;

Заканчивают наблюдения повторным визированием на точку начального направления и по полученным начальным и конечным отсчетам убеждаются в неподвижном положении лимба.

Описанные действия составляют первый полу приём.

Повторное наведение на первую марку называется замыканием горизонта. Расхождение между результатами наблюдений на начальное направление в начале и конце полу приёма не должно превышать 8.

Переводят трубу через зенит и производят измерения второго полу приёма в следующей последовательности:

Наводят ось зрительной трубы на начальное направление и при двух совмещениях производят отсчёты, которые записывают в журнал в строку соответствующую наблюдению при КП: запись ведётся снизу вверх;

Открепляют алидаду и поворачивая её против хода часовой стрелки визируют ось трубы на третью (в зависимости от числа направлений),вторую и снова на первую марки. Производят отсчёты при двух совмещениях записывают в журнал.

На этом заканчивается второй полуприем. Два полуприема составляют полный прием.

Второй и последующие приёмы измерения направлений производят в той же последовательности, как и первый, но для ослабления влияния систематических погрешностей делений лимба, лимб поворачивают на угол

G = 180\ n +10", где n – число приёмов.

Измерение углов способом отдельного угла

Порядок наблюдений при измерении угла способом отдельного угла между двумя направлениями остается таким же, как и в способе приемов.

Отличие состоит лишь в том, что не производят повторного наведения на начальную точку и вращают алидаду и в первом и во втором полуприёмах или по ходу или только против хода часовой стрелки.

Значения углов в полуприемах, а также и в отдельных приемах не должны различаться на 8”.

Окончательное значение угла вычисляют как среднее арифметическое из углов, измеренных в отдельных приемах.

При измерении отдельных углов или направлений теодолитами, предусмотренными «Инструкцией по топографической съемке в масштабах 1: 5000, 1: 2000, 1: 1000, 1: 500. Москва, «Недра», 1973 г.», результаты измерений должны находится в пределах установленных допусков.

В полигонометрии 4 класса для теодолитов типов Т2 и Т1 число приемов установлено 4.

Измерение углов рекомендуется производить в утренние и вечерние часы. Время, близкое к восходу и заходу солнца (примерно за час до восхода и час после захода), использовать не следует, так как в эти часы наблюдается наибольшие колебания изображений. Перед началом измерений производят исследования, поверки и юстировку приборов. Измеряют обычно левые по ходу углы, наблюдения записывают в полевые журналы.

В целях устранения ошибок центрирования и редукции при проложении полигонометрических ходов и для некоторого ускорения угловых измерений, рекомендуется применять трехштативную систему измерения углов.

В настоящее время при производстве геодезических работ широко используются приборы различного назначения ведущих зарубежных фирм Leica, Sokia и других фирм геодезического приборостроения Швейцарии, Швеции, Германии, Японии.

Углы изделий измеряют тремя основными методами: методом сравнения с жёсткими контрольными инструментамиугловыми мерами, угольниками, конусными калибрами и шаблонами; абсолютным гониометрическим методом, основанным на использовании приборов с угломерной шкалой; косвенным тригонометрическим методом, который заключается в определении линейных размеров, связанных с измеряемым углом тригонометрической функцией.

К универсальным средствам измерения углов относятся нониусные, оптические и индикаторные угломеры, а также другие приборы. Углы наклона поверхностей изделий измеряют уровнями и оптическими квадратами.

Конец работы -

Эта тема принадлежит разделу:

Метрология, стандартизация и сертификация

Федеральное государственное бюджетное образовательное учреждение.. высшего профессионального образования.. пермский национальный исследовательский политехнический университет..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Метрология, стандартизация и сертификация
Методические указания по организации самостоятельной работы студентов Направления: 150900.62 «Технология, оборудование и автоматизация машинострои

Перечень лабораторных занятий
1. Измерение деталей с применением плоскопараллельных концевых мер длины; 2. Измерение размеров деталей с применением штангенинструментов; 3. Определение шероховатости поверхности

Развитие и роль метрологии, стандартизации и сертификации в обеспечении высокого качества продукции
Переход России к рыночной экономике определил новые условия для деятельности отечественных фирм, предприятий и организаций не только на внутреннем рынке, но и на внешнем. Право предприятий

Метрологическое обеспечение. Технические основы метрологического обеспечения
Метрологическое обеспечение– это комплекс работ, направленных на обеспечение единства измерений, при котором результаты измерений выражены в узаконенных единицах величин и погрешно

Основные виды работ по метрологическому обеспечению
1)Проведение анализа состояния с измерением. Постоянный анализ – основной вид работ метрологического обеспечения, т. к. изготовитель должен знать, с какой достоверностью выявляются значени

Единство, достоверность, точность измерений. Единообразие средств измерений
Единство измерений – состояние измерений, при котором их результаты выражены в узаконенных единицах, а погрешности известны с заданной вероятностью и не выходят за установленные пр

Государственный метрологический контроль. Утверждение типа средств измерений
Закон «Об обеспечении единства измерений» устанавливает следующие виды государственного метрологического контроля: 1) утверждение типа средств измерений; 2) поверка средств измере

Поверка средств измерений
Поверка средств измерений – совокупность операций, выполняемых органами Государственной метрологической службы или другими уполномоченными на то органами и организациями с целью определения и подтв

Калибровка средств измерений. Калибровочная служба России (РСК)
Калибровка СИ – это совокупность операций, выполняемых с целью определения и подтверждения действительных значений метрологических характеристик и (или) пригодности к применению ср

Государственный метрологический надзор (ГМН)
ГМН – процедуры проверок соблюдения метрологических правил и норм, требований закона, нормативных документов системы ГСИ, принятых в связи с введением Закона, а также действующих ранее и противореч

Метрологический контроль и надзор на предприятиях и в организациях (у юридических лиц)
В соответствии с законом «Об обеспечении единства измерений» на предприятиях, организациях, учреждениях, являющихся юридическими лицами, создаются в необходимых случаях метрологические службы для в

Физические величины как объект измерений
Объектом измерений являются физические величины, которые принято делить на основные и производные. Основные величиныне зависимы друг от друга, но они могут служить основой

Виды средств измерений
Для практического измерения единицы величины применяются технические средства, которые имеют нормированные погрешности и называются средствами измерений. К средствам измерений отно

Измерение. Виды измерений
Измерение –Совокупность операций, выполняемых с помощью технического средства, хранящего единицу величины и позволяющего сопоставить с нею измеряемую величину. Полученное

Основные параметры средств измерений
Длина деления шкалы –расстояние между осями (центрами) двух соседних отметок шкалы, измеренное вдоль воображаемой линии, проходящей через середины самых коротких отметок шкалы.

Погрешности измерения
Под погрешностью измерения подразумевают отклонение результата измерения от истинного значения измеряемой величины. Точность измерений –качество измерения

Выбор средств измерений
При выборе средств измерений учитываются их метрологические параметры, эксплуатационные факторы (организационная форма контроля, особенности конструкции и размеры изделий, производительность оборуд

Метрологические показатели средств измерений
Меры характеризуются номинальным и действительным значениями. Номинальное значение меры –значение величины, указанное на мере или приписываемое ей. Действ

Штриховые меры длины. Плоскопараллельные концевые меры длины
Штриховые меры длины изготовляют в виде брусков четырёх типов с различными формами поперечного сечения. Однозначные меры имеют два штриха на краях бруса. Шкалы многозначных мер мог

Угловые призматические меры
Угловые призматические меры являются наиболее точным средством измерения углов в машиностроении. Они предназначены для передачи размера единицы плоского угла от эталонов образцовым и рабочим угловы

Штангенинструменты
Штангенинструменты представляют собой показывающие приборы прямого действия, у которых размер изделия определяется по положению измерительной рамки, перемещающейся вдоль штанги со штриховой шкалой.

Микрометры
Микрометрические инструменты относятся к группе универсальных измерительных инструментов. Они предназначены для измерения диаметров валов и отверстий, глубин и высот деталей. Конструкция м

Калибры. Профильные шаблоны
По методу контроля калибры делят на нормальные и предельные. Нормальные калибрыкопируют размеры и форму изделий. Предельные калибрывоспроизводят

Угольники и конусные калибры
Угольники поверочные 90° предназначены для проверки и разметки прямых углов изделий, для контроля изделий при сборке или монтаже и т. п. Угольники имеют измерительные и опорные пов

Точность геометрических параметров элементов деталей
В отношении элементов деталей в машиностроении нормирование точности, т.е. установление требований о степени приближения к заданному значению, состоянию или положению можно и нужно рассматривать в

Понятие о размере. Размеры номинальный, действительный, истинный, нормальный. Ряды нормальных линейных размеров
Размер – числовое значение линейной величины (диаметра, длины и т. п.) в выбранных единицах измерения. Из этого определения следует, что за размер принимается расстояние

Предельные размеры. Отклонения. Обозначения отклонений
Предельные размеры – это два предельно допустимых размера элемента, между которыми должен находиться (или которым может быть равен) действительный размер. Из этого следует

Система допусков и посадок. Принципы построения системы
Т. к. получить посадку (с зазором, с натягом или переходную) можно при любых соотношениях отклонений размеров элементов относительно номинального размера, поэтому с развитием различных отраслей про

Интервалы размеров
Номинальные размеры элементов деталей после их определения расчётом выбираются из рядов предпочтительных чисел, представляющих собой геометрическую прогрессию с определёнными знаменателями.

Единица допуска
При назначении допусков необходимо выбрать закономерность изменения допусков с учётом значения номинального размера. Поэтому в системе имеется так называемая единица допуска, которая является как б

Квалитеты размеров
В зависимости от места использования элементов деталей, имеющих одинаковый номинальный размер, к ним могут предъявляться различные требования в отношении точности размера.

Образование поля допуска. Основные отклонения
В ЕСДП для указания положения поля допуска относительно номинала нормируются значения основных отклонений, которые обозначаются латинскими буквами прописными (большими) для отверстия и строчными (м

Обозначение допусков и посадок на чертежах
Поле допуска с внутренней сопрягаемой поверхностью (отверстие) всегда указывается в числителе, а поле допуска с внешней сопрягаемой поверхностью (вал) – в знаменателе, например: 20H7/g6,

Нормальная температура
Температурный режим – один из важнейших элементов системы допусков и посадок; с ним связано суждение о годности изделий с точки зрения соответствия его размеров размерам, заданным чертежом, а такж

Задачи, решаемые при обеспечении точности размерных цепей. Проверочная
Задача 1. Определение предельных размеров замыкающего звена размерной цепи (точности этого звена), когда известны предельные размеры остальных составляющих звеньев (рис.2: А

Задачи, решаемые при обеспечении точности размерных цепей. Проектировочная
Известны допуск замыкающего звена (исходного звена) и номинальные размеры составляющих звеньев. Требуется определить допуски составляющих звеньев. Способ 1

Параметры для нормирования и обозначения шероховатости поверхности
Способы нормирования шероховатости поверхности установлены в ГОСТ 2789 – 73 и распространяются на поверхности изделий, изготовленных из любых материалов и любыми методами, кроме ворсистых поверхнос

Выбор шероховатости поверхности
Выбор параметров для нормирования шероховатости должен производиться с учётом назначения и эксплуатационных свойств поверхности. Основным во всех случаях является нормирование высотных параметров.

Измерение отклонений формы
Отклонения формы определяют с помощью универсальных и специальных средств измерения. При этом используют поверочные чугунные плиты и плиты из твёрдых каменных пород, поверочные линейки, угольники,

Измерение шероховатости поверхности
Качественный контроль шероховатости поверхности осуществляют путём сравнения с образцами или образцовыми деталями визуально или на ощупь. ГОСТ 9378-75 устанавливает образцы шерохов

Цели и задачи стандартизации
Стандартизация –это деятельность, направленная на разработку и установление требований, норм, правил, характеристик как обязательных для выполнения, так и рекомендуемых, обеспечива

Категории стандартов. Стандарты предприятий. Стандарты общественных объединений. Технические условия
Стандарты предприятий.разрабатываются и принимаются самим предприятием. Объектами стандартизации в этом случае обычно являются составляющие организации и управления производством,

Государственные органы и службы стандартизации, их задачи и направления работы. Национальный орган по стандартизации. Технические комитеты
Согласно Руководству 2 ИСО/МЭК деятельность по стандартизации осуществляют соответствующие органы и организации. Орган рассматривается как юридическая или административная единица, имеющая конкретн

Технические комитеты по стандартизации
Постоянными рабочими органами по стандартизации являются технические комитеты (ТК), но это не исключает разработку нормативных документов предприятиями, общественными объединениями, другими субъект

Государственный контроль и надзор за соблюдением требований государственных стандартов
Государственный контроль и надзор за соблюдением обязательных требований государственных стандартов осуществляются в России на основании Закона РФ «О стандартизации» и составляют часть государствен

Правовые основы стандартизации
Правовые основы стандартизации в России установлены Законом РФ «О стандартизации». Положения Закона обязательны к выполнению всеми государственными органами управления, субъектами хозяйственной дея

Унификация и агрегатирование
Унификация.Для рационального сокращения номенклатуры изготавливаемых изделий проводят их унификацию и разрабатывают стандарты на параметрические ряды изделий, что повышает серийнос

Международная организация по стандартизации (ИСО)
Основные цели и задачи.Международная организация по стандартизации создана в 1946г. двадцатью пятью национальными организациями по стандартизации. СССР был одним из основателей орг

Организационная структура ИСО
Организационно в ИСО входят руководящие и рабочие органы. Руководящие органы: Генеральная ассамблея (высший орган), Совет, Техническое руководящее бюро. Рабочие органы – технические комитеты (ТК),

Порядок разработки международных стандартов
Непосредственную работу по созданию международных стандартов ведут технические комитеты (ТК); подкомитеты (ПК, которые могут учреждать ТК) и рабочие группы (РГ) по конкретным направлениям деятельно

Перспективные задачи ИСО
ИСО определила свои задачи до конца столетия, выделив наиболее актуальные стратегические направления работ: 1. Установление более тесных связей деятельности организации с рынком, что прежд

Основные термины и понятия
Установление соответствия заданным требованиям сопряжено с испытанием. Испытание –техническая операция, заключающаяся в определении одной или нескольких характеристик данн

Национальный орган Совет по
По сертификации │----------------→сертификации (Госстандарт России) │ │ │ │

Исполнители)
Типовая структура взаимодействия участников системы сертификации. Испытательная лабораторияосуществляет испытания конкретной продукции или конкретные виды

Схемы сертификации
Сертификация проводится по установленным в системе сертификации схемам. Схема сертификации –это состав и последовательность действий третьей стороны при оценке соответстви

Обязательная сертификация
Обязательная сертификация осуществляется на основании законов и законодательных положений и обеспечивает доказательство соответствия товара (процесса, услуги) требованиям технических регламентов, о

Добровольная сертификация
Добровольная сертификация проводится по инициативе юридических или физических лиц на договорных условиях между заявителем и органом по сертификации в системах добровольной сертификации. Допускается

Правила по проведению сертификации
Правила по проведению сертификации устанавливают общие рекомендации, которые применяются при организации и проведении работ по обязательной и добровольной сертификации. Эти правила распрос

Порядок проведения сертификации продукции
Порядок проведения сертификации в России установлен постановлением Госстандарта РФ в 1994г. по отношению к обязательной сертификации (в том числе и импортируемой продукции), но может применяться и

Обязанности и основные функции органа по сертификации
Обязанности: 1. Проведение сертификации продукции по правилам и в пределах аккредитации. 2. Выдача лицензии на применение знака соответствия обладателю сертификата. 3. Пр

Требования к персоналу органа по сертификации
1. Руководитель органа по сертификации назначается по согласованию с аккредитующим органом. 2. Орган должен иметь постоянный персонал. Условия работы персонала должны полностью исключать в

Сертификация систем обеспечения качества
Сертификация систем обеспечения качества на соответствие стандартам ИСО серии 9000 широко развита в зарубежных странах, в России этим занимаются недавно. Зарубежные специалисты считают, чт

Сертификация услуг
Основные принципы систем сертификации услуг те же, что и для систем сертификации продукции: обязательность и добровольность, условие третьей стороны, аккредитация органов по сертификации, выдача се

Задачи, решаемые при обеспечении точности размерных цепей
Задача 1. Определение предельных размеров замыкающего звена размерной цепи (точности этого звена), когда известны предельные размеры остальных составляющих звеньев

Результаты расчета замыкающего звена
Размер номинальный, мм Допуск, мм Верхнее отклонение, мм Нижнее отклонение, мм

Для проектного расчета
Звено Номинальный размер, мм Допуск размера, мм Вид звена Аδ

Результаты расчета составляющих звеньев
Звено Номинальный диаметр, мм Допуск, мм Отклонение нижнее, мм Отклонение верхнее, мм

Учебно-методические материалы
Литература основная 1. Крылова Г.Д. Основы стандартизации, сертификации, метрологии: Учебник для вузов. – М.: Аудит-ЮНИТИ.1998. 2. Лифиц И.М. Основы стандартизации, метроло

И КОНУСОВ

Понятия о нормальных углах и конусностях

и допусках на угловые размеры

Единицы измерения угла . Распространенной единицей измерения угла является градус , который равен одной трехсотшестидесятой части (1/360 ) окружности. Градус обозначается знаком ° и делится на 60 минут , а минута – на 60 секунд . Минута и секунда обозначаются соответственно " и " (например, 60" обозначает 60 секунд ). Эталонами при угловых измерениях служат многогранные призмы, по которым проверяют образцовые меры в виде разных многогранников (с 6, 8 и 12 гранями), углы которых выполнены с высокой точностью.

Международной системой единиц (СИ) в качестве дополнительной единицы измерения углов предусмотрен радиан. Под радианом понимается угол между двумя радиусами круга, длина дуги между которыми равна радиусу. Один градус равен , а один радиан равен 57°17"44,8".

Нормальные углы (СТ СЭВ 513-76). Угловые размеры, выраженные в градусах, минутах и секундах, имеют большое распространение в чертежах деталей. В целях уменьшения количества разных номинальных значений углов на деталях в стандарте предусмотрены для применения три ряда номинальных значений углов , названных «нормальными углами». В первый ряд входят углы: 0°; 5°; 15°; 30°; 45°; 60°; 90°; 120°. Значение этих углов рекомендуется брать в первую очередь.

Второй ряд углов, который предпочтителен в сравнении с 3-м рядом, содержит все углы 1-го ряда и дополнительно следующие: 30"; 1°; 2°; 3°; 4°; 6°; 7°; 8°; 10°; 20°; 40° и 75°.

В третий ряд входят углы первого и второго ряда и дополнительно следующие: ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; и .

Нормальные конусности (ГОСТ 8593-81) 2 ряда : 1 ряд – 1:50; 1:20; 1:10; 1:5; 1:3; ; ; ; ; ; 2 ряд – 1:30; 1:15; 1:12; 1:8; 1:7; .

Допуски на угловые размеры. В СТ СЭВ 178 – 75 допуски углов предусмотрены в угловых и линейных величинах в 17 степенях точности , обозначаемых АТ1, АТ2, АТ3 и т.д. до АТ17 в порядке уменьшения точности. Степени точности с АТ1 по АТ5 предназначены для углов калибров, измерительных средств и особо точных изделий, а степени с АТ6 по АТ12 – для сопрягаемых углов. Величины допусков, обозначаемые АТ, установлены как в градусной мере АТ (секунды, минуты, градусы), так и в микрорадианах АТ (мкрад).

Для углов призматических элементов деталей допуски назначаются в зависимости от номинальной длины меньшей стороны угла , а для углов конусов – в зависимости от номинальной длины конуса. В пределах одной степени точности угловые допуски уменьшаются с увеличением длины. Это объясняется тем, что чем больше длина базовой поверхности, тем точнее установка детали на станке, а следовательно, и меньше будет погрешность обработки. На углы призматических деталей допуск угла АТ, может быть назначен со знаком плюс (+АТ) или минус (-АТ) , или симметрично ( АТ) .

Результаты угловых измерений в ГГС должны быть равноточными, т.е. на всех пунктах иметь один и тот же вес, и получены с наивысшей точностью при наименьших затратах труда и времени. Для этого высокоточные измерения каждого направления и угла выполняют по строго одинаковой наиболее совершенной методике в периоды наивыгоднейшего времени наблюдений, когда влияние внешней среды минимально. Необходимо, чтобы каждое направление измерялось на разных диаметрах лимба, равномерно распределенных по кольцу делений; в приеме должно быть обеспечено единообразие операций при измерении каждого направления и симметрия во времени относительно среднего для приема времени наблюдений; целесообразно все направления и углы на пункте измерять симметрично относительно момента изотермии воздуха.

Перед выполнением наблюдений на пункте производят осмотр геодезического знака, откапывают центр до марки с меткой, на площадку наблюдателя поднимают теодолит и другое снаряжение, крышу сигнала накрывают брезентом. В результате осмотра наблюдатель должен убедиться в прочности и устойчивости столика сигнала и в том, что внутренняя пирамида не соприкасается с полом площадки для наблюдателя и с лестницей. Обнаруженные недостатки необходимо устранить.

Перед наблюдением с помощью теодолита согласно схеме геодезической сети отыскивают все подлежащие наблюдению пункты и после наведения на них делают с точностью до 1’ отсчеты по горизонтальному и вертикальному кругам. Кроме того, при наведении на пункты положение алидады фиксируют на нижней части прибора с помощью штрихов против индекса на алидаде. Теодолит устанавливают на штатив или столик сигнала не менее чем за 40 минут до начала наблюдений. К измерению горизонтальных направлений приступают при хорошей видимости, когда изображения визирных целей спокойны или слегка колеблются (в пределах 2”).

Измерение отдельного угла. Незакрепленную алидаду отводят влево на 30 – 40 0 и обратным вращением наводят на визирную цель первого направления так, чтобы она оказалась справа от биссектора, алидаду закрепляют. Наводящим винтом алидады, только ввинчиванием, биссектор наводят на визирную цель и берут отсчет по оптическому микрометру (если имеется окулярный микрометр, то трижды наводят его биссектор на визирную цель и берут отсчеты). Открепляют алидаду и наводят на 2-е направление так же, как и на 1-е. На этом заканчивается полуприем.

Трубу переводят через зенит, по часовой стрелке наводят на 2-е направление, предварительно отведя алидаду на 30 – 40 0 ; наводящим винтом биссектор наводят на визирную цель и берут отсчет по оптическому микрометру. По часовой стрелке алидаду поворачивают на угол, дополняющий измеряемый до 360 0 , наводят на визирную цель 1-го направления, берут отчет. Заканчивается прием.


Способ круговых приемов – способ Струве. Способ был предложен в 1816 г. В.Я. Струве, получил широкое применение почти во всех странах. В нашей стране используется в геодезических сетях 2 - 4 классов и сетях более низкой точности.

В этом способе при неподвижном лимбе алидаду вращают по ходу часовой стрелки и биссектор сетки нитей трубы последовательно наводят на первый, второй,…, последний и снова на первый (замыкание горизонта) наблюдаемые пункты, каждый раз отсчитывая по горизонтальному кругу. В этом состоит первый полуприем. Затем трубу переводят через зенит и, вращая алидаду против часовой стрелки, наводят биссектор на те же пункты, но в обратной последовательности: на первый, последний, …, второй, первый; заканчивают второй полуприем и первый прием., состоящий из первого и второго полуприемов.

Между приемами лимб переставляется на угол

где m – число приемов, i – цена деления лимба.

Наведение биссектора на на визирную цель выполняют только ввинчиванием наводящего винта алидады. Перед каждым полуприемом алидаду вращают по ее движению в данном полуприеме.

В результаты измеренных направлений вводят поправки за рен, наклон вертикальной оси теодолита (при углах наклона визирного луча в 1 0 и более) и поправки за кручение знака – по отсчетам по окулярному микрометру поверительной трубы.

Контроль угловых измерений: по расхождениям значений первого направления в начале и конце полуприема (незамыкание горизонта), по колебанию двойной коллимационной ошибке, определяемой для каждого направления, и по расхождению приведенных к нулю значений одноименных направлений, полученных в разных приемах. В триангуляции 2 – 4 классов незамыкание горизонта и колебание направлений в приемах не должны превышать 5, 6 и 8” для Т05, Т1; ОТ-02 и Т2; колебание 2С – 6,8 и 12” для этих же теодолитов соответственно.

В пунктах 2 класса направления измеряют 12-15 круговыми приемами, на пунктах 3 класса – 9, на пунктах 4 класса – 6, а в сетях полигонометрии 2, 3, 4 классов – 18, 12, 9 приемами.

Уравнивание на станции сводится к вычислению среднего значения по каждому направлению из m приемов. При этом предварительно все измеренные направления приводят к начальному, придав ему значение 0 0 00’00,00”. Вес уравненного направления равен p = m – числу приемов измерений. Для оценки точности направления обычно применяют приближенную формулу Петерса

где μ – с.к.о. направления, полученного из одного приема (с.к.о. единицы веса); ∑‌‌[v ] – сумма абсолютных величин уклонений измеренных направлений от их средних значений, вычисленных по всем направлениям; n, m – число направлений и приемов соответственно. Значения k при m = 6, 9, 12, 15 равны 0,23; 0,15; 0,11; 0,08. С.к.о. уравненного направления (среднего из m приемов) вычисляют по формуле

Достоинства способа круговых приемов: простота программы измерений на станции; значительное ослабление систематических ошибок делений лимба; высокая эффективность при хорошей видимости по всем направлениям.

Недостатки: сравнительно большая продолжительность приема, особенно при большом числе направлений; повышенные требования к качеству геодезических сигналов; необходимость примерно одинаковой видимости по всем направлениям; разбивка направлений на группы при их большом числе на пункте; более высокая точность начального направления.

Способ измерения углов во всех направлениях – способ Шрейбера. Этот метод предложен Гауссом. Методика разработана Шрейбером, применившим его в 1870-х годах в прусской триангуляции. В России начал применяться с 1910 г., используется и в настоящее время. Суть способа: на пункте с n направлениями измеряют все углы, образующиеся при сочетании из n по 2, т.е.

1.2 1.3 1.4 … 1.n

Число таких углов

Значение углов можно получить путем непосредственных измерений и путем вычислений. Если вес непосредственно измеренного угла равен 2 , то вес этого же угла, полученного из вычислений, будет равен 1. Следовательно. Вес угла, полученного из вычислений, в два раза меньше веса непосредственно измеренного угла.

При уравнивании на станции для каждого угла вычисляют его среднее значение из всех приемов (при допустимых расхождениях между приемами). Используя эти средние, находят уравненные на станции углы как среднее весовое значение. Учитывая, что сумма весов измеренного и вычисленных значений данного угла , находим

где n – число направлений на пункте. Углы, полученные в результате уравнивания на станции, по направлениям – равноточны.

Применяя формулу веса функции, для угла находим

Так как , то , откуда . При Р = 1 , , т.е. веса уравненных углов равны половине числа направлений, наблюдаемых с данного пункта. Если каждый угол измерен m приемами, то при n направлениях вес каждого угла будет равен mn / 2. Для равенства весов окончательных углов на всех станциях необходимо, чтобы произведение mn для всех пунктов сети являлось постоянным. Так как вес направления в два раза больше веса угла, то mn – вес направления.

Вес углов, измеренных во всех комбинациях должен быть равен весу углов, измеренных способом круговых приемов, т.е. p = m кр = mn / 2 , откуда 2m кр = mn , где m кр – число приемов в методе круговых приемов. Например, если углы в триангуляции 2 класса измеряют 15 круговыми приемами (m кр = 15), то mn = 30; при числе направлений n = 5 способом во всех комбинациях их нужно измерять 6 приемами (m = 30 / 5 = 6).

При измерении углов способом во всех комбинациях выполняют следующий контроль: 1) расхождение углов из двух полуприемов – 6” для теодолита с окулярным микрометром и 8” – без; 2) расхождение углов из разных приемов 4 и 5” для сетей 1 и 2 классов соответственно; 3) колебание среднего значения угла, полученного по результатам непосредственных измерений и найденного из вычислений, не должно превышать 3 “ при n до 5 и 4” – более 5. Если законченные приемы не удовлетворяют этим допускам, то их переделывают на тех же установках круга. Если второй контроль не выполняется, то перенаблюдают углы, имеющие максимальное и минимальное значение, при тех же установках круга. Все наблюдения выполняют заново, если число повторных приемов более 30% от числа приемов, предусмотренных программой. Наблюдения повторяют и при несоблюдении третьего контроля.

С.к.о. единицы веса и уравненного угла определяют по формулам

Достоинства способа: уравненные результаты являются рядом равноточных направлений; углы можно измерять в любой последовательности, выбирая наиболее благоприятные условия видимости и обеспечивая в итоге высокую точность; малая продолжительность одного приема (2-4 минуты измерения угла) обеспечивает меньшую зависимость точности результата от кручения сигнала; большое число перестановок горизонтального круга ослабляет влияние ошибок диаметров лимба.

Недостатки: быстрое уменьшение числа m приемов измеренного угла с ростом числа n направлений на пунктах (малое число приемов непосредственного измерения углов снижает точность их средних и уравненных значений); быстрый рост объема работ при n > 5.

Способ неполных приемов предложен в 1954 г. Ю.А. Аладжаловым. Все направления разбивают на группы по три направления (без замыкания горизонта) так, чтобы определяемые по ним углы соответствовали бы углам, измеренным во всех комбинациях, но требовали бы меньшего объема работ и позволили увеличить число приемов непосредственных измерений каждой группы направлений. Следовательно, в этом способе заложено стремление избавиться от недостатков методов Струве и Шрейбера при наблюдении на пунктах с большим количеством направлений.

Практически не всегда путем подбора можно разбить направления на группы из трех направлений. В этом случае кроме групп из трех направлений измеряют отдельные углы, дополняющие программу. Программа измерений приведена в Инструкции. Способ неполных приемов применяется в триангуляции 2 класса на пунктах с 7 – 9 направлениями.

Обработка результатов измерений на станции заключается в определении средних значений направлений из m приемов в каждой группе и средних значений отдельных углов. По этим средним значениям вычисляют все углы – по три угла из каждой группы из трех направлений. Окончательно уравненные углы вычисляют по формулам способа Шрейбера. С.к.о. уравненных направлений определяют по формуле

где v – разности между измеренными и уравненными значениями углов; n – число направлений на пункте; r – число отдельно измеренных углов в программе. Вес уравненных направлений

где m – число приемов измерений направлений и отдельных углов; n, k – число направлений на пункте и в группе соответственно (k = 3, для углов k = 2).

Достоинства способа: результаты уравнивания на станции равноточны; объем работы на пункте на 20 – 25% меньше, чем в способе Шрейбера; число приемов непосредственных измерений групп при n = 7 – 9 больше, чем в способе Шрейбера, что позволяет более полно ослаблять ошибки измерений; дает возможность измерять направления, на которые в данный момент имеется хорошая видимость; короткая продолжительность приема (2 – 4 минуты), что позволяет уменьшить зависимость точности измерений от качества сигнала.

Недостатки: отсутствуют правила образования групп из трех направлений; при n = 8 нужно измерять большое число отдельных углов, что приводит к неклторому нарушению равноточности уравненных направлений; программа не предусматривает ослабление односторонне действующих ошибок измерений.

Видоизмененный способ измерения углов в комбинациях предложен А.Ф.Томилиным. Используется в триангуляции 2 класса на пунктах с 6 – 9 направлениями. В этом способе на станции с n направлениями независимо измеряют 2n углов:

1.2 2.3 3.4 … n.1;

1.3 2.4 3.5 … n.2.

Каждый угол измеряют 5 или 6 приемами. В этом способе измеряют не все углы, образующие сочетания направлений из n по 2, поэтому результат уравнивания на станции не является рядом равноточных направлений, и формулы для вычислений поправок в измеренные углы являются довольно сложными.

Достоинства способа: при n =7 – 9 число приемов непосредственных измерений углов больше и их точность выше, чем в способе Шрейбера; требует меньшего объема измерений, чем способ во всех комбинациях.

Недостатки: сложные формулы для вычисления поправок в измеренные углы.