Виды ионизирующих излучений, единицы измерения, воздействие на организм человека. Виды ионизирующих излучений и их свойства

Радиоактивное излучение является мощным воздействием на человеческий организм, способным вызвать необратимые процессы, ведущие к трагическим последствиям. В зависимости от мощности различные виды радиоактивных излучений могут вызвать тяжелые заболевания, а могут, наоборот, лечить человека. Некоторые из них используются в диагностических целях. Другими словами, все зависит от контролируемости процесса, т.е. его интенсивности и продолжительности воздействия на биологические ткани.

Сущность явления

В общем случае под понятием радиация подразумевается высвобождение частиц и их распространение в виде волн. Радиоактивность подразумевает самопроизвольный распад ядер атомов некоторых веществ с появлением потока заряженных частиц большой мощности. Вещества, способные на такое явление, получили название радионуклидов.

Так что такое радиоактивное излучение? Обычно под этим термином отмечаются как радиоактивные, так и радиационные излучения. По своей сути, это направленный поток элементарных частиц значительной мощности, вызывающих ионизацию любой среды, попадающей на их пути: воздух, жидкости, металлы, минералы и другие вещества, а также биологические ткани. Ионизация любого материала ведет к изменению его структуры и основных свойств. Биологические ткани, в т.ч. человеческого организма, подвергаются изменениям, которые не совместимы с их жизнедеятельностью.

Различные типы радиоактивного излучения имеют разную проникающую и ионизирующую способность. Поражающие свойства зависят от следующих основных характеристик радионуклеидов: вид радиации, мощность потока, период полураспада. Ионизирующая способность оценивается по удельному показателю: количеству ионов ионизируемого вещества, формируемых на расстоянии в 10 мм по пути проникновения излучения.

Негативное воздействие на человека

Радиационное облучение человека приводит к структурным изменениям в тканях организма. В результате ионизации в них появляются свободные радикалы, которые представляют собой активные в химическом плане молекулы, поражающие и убивающие клетки. Первыми и наиболее сильно страдают желудочно-кишечная, мочеполовая и кроветворная системы. Появляются выраженные симптомы их дисфункции: тошнота и рвота, повышенная температура, нарушение стула.

Достаточно типичной является лучевая катаракта, вызванная воздействием излучения на глазные ткани. Наблюдаются и другие серьезные последствия радиационного облучения: сосудистый склероз, резкое снижение иммунитета, гематогенные проблемы. Особую опасность представляет повреждение генетического механизма. Возникающие активные радикалы способны изменить структуру главного носителя генетической информации — ДНК. Такие нарушения могут приводить к непрогнозируемым мутациям, отражающимся на следующих поколениях.

Степень поражения человеческого организма зависит от того, какие виды радиоактивного излучения имели место, какова интенсивность и индивидуальная восприимчивость организма. Главный показатель — доза облучения, показывающая, какое количество радиации проникло в организм. Установлено, что разовая большая доза значительно опаснее, чем накопление такой дозы при длительном облучении маломощным излучением. Поглощенное организмом количество радиации измеряется в эйвертах (Эв).

Любая жизненная среда имеет определенный уровень радиации. Нормальным считается радиационный фон не выше 0,18-0,2 мЭв/ч или 20 микрорентгенов. Критический уровень, ведущий к летальному исходу, оценивается в 5,5-6,5 Эв.

Разновидности излучения

Как отмечалось, радиоактивное излучение и его виды могут по-разному воздействовать на человеческий организм. Можно выделить следующие основные разновидности радиации.

Излучения корпускулярного типа, представляющие собой потоки частиц:

  1. Альфа-излучение. Это поток, составленный из альфа-частиц, имеющих огромную ионизирующую способность, но глубина проникновения небольшая. Даже листок плотной бумаги способен остановить такие частицы. Одежда человека достаточно эффективно исполняет роль защиты.
  2. Бета-излучение обусловлено потоком бета-частиц, летящих со скоростью, близкой к скорости света. Из-за огромной скорости эти частицы имеют повышенную проникающую способность, но ионизирующие возможности у них ниже, чем в предыдущем варианте. В качестве экрана от данного излучения могут служить оконные окна или металлический лист толщиной 8-10 мм. Для человека оно очень опасно при прямом попадании на кожу.
  3. Нейтронное излучение состоит из нейтронов и обладает наибольшим поражающим воздействием. Достаточная защита от них обеспечивается материалами, в структуре которых есть водород: вода, парафин, полиэтилен и т.п.

Волновое излучение, представляющее собой лучевое распространение энергии:

  1. Гамма-излучение является, по своей сути, электромагнитным полем, создающимся при радиоактивных превращениях в атомах. Волны испускаются в виде квантов, импульсами. Излучение имеет очень высокую проницаемость, но низкую ионизирующую способность. Для защиты от таких лучей нужны экраны из тяжелых металлов.
  2. Рентгеновское излучение, или Х-лучи. Эти квантовые лучи во многом аналогичны гамма-излучению, но проникающие возможности несколько занижены. Такой тип волны вырабатывается в вакуумных рентгеновских установках за счет удара электронами о специальную мишень. Общеизвестно диагностическое назначение данного излучения. Однако следует помнить, что продолжительное действие его способно нанести человеческому организму серьезный вред.

Как может облучиться человек

Человек получает радиоактивное облучение при условии проникновения радиации в его организм. Оно может происходить 2 способами: внешнее и внутреннее воздействие. В первом случае источник радиоактивного излучения находится снаружи, а человек по разным причинам попадает в поле его деятельности без надлежащей защиты. Внутреннее воздействие осуществляется при проникновении радионуклида внутрь организма. Это может произойти при употреблении облученных продуктов или жидкостей, с пылью и газами, при дыхании зараженным воздухом и т.д.

Внешние источники радиации можно подразделить на 3 категории:

  1. Естественные источники: тяжелые химические элементы и радиоактивные изотопы.
  2. Искусственные источники: технические устройства, обеспечивающие излучение при соответствующих ядерных реакциях.
  3. Наведенная радиация: различные среды после воздействия на них интенсивного ионизирующего излучения сами становятся источником радиации.

К наиболее опасным объектам в части возможного радиационного облучения можно отнести следующие источники радиации:

  1. Производства, связанные с добычей, переработкой, обогащением радионуклидов, изготовлением ядерного топлива для реакторов, в частности урановая промышленность.
  2. Ядерные реакторы любого типа, в т.ч. на электростанциях и кораблях.
  3. Радиохимические предприятия, занимающиеся регенерацией ядерного топлива.
  4. Места хранения (захоронения) отходов радиоактивных веществ, а также предприятия по их переработке.
  5. При использовании радиационных излучений в разных отраслях: медицина, геология, сельское хозяйство, промышленность и т.п.
  6. Испытание ядерного оружия, ядерные взрывы в мирных целях.

Проявление поражения организма

Характеристика радиоактивных излучений играет решающую роль в степени поражения человеческого организма. В результате воздействия развивается лучевая болезнь, которая может иметь 2 направления: соматическое и генетическое поражение. По времени проявления выделяется ранний и отдаленный эффект.

Ранний эффект выявляет характерные симптомы в период от 1 часа до 2 месяцев. Типичными считаются такие признаки: кожная краснота и шелушение, мутность глазного хрусталика, нарушение кроветворного процесса. Крайний вариант при большой дозе облучения — летальный исход. Локальное поражение характеризуются такими признаками, как лучевой ожог кожного покрова и слизистой оболочки.

Отдаленные проявления выявляются через 3-5 месяцев, а то и через несколько лет. В этом случае отмечаются устойчивые кожные поражения, злокачественные опухоли различной локализации, резкое ухудшение иммунитета, изменение состава крови (значительное снижение уровня эритроцитов, лейкоцитов, тромбоцитов и нейтрофилов). В результате этого часто развиваются различные инфекционные болезни, существенно снижается продолжительность жизни.

Для предотвращения облучения человека ионизирующим излучением применяются различные виды защиты, которые зависят от типа радиации. Кроме того, регламентируются жесткие нормы по максимальной продолжительности пребывания человека в зоне облучения, минимальному расстоянию до источника радиации, использованию индивидуальных средств защиты и установке защитных экранов.

Радиоактивное излучение способно оказывать сильное разрушительное воздействие на все ткани человеческого организма. В то же время оно используется и при лечении различных болезней. Все зависит от дозы облучения, получаемой человеком в разовом или длительном режиме. Только неукоснительное соблюдение норм радиационной защиты поможет сохранить здоровье, даже если находиться в пределах действия радиационного источника.

Термин «радиация» происходит от латинского слова radius и означает луч. В самом широком смысле слова радиация охватывает все существующие в природе виды излучений — радиоволны, инфракрасное излучение, видимый свет, ультрафиолет и, наконец, ионизирующее излучение. Все эти виды излучения, имея электромагнитную природу, различаются длиной волны, частотой и энергией.

Существуют также излучения, которые имеют другую природу и представляют собой потоки различных частиц, например, альфа-частиц, бета-частиц, нейтронов и т.д.

Каждый раз, когда на пути излучения возникает барьер, оно передает часть или всю свою энергию этому барьеру. И от того, насколько много энергии было передано и поглощено в организме, зависит конечный эффект облучения. Всем известны удовольствие от бронзового загара и огорчение от тяжелейших солнечных ожогов. Очевидно, что переоблучение любым видом радиации чревато неприятными последствиями.

Для здоровья человека наиболее важны ионизирующие виды излучения. Проходя через ткань, ионизирующее излучение переносит энергию и ионизирует атомы в молекулах, которые играют важную биологическую роль. Поэтому облучение любыми видами ионизирующего излучения может так или иначе влиять на здоровье. К их числу относятся:

Альфа-излучение — это тяжелые положительно заряженные частицы, состоящие из двух протонов и двух нейтронов, крепко связанных между собой. В природе альфа-частицы возникают в результате распада атомов тяжелых элементов, таких как уран, радий и торий. В воздухе альфа-излучение проходит не более пяти сантиметров и, как правило, полностью задерживается листом бумаги или внешним омертвевшим слоем кожи. Однако если вещество, испускающее альфа-частицы, попадает внутрь организма с пищей или вдыхаемым воздухом, оно облучает внутренние органы и становится потенциально опасным.

Бета-излучение — это электроны, которые значительно меньше альфа-частиц и могут проникать вглубь тела на несколько сантиметров. От него можно защититься тонким листом металла, оконным стеклом и даже обычной одеждой. Попадая на незащищенные участки тела, бета-излучение оказывает воздействие, как правило, на верхние слои кожи. Во время аварии на Чернобыльской АЭС в 1986 году пожарные получили ожоги кожи в результате очень сильного облучения бета-частицами. Если вещество, испускающее бета-частицы, попадет в организм, оно будет облучать внутренние ткани.

Гамма-излучение — это фотоны, т.е. электромагнитная волна, несущая энергию. В воздухе оно может проходить большие расстояния, постепенно теряя энергию в результате столкновений с атомами среды. Интенсивное гамма-излучение, если от него не защититься, может повредить не только кожу, но и внутренние ткани. Плотные и тяжелые материалы, такие как железо и свинец, являются отличными барьерами на пути гамма-излучения.

Рентгеновское излучение аналогично гамма-излучению, испускаемому ядрами, но оно получается искусственно в рентгеновской трубке, которая сама по себе не радиоактивна. Поскольку рентгеновская трубка питается электричеством, то испускание рентгеновских лучей может быть включено или выключено с помощью выключателя.

Нейтронное излучение образуется в процессе деления атомного ядра и обладает высокой проникающей способностью. Нейтроны можно остановить толстым бетонным, водяным или парафиновым барьером. К счастью, в мирной жизни нигде, кроме как непосредственно вблизи ядерных реакторов, нейтронное излучение практически не существует.

В отношении рентгеновского и гамма-излучения часто употребляют определения «жёсткое» и «мягкое» . Это относительная характеристика его энергии и связанной с ней проникающей способности излучения («жёсткое» — большие энергия и проникающая способность, «мягкое» — меньшие). Ионизирующие излучения и их проникающая способность

Радиоактивность

Число нейтронов в ядре определяет, является ли данное ядро радиоактивным. Чтобы ядро находилось в стабильном состоянии, число нейтронов, как правило, должно быть несколько выше числа протонов. В стабильном ядре протоны и нейтроны так крепко связаны между собой ядерными силами, что ни одна частица не может выйти из него. Такое ядро всегда будет оставаться в уравновешенном и спокойном состоянии. Однако ситуация совсем иная, если число нейтронов нарушает равновесие. В этом случае ядро обладает избыточной энергией и просто не может удерживаться в целости. Рано или поздно оно выбросит свою избыточную энергию.

Различные ядра высвобождают свою энергию разными способами: в форме электромагнитных волн или потоков частиц. Такая энергия называется излучением. Радиоактивный распад

Процесс, в ходе которого нестабильные атомы испускают свою избыточную энергию, называется радиоактивным распадом, а сами такие атомы — радионуклидом. Легкие ядра с небольшим числом протонов и нейтронов становятся стабильными после одного распада. При распаде тяжелых ядер, например, урана, образующееся в результате этого ядро по-прежнему является нестабильным и, в свою очередь, распадается дальше, образуя новое ядро, и т.д. Цепочка ядерных превращений заканчивается образованием стабильного ядра. Такие цепочки могут образовывать радиоактивные семейства. В природе известны радиоактивные семейства урана и тория.

Представление об интенсивности распада дает понятие периода полураспада — периода, в течение которого произойдет распад половины нестабильных ядер радиоактивного вещества. Период полураспада каждого радионуклида уникален и неизменен. Один радионуклид, например, криптон-94, рождается в ядерном реакторе и очень быстро распадается. Период полураспада его меньше секунды. Другой, например, калий-40, образовался в момент рождения Вселенной и до сих пор сохранился на планете. Период полураспада его измеряется миллиардами лет.

Реалии нашего времени таковы, что в естественную среду обитания людей все активнее вторгаются новые факторы. Одним из которых являются разнообразные виды электромагнитных излучений.

Естественный электромагнитный фон сопровождал людей всегда. А вот его искусственная составляющая, постоянно пополняется новыми источниками. Параметры каждого из них отличаются мощностью и характером излучения, длиной волны, а также степенью воздействия на здоровье. Какое же излучение является самым опасным для человека?

Как электромагнитное излучение влияет на человека

Электромагнитное излучение распространяется в воздухе в виде электромагнитных волн, которые представляют собой совокупность электрического и магнитного полей, изменяющихся по определённому закону. В зависимости от частоты его условно делят на диапазоны.

Процессы передачи информации внутри нашего организма имеют электромагнитную природу. Пришедшие электромагнитные волны вносят дезинформацию в этот отлаженный природой механизм, вызывая вначале нездоровые состояния, а затем и патологические изменения по принципу «где тонко там и рвётся». У одного - это гипертония, у другого - аритмия, у третьего - гормональный дисбаланс и так далее.

Механизм действия излучения на органы и ткани

Каков же механизм действия излучения на органы и ткани человека? При частотах меньших 10 Гц тело человека ведёт себя подобно проводнику. Особенно чувствительна к токам проводимости нервная система. С небольшим повышением температуры тканей вполне справляется механизм теплоотдачи, функционирующий в организме.

Иное дело электромагнитные поля высокой частоты. Их биологический эффект выражается в заметном повышении температуры облучаемых тканей, вызывающих обратимые и необратимые изменения в организме.

У человека, получившего дозу СВЧ-облучения свыше 50 микрорентген в час, могут появиться нарушения на клеточном уровне:

  • мертворождённые дети;
  • нарушения в деятельности различных систем организма;
  • острые и хронические заболевания.

Какой вид излучения обладает наибольшей проникающей способностью

Какой же диапазон электромагнитных излучений является самым опасным? Тут не всё так просто. Процесс излучения и поглощения энергии происходит в виде определённых порций - квантов. Чем меньше длина волны, тем большей энергией обладают её кванты и тем больше неприятностей он может натворить, попав в организм человека.

Самые «энергичные» кванты у жёсткого рентгеновского и гамма-излучения. Все коварство излучений коротковолнового диапазона в том, что самих излучений мы не чувствуем, а лишь ощущаем последствия их пагубного воздействия, которые в значительной степени зависят от глубины их проникновения в ткани и органы человека.

Какой же вид излучения обладает наибольшей проникающей способностью? Конечно, это излучение с минимальной длиной волны, то есть:

  • рентгеновское;

Именно кванты этих излучений обладают наибольшей проникающей способностью и самое опасное, они ионизируют атомы. В результате чего возникает вероятность наследственных мутаций, даже при малых дозах облучения.

Если говорить о рентгене, то его разовые дозы при медицинских обследованиях весьма незначительны, а максимально допустимая доза, накопленная за всю жизнь не должна превышать 32 Рентгена. Для получения такой дозы понадобятся сотни рентгеновских снимков, выполняемых с малыми интервалами времени.

Что может явиться источником гамма-излучения? Как правило, оно возникает при распаде радиоактивных элементов.

Жёсткая часть ультрафиолета способна не только ионизировать молекулы, но и вызвать очень серьёзное поражение сетчатки глаза. А, вообще, глаз человека наиболее чувствителен к длинам волн, соответствующих светло-салатному цвету. Им соответствуют волны 555–565 нм. В сумерках чувствительность зрения смещается в сторону более коротких - синих волн 500 нм. Это объясняется большим количеством фоторецепторов, воспринимающих эти длины волн.

Но самое серьёзное поражение органов зрения вызывает лазерное излучение видимого диапазона.

Как уменьшить опасность избытка излучения в квартире

И всё-таки какое излучение является самым опасным для человека?

Бесспорно, что гамма-излучение весьма «недружественно» относится к человеческому организму. Но и более низкочастотные электромагнитные волны способны причинить вред здоровью. Аварийное или плановое отключение электроэнергии дезорганизует наш быт и привычную работу. Вся электронная «начинка» наших квартир становится бесполезной, а мы, лишившись интернета, сотовой связи, телевидения оказываемся отрезанными от мира.

Весь арсенал электробытовых приборов в той или иной мере является источником электромагнитных излучений, снижающий иммунитет и ухудшающий функционирование эндокринной системы.

Была установлена связь между удалённостью места проживания человека от линий высоковольтных передач и возникновением злокачественных опухолей. В том числе и детской лейкемии. Эти печальные факты можно продолжать до бесконечности. Важнее выработать определённые навыки в их эксплуатации:

  • при работе большинства бытовых электроприборов старайтесь выдерживать расстояние от 1 до 1,5 метра;
  • располагайте их в разных частях квартиры;
  • помните, что электробритва, безобидный блендер, фен, электрическая зубная щётка - создают достаточно сильное электромагнитное поле, опасное своей близостью к голове.

Как проверить уровень электромагнитного смога в квартире

Для этих целей хорошо бы иметь специальный дозиметр.

Для радиочастотного диапазона существует своя безопасная доза излучения. Для России она определяется как плотность потока энергии, и измеряется в Вт/м² или мкВт/см².

  1. Для частот начиная от 3 Гц и до 300 кГц доза излучения не должен превышать 25 Вт/м².
  2. Для частот начиная от 300 Мгц до 30 ГГц 10 - 100 мкВт/см².

В различных странах критерии оценки опасности излучения, а также используемые для их количественной оценки величины, могут отличаться.

При отсутствии дозиметра существует достаточно простой и эффективный способ проверки уровня электромагнитного излучения от ваших домашних электроприборов.

  1. Включите все электроприборы. Поочерёдно подходите к каждому из них с работающим радиоприёмником.
  2. Уровень, возникающих в нём помех (треск, писк, шум) подскажет, какой из приборов является источником более сильного электромагнитного излучения.
  3. Повторите эту манипуляцию около стен. Уровень помех и здесь укажет самые загрязнённые электромагнитным смогом места.

Может быть, есть смысл переставить мебель? В современно мире наш организм, итак подвергается избыточному отравлению, поэтому любые действия в защиту от электромагнитных излучений - это бесспорный плюс в копилку вашего здоровья.

Сегодня поговорим о том, что такое излучение в физике. Расскажем о природе электронных переходов и приведем электромагнитную шкалу.

Божество и атом

Строение вещества стало предметом интереса ученых более двух тысяч лет назад. Древнегреческие философы задавались вопросами, чем воздух отличается от огня, а земля от воды, почему мрамор белый, а уголь черный. Они создавали сложные системы взаимозависимых компонентов, опровергали или поддерживали друг друга. А самые непонятные явления, например, удар молнии или восход солнца приписывали действию богов.

Однажды, долгие годы наблюдая за ступенями храма, один ученый заметил: каждая нога, встающая на камень, уносит крошечную частичку вещества. Со временем мрамор менял форму, прогибался посередине. Имя этого ученого - Левкипп, и он назвал мельчайшие частицы атомами, неделимыми. С этого начался путь к изучению того, что такое излучение в физике.

Пасха и свет

Затем настали темные времена, науку забросили. Всех, кто пытался изучать силы природы, окрестили ведьмами и колдунами. Но, как ни странно, именно религия дала толчок к дальнейшему развитию науки. Исследование о том, что такое излучение в физике, началось с астрономии.

Время празднования Пасхи вычислялось в те времена каждый раз по-разному. Сложная система взаимоотношений между днем весеннего равноденствия, 26-дневным лунным циклом и 7-дневной неделей не позволяла составлять таблицы дат для празднования Пасхи более чем на пару лет. Но церкви надо было все планировать заранее. Поэтому Папа Римский Лев X заказал составление более точных таблиц. Это потребовало тщательно наблюдения за движением Луны, звезд и Солнца. И в конце концов Николай Коперник понял: Земля не плоская и не центр вселенной. Планета - шар, который вращается вокруг Солнца. А Луна - сфера на орбите Земли. Конечно, можно спросить: «Какое отношение все это имеет к тому, что такое излучение в физике?» Сейчас раскроем.

Овал и луч

Позже Кеплер дополнил систему Коперника, установив, что планеты движутся по овальным орбитам, и движение это неравномерное. Но именно тот первый шаг привил человечеству интерес к астрономии. А там недалеко было и до вопросов: «Что такое звезда?», «Почему люди видят ее лучи?» и «Чем одно светило отличается от другого?». Но сначала придется перейти от огромных объектов к самым маленьким. И затем подойдем к излучению, понятию в физике.

Атом и изюм

В конце девятнадцатого века накопилось достаточно знаний о малейших химических единицах вещества - атомах. Было известно, что они электронейтральны, но содержат как положительно, так и отрицательно заряженные элементы.

Предположений выдвигалось множество: и что положительные заряды распределены в отрицательном поле, как изюм в булке, и что атом - это капля из разнородно заряженных жидких частей. Но все прояснил опыт Резерфорда. Он доказал, что в центре атома находится положительное тяжелое ядро, а вокруг него располагаются легкие отрицательные электроны. И конфигурация оболочек для каждого атома своя. Тут-то и кроются особенности излучения в физике электронных переходов.

Бор и орбита

Когда ученые выяснили, что легкие отрицательные части атома - это электроны, встал другой вопрос - почему они не падают на ядро. Ведь, согласно теории Максвелла, любой движущийся заряд излучает, следовательно, теряет энергию. Но атомы существовали столько же, сколько вселенная, и не собирались аннигилировать. На выручку пришел Бор. Он постулировал, что электроны находятся на некоторых стационарных орбитах вокруг атомного ядра, и находиться могут только на них. Переход электрона между орбитами осуществляется рывком с поглощением или испусканием энергии. Этой энергией может быть, например, квант света. По сути, мы сейчас изложили определение излучения в физике элементарных частиц.

Водород и фотография

Изначально технология фотографии была придумана как коммерческий проект. Люди хотели остаться в веках, но заказать портрет у художника было не каждому по карману. А фотографии были дешевыми и не требовали таких больших вложений. Потом искусство стекла и нитрата серебра поставило себе на службу военное дело. А затем и наука стала пользоваться преимуществами светочувствительных материалов.

В первую очередь фотографировать стали спектры. Уже давно было известно, что горячий водород испускает конкретные линии. Расстояние между ними подчинялось определенному закону. Но вот спектр гелия был более сложным: он содержал тот же набор линий, что и водород, и еще один. Вторая серия уже не подчинялась закону, выведенному для первой серии. Тут на помощь пришла теория Бора.

Выяснилось, что электрон в атоме водорода один, и он может переходить из всех высших возбужденных орбит на одну нижнюю. Это и была первая серия линий. Более тяжелые атомы устроены сложнее.

Линза, решетка, спектр

Таким образом было положено начало применению излучения в физике. Спектральный анализ - один из самых мощных и надежных способов определения состава, количества и структуры вещества.

  1. Электронный эмиссионный спектр расскажет, что содержится в объекте и каков процент того или иного компонента. Этот способ используют абсолютно все области науки: от биологии и медицины до квантовой физики.
  2. Спектр поглощения расскажет, какие ионы и на каких позициях присутствуют в решетке твердого тела.
  3. Вращательный спектр продемонстрирует, насколько далеко находятся молекулы внутри атома, сколько и каких связей присутствует у каждого элемента.

А уж диапазонов применения электромагнитного излучения и не счесть:

  • радиоволны исследуют структуру очень далеких объектов и недра планет;
  • тепловое излучение расскажет об энергии процессов;
  • видимый свет подскажет, в каких направлениях лежат самые яркие звезды;
  • ультрафиолетовые лучи дадут понять, что происходят высокоэнергетические взаимодействия;
  • рентгеновский спектр сам по себе позволяет людям изучать структуру вещества (в том числе и человеческого тела), а наличие этих лучей в космических объектах известят ученых, что в фокусе телескопа нейтронная звезда, вспышка сверхновой или черная дыра.

Абсолютно черное тело

Но есть особый раздел, который изучает, что такое тепловое излучение в физике. В отличие от атомного, тепловое испускание света имеет непрерывный спектр. И наилучшим модельным объектом для расчетов является абсолютно черное тело. Это такой объект, который «ловит» весь попадающий на него свет, но не выпускает обратно. Как ни странно, абсолютно черное тело излучает, и максимум длины волны будет зависеть от температуры модели. В классической физике тепловое излучение порождало парадокс Выходило, что любая нагретая вещь должна была излучать все больше и больше энергии, пока в ультрафиолетовом диапазоне ее энергия не разрушила бы вселенную.

Разрешить парадокс смог Макс Планк. В формулу излучения он ввел новую величину, квант. Не придавая ей особенного физического смысла, он открыл целый мир. Сейчас квантование величин - основа современной науки. Ученые поняли, что поля и явления состоят из неделимых элементов, квантов. Это привело к более глубоким исследованиям материи. Например, современный мир принадлежит полупроводникам. Раньше все было просто: металл проводит ток, остальные вещества - диэлектрики. А вещества типа кремния и германия (как раз полупроводники) ведут себя непонятно по отношению к электричеству. Чтобы научиться управлять их свойствами, потребовалось создать целую теорию и рассчитать все возможности p-n переходов.

ИЗЛУЧЕНИЕ электромагнитное,

1) в классической электродинамике - процесс образования свободного электромагнитного поля, происходящий при взаимодействии электрически заряженных частиц (или их систем); в квантовой теории - процесс рождения (испускания) фотонов при изменении состояния квантовой системы;

2) свободное электромагнитное поле - электромагнитные волны.

Основы классической теории излучения - электродинамики - заложены в 1-й половине 19 века в работах М. Фарадея и Дж. К. Максвелла, который развил идеи Фарадея, придав законам излучения строгую математическую форму. Из Максвелла уравнений следовало, что электромагнитные волны в вакууме в любой системе отсчёта распространяются с одной скоростью - со скоростью света с = 3·10 8 м/с. Теория Максвелла объяснила многие физические явления, объединила оптические, электрические и магнитные явления, стала основой электротехники и радиотехники, но ряд явлений (например, спектры атомов и молекул) удалось объяснить только после создания квантовой теории излучения, основы которой заложили М. Плат, А. Эйнштейн, Н. Бор, П. Дирак и др. Полное обоснование теория излучения получила в квантовой электродинамике, которая была завершена в 1950-х годах в работах Р. Ф. Фейнмана, Дж. Швингера, Ф. Дайсона и др.

Характеристики процесса излучения и свободного электромагнитного поля (интенсивность излучения, спектр излучения, распределение в нём энергии, плотность потока энергии излучения и др.) зависят от свойств излучающей заряженной частицы (или системы частиц) и условий взаимодействия её с электрическими и/или магнитными полями, приводящего к излучению. Так, при прохождении заряженной частицы в веществе в результате взаимодействия с атомами вещества скорость частицы изменяется и она испускает так называемое тормозное излучение (смотри ниже). Свободное электромагнитное поле в зависимости от диапазона длин волн λ называют радиоизлучением (смотри Радиоволны), инфракрасным излучением, оптическим излучением, ультрафиолетовым излучением, рентгеновским излучением, гамма-излучением.

Электромагнитное поле равномерно и прямолинейно движущейся в вакууме заряженной частицы на далёких от неё расстояниях пренебрежимо мало, и можно сказать, что увлекаемое ею поле движется вместе с ней с той же скоростью. Свойства такого собственного поля заряженной частицы зависят от величины и направления её скорости и не меняются, если она постоянна; такая частица не излучает. Если скорость заряженной частицы изменилась (например, при столкновении с другой частицей), то собственное поле до и после изменения скорости различно - при изменении скорости собственное поле перестраивается так, что часть его отрывается и уже не связана с заряженной частицей - становится свободным полем. Т.о., образование электромагнитных волн происходит при изменении скорости заряженной частицы; причины изменения скорости разнообразны, в соответствии с этим возникают различные типы излучения (тормозное, магнитотормозное и т. п.). Излучение системы частиц зависит от её структуры; оно может быть аналогично излучению частицы, представлять собой излучения диполя (дипольное излучение) или мультиполя (мультипольное излучение).

При аннигиляции электрона и позитрона (смотри Аннигиляция и рождение пар) также образуется свободное электромагнитное поле (фотоны). Энергия и импульс аннигилирующих частиц сохраняются, т. е. передаются электромагнитному полю. Это означает, что поле излучения всегда обладает энергией и импульсом.

Образовавшиеся в процессе излучения электромагнитные волны образуют поток уходящей от источника энергии, плотность которого S(r,t) (Пойнтинга вектор - энергия, протекающая за единицу времени через единичную поверхность, перпендикулярную потоку) в момент времени t на расстоянии r от излучающей заряженной частицы пропорциональна векторному произведению напряжённостей магнитного Н(r,t) и электрического Е(r,t) полей:

Полную энергию W, теряемую заряженной частицей за единицу времени в процессе излучения, можно получить, вычислив поток энергии через сферу бесконечно большого радиуса r.

где dΩ. - элемент телесного угла, n - единичный вектор в направлении распространения излучения Собственное поле системы зарядов на далёких расстояниях убывает с расстоянием быстрее, чем 1/r, а поле излучения на больших расстояниях от источника убывает как 1/r.

Когерентность излучателей. Плотность потока излучения, приходящего в определённую точку пространства от двух одинаковых источников, пропорциональна векторному произведению сумм напряжённостей электрических E 1 (r, t) и Е 2 (r, t) и магнитных Н 1 (r,t) и Н 2 (r,t) полей электромагнитных волн от источников 1 и 2:

Результат сложения двух синусоидальных плоских волн зависит от фаз, в которых они приходят в данную точку. Если фазы одинаковы, то поля Е и Н удваиваются, а энергия поля в данной точке увеличивается в 4 раза по сравнению с энергией поля от одного источника. В том случае, когда волны от двух разных источников приходят к детектору с противоположными фазами, перекрёстные произведения полей и [Е 2 (r,t)Н 1 (r,t)]в(3) обращаются в нуль. В результате от двух излучателей в данную точку приходит энергия вдвое большая, чем от одного излучателя. В случае N излучателей, волны от которых приходят в данную точку в одинаковых фазах, энергия увеличится в N 2 раз. Такие излучатели называются когерентными. Если же фазы приходящих к детектору волн от каждого излучателя случайные, то поля от разных излучателей при сложении в точке наблюдения частично погашаются. Тогда от N источников детектор зарегистрирует энергию в N раз большую, чем от одного источника. Такие источники (и их излучения) называют некогерентными. К ним относятся практически все обычные источники света (пламя свечи, лампы накаливания, люминесцентные лампы и т.п.); в них моменты времени высвечивания каждого атома или молекулы (и, соответственно, фазы, в которых приходят в определённую точку волны их излучения) случайны. Когерентными источниками излучения являются лазеры, в которых создаются условия для одновременного высвечивания всех атомов рабочего вещества.

Реакция излучения. Излучающая заряженная частица теряет энергию, так что в процессе излучения создаётся действующая на частицу сила, замедляющая её скорость и называемая силой реакции излучения или силой радиационного трения. При нерелятивистских скоростях заряженных частиц сила реакции излучения всегда мала, но при скоростях, близких к скорости света, она может играть основную роль. Так, в магнитном поле Земли потери энергии на излучения электронов космических лучей, обладающих высокой энергией, столь велики, что электроны не могут долететь до поверхности Земли. У частиц космических лучей с такой же энергией и большей массой потери энергии на излучения меньше, чем у электронов, и они долетают до поверхности Земли. Отсюда следует, что состав космических лучей, регистрируемый на поверхности Земли и с ИСЗ, может быть различен.

Длина когерентности излучения. Процессы излучения при нерелятивистских и ультрарелятивистских скоростях заряженной частицы различаются размерами области пространства, где формируется поле излучения. В нерелятивистском случае (когда скорость v частицы невелика) поле излучения уходит от заряда со скоростью света и процесс излучения заканчивается быстро, размер области формирования излучения (длина когерентности) L намного меньше длины волны излучения λ, L~λv/с. Если же скорость частицы близка к скорости света (при релятивистских скоростях), образовавшееся поле излучения и создавшая его частица движутся долгое время вблизи друг друга и расходятся, пролетев достаточно большой путь. Формирование поля излучения продолжается много дольше, и длина L много больше длины волны, L~λγ (где γ= -1/2 - лоренц-фактор частицы).

Тормозное излучение возникает при рассеянии заряженной частицы на атомах вещества. Если время Δt за которое частица с зарядом е при рассеянии изменяет скорость от v 1 до v 2 , много меньше времени формирования излучения L/v, то изменение скорости заряженной частицы можно считать мгновенным. Тогда распределение энергии излучения по углам и круговым частотам ω имеет вид:

Умножив это выражение на вероятность изменения скорости частицы при рассеянии от v 1 до v 2 и проинтегрировав полученное выражение по всем v 2 , можно получить распределение энергии тормозного излучения по частотам и углам (не зависящее от частоты). Более лёгкие частицы легче отклоняются при взаимодействии с атомом, поэтому интенсивность тормозного излучения обратно пропорциональна квадрату массы быстрой частицы. Тормозное излучение - основная причина потерь энергии релятивистских электронов в веществе в том случае, когда энергия электрона больше некоторой критической энергии, составляющей для воздуха 83 МэВ, для Al - 47 МэВ, для РЬ -59 МэВ.

Магнитотормозное излучение возникает при движении заряженной частицы в магнитном поле, искривляющем траекторию её движения. В постоянном и однородном магнитом поле траектория движения заряженной частицы массой m представляет собой спираль, т. е. складывается из равномерного движения вдоль направления поля и вращения вокруг него с частотой ω Н = еН/γmс.

Периодичность движения частицы приводит к тому, что излучаемые ею волны имеют частоты, кратные ω Н: ω = Мω Н, где N=1,2,3 ... . излучения ультрарелятивистских частиц в магнитном поле называется синхротронным излучением. Оно имеет широкий спектр частот с максимумом при ω порядка ω Н γ 3 и основная доля излучённой энергии лежит в области частот ω » ω Н. Интервалы между соседними частотами в этом случае много меньше частоты, поэтому распределение частот в спектре синхротронного излучения можно приближённо считать непрерывным. В области частот ω « ω Н γ 3 интенсивность излучения растёт с частотой как ω 2/3 , а в области частот ω » ω Н γ 3 интенсивность излучения экспоненциально убывает с ростом частоты. Синхротронное излучение имеет малую угловую расходимость (порядка l/γ) и высокую степень поляризации в плоскости орбиты частицы. Магнитотормозное излучение при нерелятивистских скоростях заряженных частиц называют циклотронным излучением, его частота ω = ω Н.

Ондуляторное излучение возникает при движении ультрарелятивистской заряженной частицы с малыми поперечными периодическими отклонениями, например при пролёте в периодически меняющемся электрическом поле (такое поле формируется, например, в специальных устройствах - ондуляторах). Частота ω ондуляторного излучения связана с частотой поперечных колебаний ω 0 частицы соотношением

где θ- угол между скоростью частицы v и направлением распространения ондуляторного излучения. Аналог этого типа излучения - излучение, возникающее при каналировании заряженных частиц в монокристаллах, когда движущаяся между соседними кристаллическими ографическими плоскостями частица испытывает поперечные колебания вследствие взаимодействия с внутрикристаллическим полем.

Излучение Вавилова - Черенкова наблюдается при равномерном движении заряженной частицы в среде со скоростью, превышающей фазовую скорость света с/ε 1/2 в среде (ε - диэлектрическая проницаемость среды). В этом случае часть собственного поля частицы отстаёт от неё и формирует электромагнитные волны, распространяющиеся под углом к направлению движения частицы (смотри Вавилова - Черенкова излучение), который определяется равенством cos θ = с/vε 1/2 . За открытие и объяснение этого принципиально нового вида излучения, нашедшего широкое применение для измерения скорости заряженных частиц, И. Е. Тамму, И. М. Франку и П. А. Черенкову присуждена Нобелевская премия (1958).

Переходное излучение (предсказанное В. Л. Гинзбургом и И. М. Франком в 1946) возникает при равномерном прямолинейном движении заряженной частицы в пространстве с неоднородными диэлектрическими свойствами. Наиболее часто оно формируется при пересечении частицей границы раздела двух сред с различными диэлектрическими проницаемостями (часто именно это излучение считают переходным; смотри Переходное излучение). Собственное поле движущейся с постоянной скоростью частицы в разных средах различно, так что на границе раздела сред происходит перестройка собственного поля, приводящая к излучению. Переходное излучение не зависит от массы быстрой частицы, его интенсивность зависит не от скорости частицы, а от её энергии, что позволяет создавать на его основе уникальные точные методы регистрации частиц сверхвысоких энергий.

Дифракционное излучение возникает при пролёте заряженной частицы в вакууме вблизи поверхности вещества, когда собственное поле частицы изменяется вследствие его взаимодействия с неоднородностями поверхности. Дифракционное излучение успешно применяется для изучения поверхностных свойств вещества.

Излучение систем заряженных частиц.

Простейшая система, которая может излучать, - диполь электрический с переменным дипольным моментом - система из двух разноимённо заряженных колеблющихся частиц. При изменении поля диполя, например при колебаниях частиц, вдоль соединяющей их прямой (оси диполя) навстречу друг другу, часть поля отрывается, и формируются электромагнитные волны. Такое излучение неизотропно, его энергия в различных направлениях неодинакова: максимальна в направлении, перпендикулярном оси колебаний частиц, и отсутствует в перпендикулярном направлении, для промежуточных направлений его интенсивность пропорциональна sinθ 2 (θ - угол между направлением излучения и осью колебания частиц). Реальные излучатели, как правило, состоят из большого числа разноимённо заряженных частиц, но часто учёт их расположения и детали движения вдали от системы несущественны; в этом случае, возможно упростить истинное распределение, «стянув» одноимённые заряды к некоторым центрам распределения зарядов. Если система в целом электронейтральна, то её излучение приближённо можно считать излучением электрического диполя.

Если дипольное излучение системы отсутствует, то её можно представить как квадруполь или более сложную систему - мультиполь. При движении зарядов в ней возникает электрическое квадрупольное или мультипольное излучение. Источниками излучения могут быть также системы, которые представляют собой магнитные диполи (например, контур с током) или магнитные мультиполи. Интенсивность магнитного дипольного излучения, как правило, в (v/с) 2 раз меньше интенсивности электрического дипольного излучения и одного порядка с электрическим квадрупольным излучением.

Квантовая теория излучения. Квантовая электродинамика рассматривает процессы излучения квантовыми системами (атомами, молекулами, атомными ядрами и др.), поведение которых подчиняется законам квантовой механики; при этом свободное электромагнитное поле представляют как совокупность квантов этого поля - фотонов. Энергия фотона Е пропорциональна его частоте v (v = ω/2π), то есть Е=hv (h - постоянная Планка), а импульс р - волновому вектору k: р = hk. Излучение фотона сопровождается квантовым переходом системы из состояния с энергией E 1 в состояние с меньшей энергией Е 2 =E 1 - hv (с уровня энергии E 1 на уровень Е 2). Энергия связанной квантовой системы (например, атома) квантована, т. е. принимает лишь дискретные значения; частоты излучения такой системы тоже дискретны. Таким образом, излучение квантовой системы состоит из отдельных спектральных линий с определёнными частотами, т. е. имеет дискретный спектр. Непрерывный (сплошной) спектр излучения получается в том случае, когда одна (или обе) из последовательностей значений начальной и конечной энергий системы, в которой происходит квантовый переход, непрерывна (например, при рекомбинации свободного электрона и иона).

Квантовая электродинамика позволила вычислять интенсивности излучения различных систем, рассматривать вероятности безызлучательных переходов, процессы переноса излучения, рассчитывать так называемые радиационные поправки и другие характеристики излучения квантовых систем.

Все состояния атома, кроме основного (состояния с минимальной энергией), называемые возбуждёнными, неустойчивы. Находясь в них, атом через определённое время (порядка 10 -8 с) самопроизвольно испускает фотон; такое излучение называется спонтанным или самопроизвольным. Характеристики спонтанного излучения атома - направление распространения, интенсивность, поляризация - не зависят от внешних условий. Набор длин волн излучения индивидуален для атома каждого химического элемента и представляет его атомный спектр. Основным излучением атома является дипольное излучение, которое может происходить только при квантовых переходах, разрешённых отбора правилами для электрических дипольных переходов, то есть при определённых соотношениях между характеристиками (квантовыми числами) начального и конечного состояний атома. Мультипольное излучение атома (так называемые запрещённые линии) при определённых условиях также может возникать, но вероятность переходов, при которых оно происходит, мала, и его интенсивность, как правило, невелика. Излучение атомных ядер происходит при квантовых переходах между ядерными уровнями энергии и определяется соответствующими правилами отбора.

излучение различных молекул, в которых происходят колебательные и вращательные движения составляющих их заряженных частиц, имеет сложные спектры, обладающие электронно-колебательно-вращательной структурой (смотри Молекулярные спектры).

Вероятность испускания фотона с импульсом hk и энергией hv пропорциональна (n k + 1), где n k - число точно таких же фотонов в системе до момента испускания. При n k = 0 происходит спонтанное излучение, если n k ≠ 0, появляется также вынужденное излучение. Фотон вынужденного излучения, в отличие от спонтанного, обладает таким же направлением распространения, частотой и поляризацией, что и фотон внешнего излучения; интенсивность вынужденного излучения пропорциональна числу фотонов внешнего излучения. Существование вынужденного излучения постулировал в 1916 году А. Эйнштейн, который рассчитал вероятность вынужденного излучения (смотри Эйнштейна коэффициенты). В обычных условиях вероятность (и, следовательно, интенсивность) вынужденного излучения мала, однако в квантовых генераторах (лазерах) для увеличения n k рабочее вещество (излучатель) помещают в оптические резонаторы, удерживающие фотоны внешнего излучения вблизи него. Каждый испущенный веществом фотон увеличивает n k , поэтому интенсивность излучения с данным k быстро растёт при малой интенсивности излучения фотонов со всеми другими k. В результате квантовый генератор оказывается источником вынужденного излучения с очень узкой полосой значений v и k - когерентного излучения. Поле такого излучения очень интенсивно, может стать сравнимым по величине с внутримолекулярными полями, и взаимодействие излучения квантового генератора (лазерного излучения) с веществом становится нелинейным (смотри Нелинейная оптика).

Излучение различных объектов несёт информацию об их структуре, свойствах и процессах, происходящих в них; его исследование - мощный и часто единственный (например, для космических тел) способ их изучения. Теории излучения принадлежит особая роль в формировании современной физической картины мира. В процессе построения этой теории возникли теория относительности, квантовая механика, были созданы новые источники излучения, получен ряд достижений в области радиотехники, электроники и др.

Лит.: Ахиезер А. И., Берестецкий В. Б. Квантовая электродинамика. 4-е изд. М., 1981; Ландау Л. Д., Лифшиц Е.М. Теория поля. 8-е изд. М., 2001 ; Тамм И. Е. Основы теории электричества. 11-е изд. М., 2003.