Является ли число 2. Простые числа: история и факты

  • Перевод

Свойства простых чисел впервые начали изучать математики Древней Греции. Математики пифагорейской школы (500 - 300 до н.э.) в первую очередь интересовались мистическими и нумерологическими свойствами простых чисел. Они первыми пришли к идеям о совершенных и дружественных числах.

У совершенного числа сумма его собственных делителей равна ему самому. Например, собственные делители числа 6: 1, 2 и 3. 1 + 2 + 3 = 6. У числа 28 делители - это 1, 2, 4, 7 и 14. При этом, 1 + 2 + 4 + 7 + 14 = 28.

Числа называются дружественными, если сумма собственных делителей одного числа равна другому, и наоборот – например, 220 и 284. Можно сказать, что совершенное число является дружественным для самого себя.

Ко времени появления работы Евклида «Начала» в 300 году до н.э. уже было доказано несколько важных фактов касательно простых чисел. В книге IX «Начал» Эвклид доказал, что простых чисел бесконечное количество. Это, кстати, один из первых примеров использования доказательства от противного. Также он доказывает Основную теорему арифметики – каждое целое число можно представить единственным образом в виде произведения простых чисел.

Также он показал, что если число 2 n -1 является простым, то число 2 n-1 * (2 n -1) будет совершенным. Другой математик, Эйлер, в 1747 году сумел показать, что все чётные совершенные числа можно записать в таком виде. По сей день неизвестно, существуют ли нечётные совершенные числа.

В году 200 году до н.э. грек Эратосфен придумал алгоритм для поиска простых чисел под названием «Решето Эратосфена».

А затем случился большой перерыв в истории исследования простых чисел, связанный со Средними веками.

Следующие открытия были сделаны уже в начале 17-го века математиком Ферма. Он доказал гипотезу Альбера Жирара, что любое простое число вида 4n+1 можно записать уникальным образом в виде суммы двух квадратов, и также сформулировал теорему о том, что любое число можно представить в виде суммы четырёх квадратов.

Он разработал новый метод факторизации больших чисел, и продемонстрировал его на числе 2027651281 = 44021 × 46061. Также он доказал Малую теорему Ферма: если p – простое число, то для любого целого a будет верно a p = a modulo p.

Это утверждение доказывает половину того, что было известно как «китайская гипотеза», и датируется 2000 годами ранее: целое n является простым тогда и только тогда, если 2 n -2 делится на n. Вторая часть гипотезы оказалась ложной – к примеру, 2 341 - 2 делится на 341, хотя число 341 составное: 341 = 31 × 11.

Малая теорема Ферма послужила основой множества других результатов в теории чисел и методов проверки чисел на принадлежность к простым – многие из которых используются и по сей день.

Ферма много переписывался со своими современниками, в особенности с монахом по имени Марен Мерсенн. В одном из писем он высказал гипотезу о том, что числа вида 2 n +1 всегда будут простыми, если n является степенью двойки. Он проверил это для n = 1, 2, 4, 8 и 16, и был уверен, что в случае, когда n не является степенью двойки, число не обязательно получалось простым. Эти числа называются числами Ферма, и лишь через 100 лет Эйлер показал, что следующее число, 2 32 + 1 = 4294967297 делится на 641, и следовательно, не является простым.

Числа вида 2 n - 1 также служили предметом исследований, поскольку легко показать, что если n – составное, то и само число тоже составное. Эти числа называют числами Мерсенна, поскольку он активно их изучал.

Но не все числа вида 2 n - 1, где n – простое, являются простыми. К примеру, 2 11 - 1 = 2047 = 23 * 89. Впервые это обнаружили в 1536 году.

Многие годы числа такого вида давали математикам наибольшие известные простые числа. Что число M 19 , было доказано Катальди в 1588 году, и в течение 200 лет было наибольшим известным простым числом, пока Эйлер не доказал, что M 31 также простое. Этот рекорд продержался ещё сто лет, а затем Люкас показал, что M 127 - простое (а это уже число из 39 цифр), и после него исследования продолжились уже с появлением компьютеров.

В 1952 была доказана простота чисел M 521 , M 607 , M 1279 , M 2203 и M 2281 .

К 2005 году найдено 42 простых чисел Мерсенна. Наибольшее из них, M 25964951 , состоит из 7816230 цифр.

Работа Эйлера оказала огромное влияние на теорию чисел, в том числе и простых. Он расширил Малую теорему Ферма и ввёл φ-функцию. Факторизовал 5-е число Ферма 2 32 +1, нашёл 60 пар дружественных чисел, и сформулировал (но не смог доказать) квадратичный закон взаимности.

Он первым ввёл методы математического анализа и разработал аналитическую теорию чисел. Он доказал, что не только гармонический ряд ∑ (1/n), но и ряд вида

1/2 + 1/3 + 1/5 + 1/7 + 1/11 +…

Получаемый суммой величин, обратных к простым числам, также расходится. Сумма n членов гармонического ряда растёт примерно как log(n), а второй ряд расходится медленнее, как log[ log(n) ]. Это значит, что, например, сумма обратных величин ко всем найденным на сегодняшний день простым числам даст всего 4, хотя ряд всё равно расходится.

На первый взгляд кажется, что простые числа распределены среди целых довольно случайно. К примеру, среди 100 чисел, идущих прямо перед 10000000, встречается 9 простых, а среди 100 чисел, идущих сразу после этого значения – всего 2. Но на больших отрезках простые числа распределены достаточно равномерно. Лежандр и Гаусс занимались вопросами их распределения. Гаусс как-то рассказывал другу, что в любые свободные 15 минут он всегда подсчитывает количество простых в очередной 1000 чисел. К концу жизни он сосчитал все простые числа в промежутке до 3 миллионов. Лежандр и Гаусс одинаково вычислили, что для больших n плотность простых чисел составляет 1/log(n). Лежандр оценил количество простых чисел в промежутке от 1 до n, как

π(n) = n/(log(n) - 1.08366)

А Гаусс – как логарифмический интеграл

π(n) = ∫ 1/log(t) dt

С промежутком интегрирования от 2 до n.

Утверждение о плотности простых чисел 1/log(n) известно как Теорема о распределении простых чисел. Её пытались доказать в течение всего 19 века, а прогресса достигли Чебышёв и Риман. Они связали её с гипотезой Римана – по сию пору не доказанной гипотезой о распределении нулей дзета-функции Римана. Плотность простых чисел была одновременно доказана Адамаром и Валле-Пуссеном в 1896 году.

В теории простых чисел есть ещё множество нерешённых вопросов, некоторым из которых уже многие сотни лет:

  • гипотеза о простых числах-близнецах – о бесконечном количестве пар простых чисел, отличающихся друг от друга на 2
  • гипотеза Гольдбаха: любое чётное число, начиная с 4, можно представить в виде суммы двух простых чисел
  • бесконечно ли количество простых чисел вида n 2 + 1 ?
  • всегда ли можно найти простое число между n 2 and (n + 1) 2 ? (факт, что между n и 2n всегда есть простое число, было доказан Чебышёвым)
  • бесконечно ли число простых чисел Ферма? есть ли вообще простые числа Ферма после 4-го?
  • существует ли арифметическая прогрессия из последовательных простых чисел для любой заданной длины? например, для длины 4: 251, 257, 263, 269. Максимальная из найденных длина равна 26 .
  • бесконечно ли число наборов из трёх последовательных простых чисел в арифметической прогрессии?
  • n 2 - n + 41 – простое число для 0 ≤ n ≤ 40. Бесконечно ли количество таких простых чисел? Тот же вопрос для формулы n 2 - 79 n + 1601. Эти числа простые для 0 ≤ n ≤ 79.
  • бесконечно ли количество простых чисел вида n# + 1? (n# - результат перемножения всех простых чисел, меньших n)
  • бесконечно ли количество простых чисел вида n# -1 ?
  • бесконечно ли количество простых чисел вида n! + 1?
  • бесконечно ли количество простых чисел вида n! – 1?
  • если p – простое, всегда ли 2 p -1 не содержит среди множителей квадратов простых чисел
  • содержит ли последовательность Фибоначчи бесконечное количество простых чисел?

Самые большие близнецы среди простых чисел – это 2003663613 × 2 195000 ± 1. Они состоят из 58711 цифр, и были найдены в 2007 году.

Самое большое факториальное простое число (вида n! ± 1) – это 147855! - 1. Оно состоит из 142891 цифр и было найдено в 2002.

Наибольшее праймориальное простое число (число вида n# ± 1) – это 1098133# + 1.

Теги: Добавить метки

Ответ Ильи корректный, но не очень подробный. В 18 веке, кстати, единицу ещё считали простым числом. Например, такие крупные математики как Эйлер и Гольдбах. Гольдбах автор одной из семи задач тысячелетия - гипотезы Гольдбаха. В изначальной формулировке утверждается, что всякое чётное число представимо в виде суммы двух простых чисел. Причём изначально 1 учитывалась как простое число, и мы видим такое: 2 = 1+1. Это наименьший пример, удовлетворяющий исходной формулировке гипотезы. Позднее её подправили, и формулировка приобрела современный вид: "всякое чётное число, начиная с 4, представимо в виде суммы двух простых чисел".

Вспомним определение. Простым является натуральное число р, имеющее только 2 различных натуральных делителя: само р и 1. Следствие из определения: у простого числа р только один простой делитель - само р.

Теперь предположим, что 1 простое число. По определению у простого числа только один простой делитель - оно само. Тогда получится, что любое простое число, большее 1, делится на отличающееся от него простое число (на 1). Но два различных простых числа не могут делиться друг на друга, т.к. иначе это не простые, а составные числа, и это противоречит определению. При таком подходе получается, что существует только 1 простое число - сама единица. Но это абсурд. Следовательно, 1 не простое число.

1, равно как и 0, образуют другой класс чисел - класс нейтральных элементов относительно n-нарных операций в каком-то подмножестве алгебраического поля. При этом относительно операции сложения 1 является также образующим элементом для кольца целых чисел.

При таком рассмотрении не трудно обнаружить аналоги простых чисел в других алгебраических структурах. Предположим, что у нас есть мультипликативная группа, образованная из степеней 2, начиная с 1: 2, 4, 8, 16, ... и т.д. 2 выступает здесь образующим элементом. Простым числом в этой группе назовём число, большее наименьшего элемента, и делящееся только на себя и на наименьший элемент. В нашей группе такими свойствами обладает только 4. Всё. Больше простых чисел в нашей группе не существует.

Если бы 2 тоже была простым числом в нашей группе, то см. первый абзац, - снова получилось бы, что простым числом является только 2.

простое число

натуральное число, большее, чем единица, и не имеющее других делителей, кроме самого себя и единицы: 2, 3, 5, 7, 11, 13... Число простых чисел бесконечно.

Простое число

целое положительное число, большее, чем единица, не имеющее других делителей, кроме самого себя и единицы: 2, 3, 5, 7, 11, 13,... Понятие П. ч. является основным при изучении делимости натуральных (целых положительных) чисел; именно, основная теорема теории делимости устанавливает, что всякое целое положительное число, кроме 1, единственным образом разлагается в произведении П. ч. (порядок сомножителей при этом не принимается во внимание). П. ч. бесконечно много (это предложение было известно ещё древнегреческим математикам, его доказательство имеется в 9-й книге «Начал» Евклида). Вопросы делимости натуральных чисел, а следовательно, вопросы, связанные с П. ч., имеют важное значение при изучении групп; в частности, строение группы с конечным числом элементов тесно связано с тем, каким образом это число элементов (порядок группы) разлагается на простые множители. В теории алгебраических чисел рассматриваются вопросы делимости целых алгебраических чисел; понятия П. ч. оказалось недостаточным для построения теории делимости ≈ это привело к созданию понятия идеала. П. Г. Л. Дирихле в 1837 установил, что в арифметической прогрессии а + bx при х = 1, 2,... с целыми взаимно простыми а и b содержится бесконечно много П. ч. Выяснение распределения П. ч. в натуральном ряде чисел является весьма трудной задачей чисел теории. Она ставится как изучение асимптотического поведения функции p(х), обозначающей число П. ч., не превосходящих положительного числа х. Первые результаты в этом направлении принадлежат П. Л. Чебышеву, который в 1850 доказал, что имеются такие две такие постоянные а и А, что ═< p(x) < ═при любых x ³ 2 [т. е., что p(х) растет, как функция ]. Хронологически следующим значительным результатом, уточняющим теорему Чебышева, является т. н. асимптотический закон распределения П. ч. (Ж. Адамар, 1896, Ш. Ла Валле Пуссен, 1896), заключающийся в том, что предел отношения p(х) к ═равен

    В дальнейшем значительные усилия математиков направлялись на уточнение асимптотического закона распределения П. ч. Вопросы распределения П. ч. изучаются и элементарными методами, и методами математического анализа. Особенно плодотворным является метод, основанный на использовании тождества

    (произведение распространяется на все П. ч. р = 2, 3,...), впервые указанного Л. Эйлером; это тождество справедливо при всех комплексных s с вещественной частью, большей единицы. На основании этого тождества вопросы распределения П. ч. приводятся к изучению специальной функции ≈ дзета-функции x(s), определяемой при Res > 1 рядом

    Эта функция использовалась в вопросах распределения П. ч. при вещественных s Чебышевым; Б. Риман указал на важность изучения x(s) при комплексных значениях s. Риман высказал гипотезу о том, что все корни уравнения x(s) = 0, лежащие в правой полуплоскости, имеют вещественную часть, равную 1/

    Эта гипотеза до настоящего времени (1975) не доказана; её доказательство дало бы весьма много в решении вопроса о распределении П. ч. Вопросы распределения П. ч. тесно связаны с Гольдбаха проблемой, с не решенной ещё проблемой «близнецов» и другими проблемами аналитической теории чисел. Проблема «близнецов» состоит в том, чтобы узнать, конечно или бесконечно число П. ч., разнящихся на 2 (таких, например, как 11 и 13). Таблицы П. ч., лежащих в пределах первых 11 млн. натуральных чисел, показывают наличие весьма больших «близнецов» (например, 10006427 и 10006429), однако это не является доказательством бесконечности их числа. За пределами составленных таблиц известны отдельные П. ч., допускающие простое арифметическое выражение [например, установлено (1965), что 211213 ≈1 есть П. ч.; в нём 3376 цифр].

    Лит.: Виноградов И. М., Основы теории чисел, 8 изд., М., 1972; Хассе Г., Лекции по теории чисел, пер. с нем., М., 1953; Ингам А. Е., Распределение простых чисел, пер. с англ., М. ≈ Л., 1936; Прахар К., Распределение простых чисел, пер. с нем., М., 1967; Трост Э., Простые числа, пер, с нем., М., 1959.

Википедия

Простое число

Просто́е число́ - натуральное число, имеющее ровно два различных натуральных делителя - и самого себя. Другими словами, число x является простым, если оно больше 1 и при этом делится без остатка только на 1 и на x . К примеру, 5 - простое число, а 6 является составным числом, так как, помимо 1 и 6, также делится на 2 и на 3.

Натуральные числа, которые больше единицы и не являются простыми, называются составными. Таким образом, все натуральные числа разбиваются на три класса: единицу. Изучением свойств простых чисел занимается теория чисел. В теории колец простым числам соответствуют неприводимые элементы.

Последовательность простых чисел начинается так:

2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 , 41 , 43 , 47 , 53 , 59 , 61 , 67 , 71 , 73 , 79 , 83 , 89 , 97 , 101 , 103 , 107 , 109 , 113 , 127 , 131 , 137 , 139 , 149 , 151 , 157 , 163 , 167 , 173 , 179 , 181 , 191 , 193 , 197 , 199 …

Простые числа представляют собой одно из самых интересных математических явлений, которое привлекает к себе внимание ученых и простых граждан на протяжении уже более двух тысячелетий. Несмотря на то, что сейчас мы живем в век компьютеров и самых современных информационных программ, многие загадки простых чисел не решены до сих пор, есть даже такие, к которым ученые не знают, как подступиться.

Простые числа - это, как известно еще из курса элементарной арифметики, те которые делятся без остатка только на единицу и самое себя. Кстати, если натуральное число делится, кроме выше перечисленных, еще на какое-либо число, то оно именуется составным. Одна из самых знаменитых теорем гласит, что любое составное число может быть представлено в виде единственно возможного произведения простых чисел.

Несколько любопытных фактов. Во-первых, единица является уникальной в том плане, что, по сути, не принадлежит ни к простым, ни к составным числам. В то же время в научной среде все же принято относить ее именно к первой группе, так как формально она полностью удовлетворяет ее требованиям.

Во-вторых, единственным четным числом, затесавшимся в группу «простые числа» является, естественно, двойка. Любое другое четное число сюда попасть попросту не может, так как уже по определению, кроме себя и единицы, делится еще и на два.

Простые числа, список которых, как было указано выше, можно начинать с единицы, представляют собой бесконечный ряд, такой же бесконечный, как и ряд натуральных чисел. Опираясь на основную теорему арифметики, можно прийти к выводу, что простые числа никогда не прерываются и никогда не заканчиваются, так как в противном случае неизбежно прервался бы и ряд натуральных чисел.

Простые числа не появляются в натуральном ряду беспорядочно, как это может показаться на первый взгляд. Внимательно проанализировав их, можно сразу заметить несколько особенностей, наиболее любопытные из которых связаны с так называемыми числами-«близнецами». Называют их так потому, что каким-то непостижимым образом они оказались по соседству друг с другом, разделенные только четным разграничителем (пять и семь, семнадцать и девятнадцать).

Если внимательно к ним присмотреться, то можно заметить, что сумма этих чисел всегда кратна трем. Более того, при делении на тройку левого собрата в остатке всегда остается двойка, а правого - единица. Кроме того, само распределение этих чисел по натуральному ряду можно спрогнозировать, если представить весь этот ряд в виде колебательных синусоид, основные точки которых образуются при делении чисел на три и два.

Простые числа являются не только объектом пристального рассмотрения со стороны математиков всего мира, но уже давно и успешно используются в составлении различных рядов чисел, что является основой, в том числе, для шифрографии. При этом следует признать, что огромное количество загадок, связанных с этими замечательными элементами, все еще ждут своих разгадок, многие вопросы имеют не только философское, но и практичное значение.