Экстремальные точки. Экстремумы функции — простым языком о сложном

Что такое экстремум функции и каково необходимое условие экстремума?

Экстремумом функции называется максимум и минимум функции.

Необходимое условие максимума и минимума (экстремума) функции следующее: если функция f(x) имеет экстремум в точке х = а, то в этой точке производная либо равна нулю, либо бесконечна, либо не существует.

Это условие необходимое, но не достаточное. Производная в точке х = а может обращаться в нуль, в бесконечность или не существовать без того, чтобы функция имела экстремум в этой точке.

Каково достаточное условие экстремума функции (максимума или минимума)?

Первое условие:

Если в достаточной близости от точки х = а производная f?(x) положительна слева от а и отрицательна справа от а, то в самой точке х = а функция f(x) имеет максимум

Если в достаточной близости от точки х = а производная f?(x) отрицательна слева от а и положительна справа от а, то в самой точке х = а функция f(x) имеет минимум при условии, что функция f(x) здесь непрерывна.

Вместо этого можно воспользоваться вторым достаточным условием экстремума функции:

Пусть в точке х = а первая производная f?(x) обращается в нуль; если при этом вторая производная f??(а) отрицательна, то функция f(x) имеет в точке x = a максимум, если положительна - то минимум.

Что такое критическая точка функции и как её найти?

Это значение аргумента функции, при котором функция имеет экстремум (т.е. максимум или минимум). Чтобы его найти, нужно найти производную функции f?(x) и, приравняв её к нулю, решить уравнение f?(x) = 0. Корни этого уравнения, а также те точки, в которых не существует производная данной функции, являются критическими точками, т. е. значениями аргумента, при которых может быть экстремум. Их можно легко определить, взглянув на график производной : нас интересуют те значения аргумента, при которых график функции пересекает ось абсцисс (ось Ох) и те, при которых график терпит разрывы.

Для примера найдём экстремум параболы .

Функция y(x) = 3x2 + 2x - 50.

Производная функции: y?(x) = 6x + 2

Решаем уравнение: y?(x) = 0

6х + 2 = 0, 6х = -2, х=-2/6 = -1/3

В данном случае критическая точка - это х0=-1/3. Именно при этом значении аргумента функция имеет экстремум . Чтобы его найти , подставляем в выражение для функции вместо «х» найдённое число:

y0 = 3*(-1/3)2 + 2*(-1/3) - 50 = 3*1/9 - 2/3 - 50 = 1/3 - 2/3 - 50 = -1/3 - 50 = -50,333.

Как определить максимум и минимум функции, т.е. её наибольшее и наименьшее значения?

Если знак производной при переходе через критическую точку х0 меняется с «плюса» на «минус», то х0 есть точка максимума ; если же знак производной меняется с минуса на плюс, то х0 есть точка минимума ; если знак не меняется, то в точке х0 ни максимума, ни минимума нет.

Для рассмотренного примера:

Берём произвольное значение аргумента слева от критической точки: х = -1

При х = -1 значение производной будет у?(-1) = 6*(-1) + 2 = -6 + 2 = -4 (т.е. знак - «минус»).

Теперь берём произвольное значение аргумента справа от критической точки: х = 1

При х = 1 значение производной будет у(1) = 6*1 + 2 = 6 + 2 = 8 (т.е. знак - «плюс»).

Как видим, производная при переходе через критическую точку поменяла знак с минуса на плюс. Значит, при критическом значении х0 мы имеем точку минимума.

Наибольшее и наименьшее значение функции на интервале (на отрезке) находят по такой же процедуре, только с учетом того, что, возможно, не все критические точки будут лежать внутри указанного интервала. Те критические точки, которые находятся за пределом интервала, нужно исключить из рассмотрения. Если внутри интервала находится только одна критическая точка - в ней будет либо максимум, либо минимум. В этом случае для определения наибольшего и наименьшего значений функции учитываем также значения функции на концах интервала.

Например, найдём наибольшее и наименьшее значения функции

y(x) = 3sin(x) — 0,5х

на интервалах:

Итак, производная функции —

y?(x) = 3cos(x) — 0,5

Решаем уравнение 3cos(x) — 0,5 = 0

cos(x) = 0,5/3 = 0,16667

х = ±arccos(0,16667) + 2πk.

Находим критические точки на интервале [-9; 9]:

х = arccos(0,16667) — 2π*2 = -11,163 (не входит в интервал)

х = -arccos(0,16667) — 2π*1 = -7,687

х = arccos(0,16667) — 2π*1 = -4,88

х = -arccos(0,16667) + 2π*0 = -1,403

х = arccos(0,16667) + 2π*0 = 1,403

х = -arccos(0,16667) + 2π*1 = 4,88

х = arccos(0,16667) + 2π*1 = 7,687

х = -arccos(0,16667) + 2π*2 = 11,163 (не входит в интервал)

Находим значения функции при критических значениях аргумента:

y(-7,687) = 3cos(-7,687) — 0,5 = 0,885

y(-4,88) = 3cos(-4,88) — 0,5 = 5,398

y(-1,403) = 3cos(-1,403) — 0,5 = -2,256

y(1,403) = 3cos(1,403) — 0,5 = 2,256

y(4,88) = 3cos(4,88) — 0,5 = -5,398

y(7,687) = 3cos(7,687) — 0,5 = -0,885

Видно, что на интервале [-9; 9] наибольшее значение функция имеет при x = -4,88:

x = -4,88, у = 5,398,

а наименьшее - при х = 4,88:

x = 4,88, у = -5,398.

На интервале [-6; -3] мы имеем только одну критическую точку: х = -4,88. Значение функции при х = -4,88 равно у = 5,398.

Находим значение функции на концах интервала:

y(-6) = 3cos(-6) — 0,5 = 3,838

y(-3) = 3cos(-3) — 0,5 = 1,077

На интервале [-6; -3] имеем наибольшее значение функции

у = 5,398 при x = -4,88

наименьшее значение —

у = 1,077 при x = -3

Как найти точки перегиба графика функции и определить стороны выпуклости и вогнутости?

Чтобы найти все точки перегиба линии y = f(x), надо найти вторую производную, приравнять её к нулю (решить уравнение) и испытать все те значения х, для которых вторая производная равна нулю, бесконечна или не существует. Если при переходе через одно из этих значений вторая производная меняет знак, то график функции имеет в этой точке перегиб. Если же не меняет, то перегиба нет.

Корни уравнения f ? (x) = 0, а также возможные точки разрыва функции и второй производной разбивают область определения функции на ряд интервалов. Выпуклость на каждом их интервалов определяется знаком второй производной. Если вторая производная в точке на исследуемом интервале положительна, то линия y = f(x) обращена здесь вогнутостью кверху, а если отрицательна - то книзу.

Как найти экстремумы функции двух переменных?

Чтобы найти экстремумы функции f(x,y), дифференцируемой в области её задания, нужно:

1) найти критические точки, а для этого — решить систему уравнений

fх? (x,y) = 0, fу? (x,y) = 0

2) для каждой критической точки Р0(a;b) исследовать, остается ли неизменным знак разности

для всех точек (х;у), достаточно близких к Р0. Если разность сохраняет положительный знак, то в точке Р0 имеем минимум, если отрицательный - то максимум. Если разность не сохраняет знака, то в точке Р0 экстремума нет.

Аналогично определяют экстремумы функции при большем числе аргументов.



Где в Интернете найти официальный сайт Государственной инспекции труда в Брянской области
www.rostrud.ru — официальный сайт Роструда — Федеральная служба по труду и занятости Справочная Роструда - 8-800-707-88-41 Направить электронное обращение в Роструд (адрес электронной почты:[email protected]) git77.rostrud.ru &mda

Где можно найти информацию об испанском футболе
Примера Дивизион (исп. Primera División) — профессиональная футбольная лига Испании (исп. Liga de Fútbol Profesional, LFP), известная также просто как Примера, или Ла Лига (исп. La Liga), является профессиональным футбольным турниро

Какая официальная валюта России
Название страны Название - денег/разменной монеты Австралия Австралийский доллар/цент Австрия Австрийский шиллинг/грош — евро Азербайджан Манат Албания Лек/киндарка Алжир Алжирский динар/сантимо Аргентина Аргентинский аустраль/сентаво Афганистан Афгани/пул Бангладеш Така/пайс Бельгия Бельгийский франк/сантимо — евро Болгария Лев/стотинка

Какие известные личности умерли 2 ноября
2 ноября — 306-й день года (307-й в високосные годы) в григорианском календаре. До конца года остаётся 59 дней.Праздники 2 ноября Национальные: Виргинские Острова (США) — День свободы; Белоруссия — Деды (День памяти); Либерия — День благодарения; Мексика, Польша, По

Какие есть нулевые формообразующие суффиксы
Что такое нулевой суффикс Нулевым называется суффикс, не выраженный звуками в речи и буквами на письме, но с помощью которого образуются новые слова. Способ образования слов с помощью нулевого суффикса называется в одних пособиях бессуффиксным, в других — нулевая суффиксация. Нулевой суффикс графически обо-значается знаком &Osla

Кто такой якорный арендатор
Якорный арендатор - главный арендатор в торговом центре, привлекающий в него покупателей. Одним из важнейших признаков «якоря» считают его узнаваемость среди покупателей, что предполагает раскрученность бренда и существование в формате отдельного магазина - street retail, к примеру, как Zara, М-видео

Какой официальный сайт Российской экономической академии им. Г.В. Плеханова (РЭА)
Ниже перечислены официальные сайты основных государственных вузов Москвы: Московский государственный университет имени М.В. Ломоносова Академия Генеральной прокуратуры Российской Федерации Академия Государственной противопожарной службы МЧС России Академия народного хозяйства при Правительстве РФ (АНХ) Академия труда и социальных отношений (АТиСО) Акад

Какие праздники отмечают 16 мая
16 мая — 136-й день года (137-й в високосные годы) в григорианском календаре. До конца года остаётся 229 дней. События и праздники, которые отмечают 16 мая: Всемирный день памяти людей, умерших от СПИДа; День биографов; Апара Экадаши в Индии. Религиозные события Православие: День преподобного Феодосия Печерского; От

Какова география распространения сорняка амброзия
Амброзия полыннолистная Однолетнее, поздний яровой. Биология и морфология.Стебель 20-200 см высотой, прямой, наверху метельчато ветвистый угловатый, со слабым или довольно сильным прижатым щетинистым опушением. Корень стержневой, проникает в почву на глубину - 4м. Листья длиной 4-15 см, сверху темно-зеленые, почти голые, снизу серо-зеленые, густощетинистоопушенные; верхние

Кто такие пойкилотермные животные
Пойкилотермные животные - холоднокровные животные, животные с непостоянной внутренней температурой тела, меняющейся в зависимости от температуры внешней среды. К пойкилотермным животным относятся все беспозвоночные, а из позвоночных - рыбы, земноводные и пресмыкающиеся. Температура тела пойкилотермных животных обычно всего на 1-20С выше температуры окружающей сред

Как правильно делать подтягивания
Подтягивания — базовое упражнение для мышц рук, спины и груди. Подтягивание является ключевым упражнением, развивающим силу. Подтягивания можно делать всегда и практически везде, для них не нужны какие-то особенные тренажеры или ходьба в спортивный зал, что очень важно. Подтягивания на перекладине — самое эффективное упражнение на

Функции, вовсе необязательно знать о наличии первой и второй производной и понимать их физический смысл. Для начала нужно уяснить следующее:

  • экстремумы функции максимизируют или, наоборот, минимизируют значение функции в сколь угодно малой окрестности;
  • в точке экстремума не должно быть разрыва функции.

А теперь то же самое, только простым языком. Посмотрите на кончик стержня шариковой ручки. Если ручку расположить вертикально, пишущим концом вверх, то самая середина шарика будет экстремумом — наивысшей точкой. В этом случае говорят о максимуме. Теперь, если повернуть ручку пишущим концом вниз, то на середке шарика уже будет минимум функции. С помощью рисунка, приведенного здесь же, можно представить перечисленные манипуляции для канцелярского карандаша. Итак, экстремумы функции — это всегда критические точки: ее максимумы или минимумы. Прилегающий участок графика может быть сколь угодно острым или плавным, но он должен существовать с обеих сторон, только в этом случае точка является экстремумом. Если график присутствует лишь с одной стороны, точка эта экстремумом являться не будет даже в том случае, если с одной ее стороны условия экстремума выполняются. Теперь изучим экстремумы функции с научной точки зрения. Дабы точка могла считаться экстремумом, необходимо и достаточно, чтобы:

  • первая производная равнялась нулю или не существовала в точке;
  • первая производная меняла свой знак в этой точке.

Условие трактуется несколько иначе с точки зрения производных более высокого порядка: для функции, дифференцируемой в точке, достаточно, чтобы существовала производная нечетного порядка, неравная нулю, при том, что все производные более низшего порядка должны существовать и быть равными нулю. Это максимально простое толкование теорем из учебников Но для самых обычных людей стоит пояснить этот момент примером. За основу берется обыкновенная парабола. Сразу оговоримся, в нулевой точке у нее имеется минимум. Совсем немного математики:

  • первая производная (X 2) | = 2X, для нулевой точки 2Х = 0;
  • вторая производная (2Х) | = 2, для нулевой точки 2 = 2.

Таким нехитрым образом проиллюстрированы условия, определяющие экстремумы функции и для производных первого порядка, и для производных высшего порядка. Можно к этому добавить, что вторая производная как раз является той самой производной нечетного порядка, неравной нулю, о которой говорилось чуть выше. Когда речь заходит про экстремумы функции двух переменных, то условия должны выполняться для обоих аргументов. Когда происходит обобщение, то в ход идут частные производные. То есть необходимо для наличия экстремума в точке, чтобы обе производные первого порядка равнялись нулю, либо хотя бы одна из них не существовала. Для достаточности наличия экстремума исследуется выражение, представляющее собой разность произведения производных второго порядка и квадрата смешанной производной второго порядка функции. Если это выражение больше нуля, значит, экстремум имеет место быть, а если присутствует равенство нулю, то вопрос остается открытым, и нужно проводить дополнительные исследования.

Обратимся к графику функции у = х 3 – 3х 2 . Рассмотрим окрестность точки х = 0, т.е. некоторый интервал, содержащий эту точку. Логично, что существует такая окрестность точки х = 0, что наибольшее значение функция у = х 3 – 3х 2 в этой окрестности принимает в точке х = 0. Например, на интервале (-1; 1) наибольшее значение, равное 0, функция принимает в точке х = 0. Точку х = 0 называют точкой максимума этой функции.

Аналогично, точка х = 2 называется точкой минимума функции х 3 – 3х 2 , так как в этой точке значение функции не больше ее значения в иной точке окрестности точки х = 2, например, окрестности (1,5; 2,5).

Таким образом, точкой максимума функции f(х) называется точка х 0 , если существует окрестность точки х 0 – такая, что выполняется неравенство f(х) ≤ f(х 0) для всех х из этой окрестности.

Например, точка х 0 = 0 – это точка максимума функции f(х) = 1 – х 2 , так как f(0) = 1 и верно неравенство f(х) ≤ 1 при всех значениях х.

Точкой минимума функции f(х) называется точка х 0 , если существует такая окрестность точки х 0 , что выполняется неравенство f(х) ≥ f(х 0) для всех х из этой окрестности.

Например, точка х 0 = 2 – это точка минимума функции f(х) = 3 + (х – 2) 2 , так как f(2) = 3 и f(х) ≥ 3 при всех х.

Точками экстремума называются точки минимума и точки максимума.

Обратимся к функции f(х), которая определена в некоторой окрестности точки х 0 и имеет в этой точке производную.

Если х 0 – точка экстремума дифференцируемой функции f(х), то f "(х 0) = 0. Это утверждение называют теоремой Ферма.

Теорема Ферма имеет наглядный геометрический смысл: в точке экстремума касательная параллельна оси абсцисс и поэтому ее угловой коэффициент
f "(х 0) равен нулю.

Например, функция f(х) = 1 – 3х 2 имеет в точке х 0 = 0 максимум, ее производная f "(х) = -2х, f "(0) = 0.

Функция f(х) = (х – 2) 2 + 3 имеет минимум в точке х 0 = 2, f "(х) = 2(х – 2), f "(2) = 0.

Отметим, что если f "(х 0) = 0, то этого недостаточно, чтобы утверждать, что х 0 – это обязательно точка экстремума функции f(х).

Например, если f(х) = х 3 , то f "(0) = 0. Однако точкой экстремума точка х = 0 не является, так как на всей числовой оси функция х 3 возрастает.

Итак, точки экстремума дифференцируемой функции необходимо искать лишь среди корней уравнения
f "(х) = 0, но корень этого уравнения не всегда является точкой экстремума.

Стационарными точками называют точки, в которых производная функции равна нулю.

Таким образом, для того, чтобы точка х 0 была точкой экстремума, необходимо, чтобы она была стационарной точкой.

Рассмотрим достаточные условия того, что стационарная точка является точкой экстремума, т.е. условия, при выполнении которых стационарная точка является точкой минимума или максимума функции.

Если производная левее стационарной точки положительна, а правее – отрицательна, т.е. производная меняет знак «+» на знак «–» при переходе через эту точку, то эта стационарная точка – это точка максимума.

Действительно, в данном случае левее стационарной точки функция возрастает, а правее – убывает, т.е. данная точка – это точка максимума.

Если производная меняет знак «–» на знак «+» при переходе через стационарную точку, то эта стационарная точка является точкой минимума.

Если производная знак не меняет при переходе через стационарную точку, т.е. слева и справа от стационарной точки производная положительна или отрицательна, то эта точка не является точкой экстремума.

Рассмотрим одну из задач. Найти точки экстремума функции f(х) = х 4 – 4х 3 .

Решение.

1) Найдем производную: f "(х) = 4х 3 – 12х 2 = 4х 2 (х – 3).

2) Найдем стационарные точки: 4х 2 (х – 3) = 0, х 1 = 0, х 2 = 3.

3) Методом интервалов устанавливаем, что производная f "(х) = 4х 2 (х – 3) положительна при х > 3, отрицательна при х < 0 и при 0 < х < 3.

4) Так как при переходе через точку х 1 = 0 знак производной не меняется, то эта точка не является точкой экстремума.

5) Производная меняет знак «–» на знак «+» при переходе через точку х 2 = 3. Поэтому х 2 = 3 – точка минимума.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Важным понятием в математике является функция. С её помощью можно наглядно представить многие процессы, происходящие в природе, отразить с использованием формул, таблиц и изображений на графике взаимосвязь между определёнными величинами. Примером может служить зависимость давления слоя жидкости на тело от глубины погружения, ускорения - от действия на объект определённой силы, увеличения температуры - от передаваемой энергии и многие другие процессы. Исследование функции предполагает построение графика, выяснение её свойств, области определения и значений, промежутков возрастания и убывания. Важным моментом в данном процессе является нахождение точек экстремума. О том, как правильно это делать, и пойдёт разговор далее.

О самом понятии на конкретном примере

В медицине построение графика функции может рассказать о ходе развития болезни в организме пациента, наглядно отражая его состояние. Предположим, по оси ОХ откладывается время в сутках, а по оси ОУ - температура тела человека. На рисунке хорошо видно, как этот показатель резко поднимается, а потом падает. Нетрудно заметить также особые точки, отражающие моменты, когда функция, ранее возрастая, начинает убывать, и наоборот. Это точки экстремума, то есть критические значения (максимальные и минимальные) в данном случае температуры больного, после которых наступают изменения в его состоянии.

Угол наклона

Легко можно определить по рисунку, как изменяется производная функции. Если прямые линии графика с течением времени идут вверх, то она положительна. И чем они круче, тем большее значение принимает производная, так как растет угол наклона. В периоды убывания эта величина принимает отрицательные значения, в точках экстремума обращаясь в ноль, а график производной в последнем случае рисуется параллельно оси ОХ.

Любой другой процесс следует рассматривать аналогичным образом. Но лучше всего об этом понятии может рассказать перемещение различных тел, наглядно показанное на графиках.

Движение

Предположим, некоторый объект движется по прямой, равномерно набирая скорость. В этот период изменение координаты тела графически представляет собой некую кривую, которую математик назвал бы ветвью параболы. При этом функция постоянно возрастает, так как показатели координаты с каждой секундой изменяются всё быстрей. График скорости демонстрирует поведение производной, значение которой также увеличивается. А значит, движение не имеет критических точек.

Так бы и продолжалось бесконечно долго. Но если тело вдруг решит затормозить, остановиться и начать двигаться в другом направлении? В данном случае показатели координаты начнут уменьшаться. А функция перейдёт критическое значение и из возрастающей превратится в убывающую.

На этом примере снова можно понять, что точки экстремума на графике функции появляются в моменты, когда она перестаёт быть монотонной.

Физический смысл производной

Описанное ранее наглядно показало, что производная по сути является скоростью изменения функции. В данном уточнении и заключён её физический смысл. Точки экстремума - это критические области на графике. Их возможно выяснить и обнаружить, вычислив значение производной, которая оказывается равной нулю.

Существует и другой признак, который является достаточным условием экстремума. Производная в таких местах перегиба меняет свой знак: с «+» на «-» в области максимума и с «-» на «+» в районе минимума.

Движение под влиянием силы притяжения

Представим ещё одну ситуацию. Дети, играя в мяч, бросили его таким образом, что он начал двигаться под углом к горизонту. В начальный момент скорость данного объекта являлась самой большой, но под действием силы тяжести начала уменьшаться, причём с каждой секундой на одну и ту же величину, равную приблизительно 9,8 м/с 2 . Это значение ускорения, возникающего под влиянием земной гравитации при свободном падении. На Луне оно бы было примерно в шесть раз меньше.

Графиком, описывающим перемещение тела, является парабола с ветвями, направленными вниз. Как найти точки экстремума? В данном случае это вершина функции, где скорость тела (мяча) принимает нулевое значение. Производная функции становится равной нулю. При этом направление, а следовательно, и значение скорости, меняется на противоположное. Тело летит вниз с каждой секундой всё быстрее, причём ускоряется на ту же величину - 9,8 м/с 2 .

Вторая производная

В предыдущем случае график модуля скорости рисуется как прямая. Данная линия оказывается сначала направлена вниз, так как значение этой величины постоянно убывает. Достигнув нуля в один из моментов времени, далее показатели этой величины начинают возрастать, а направление графического изображения модуля скорости кардинально меняется. Теперь линия направлена вверх.

Скорость, являясь производной от координаты по времени, тоже имеет критическую точку. В этой области функция, вначале убывая, начинает возрастать. Это место точки экстремума производной функции. В данном случае угол наклона касательной становится равным нулю. А ускорение, являясь второй производной от координаты по времени, меняет знак с «-» на «+». И движение из равнозамедленного становится равноускоренным.

График ускорения

Теперь рассмотрим четыре рисунка. На каждом из них отображён график изменения с течением времени такой физической величины, как ускорение. В случае «А» значение его остаётся положительным и постоянным. Это означает, что скорость тела, как и его координата, постоянно увеличивается. Если представить, что объект будет двигаться таким образом бесконечно долго, функция, отражающая зависимость координаты от времени, окажется постоянно возрастающей. Из этого следует, что она не имеет критических областей. Точки экстремума на графике производной, то есть линейно изменяющейся скорости, также отсутствуют.

То же касается и случая «Б» с положительным и постоянно увеличивающимся ускорением. Правда, графики для координаты и скорости здесь будут несколько сложнее.

Когда ускорение стремится к нулю

Рассматривая рисунок «В», можно наблюдать совсем другую картину, характеризующую движение тела. Скорость его графически будет изображаться параболой с ветвями, направленными вниз. Если продолжить линию, описывающую изменение ускорения до пересечения её с осью ОХ, и дальше, то можно представить, что до этого критического значения, где ускорение окажется равным нулю, скорость объекта будет увеличиваться всё медленнее. Точка экстремума производной от функции координаты окажется как раз в вершине параболы, после чего тело кардинально поменяет характер движения и начнёт двигаться в другом направлении.

В последнем случае, «Г», характер движения точно определить невозможно. Здесь известно только, что ускорение за некоторый рассматриваемый период отсутствует. Значит, объект может оставаться на месте или движение происходит с постоянной скоростью.

Задача на сложение координат

Перейдём к заданиям, которые часто встречаются при изучении алгебры в школе и предлагаются для подготовки к ЕГЭ. На рисунке, который представлен ниже, изображён график функции. Требуется вычислить сумму точек экстремума.

Сделаем это для оси ординат, определив координаты критических областей, где наблюдается изменение характеристик функции. Проще говоря, найдём значения по оси ОХ для точек перегиба, а затем перейдём к сложению полученных членов. По графику очевидно, что они принимают следующие значения: -8; -7 ; -5; -3; -2; 1; 3. В сумме это составляет -21, что и является ответом.

Оптимальное решение

Не стоит объяснять, насколько может оказаться важным в выполнении практических заданий выбор оптимального решения. Ведь путей достижения цели бывает много, а наилучший выход, как правило, - всего один. Это бывает крайне необходимо, к примеру, при конструировании судов, космических кораблей и самолётов, архитектурных сооружений для нахождения оптимальной формы данных рукотворных объектов.

Быстроходность средств передвижения во многом зависит от грамотного сведения к минимуму сопротивления, которое они испытывают при перемещении по воде и воздуху, от перегрузок, возникающих под действием гравитационных сил и многих других показателей. Кораблю на море необходимы такие качества, как устойчивость во время шторма, для речного судна важна минимальная осадка. При расчётах оптимальной конструкции точки экстремума на графике наглядно могут дать представление о наилучшем решении сложной проблемы. Задачи такого плана часто решаются в экономике, в хозяйственных областях, во множестве других жизненных ситуаций.

Из античной истории

Задачи на экстремум занимали даже древних мудрецов. Греческие учёные с успехом разгадали тайну площадей и объёмов путём математических вычислений. Это они первыми поняли, что на плоскости из разнообразных фигур, обладающих одним и тем же периметром, наибольшую площадь всегда имеет круг. Аналогичным образом шар наделён максимальным объёмом среди остальных предметов в пространстве с одинаковой величиной поверхности. Решению подобных задач посвятили себя такие известнейшие личности, как Архимед, Евклид, Аристотель, Аполлоний. Найти точки экстремума прекрасно удавалось Герону, который, прибегнув к расчётам, сооружал хитроумные устройства. К ним относились автоматы, перемещающиеся посредством пара, работающие по тому же принципу насосы и турбины.

Строительство Карфагена

Существует легенда, сюжет которой построен на решении одной из экстремальных задач. Результатом делового подхода, который продемонстрировала финикийская царевна, обратившаяся за помощью к мудрецам, стало строительство Карфагена. Земельный участок для этого древнего и прославленного города подарил Дидоне (так звали правительницу) вождь одного из африканских племён. Площадь надела не показалась ему вначале очень большой, так как по договору должна была покрываться воловьей шкурой. Но царевна повелела своим воинам разрезать её на тонкие полосы и составить из них ремень. Он получился настолько длинным, что охватил участок, где уместился целый город.

Истоки математического анализа

А теперь перенесёмся из античных времён в более позднюю эпоху. Интересно, что к осознанию основ математического анализа подтолкнула Кеплера в XVII веке встреча с продавцом вина. Торговец был настолько сведущ в своей профессии, что легко мог определить объём находящегося в бочке напитка, просто опуская туда железный жгут. Размышляя над подобным курьёзом, знаменитый учёный сумел решить для себя эту дилемму. Оказывается, искусные бочары тех времён наловчились изготавливать сосуды таким образом, чтобы при определённой высоте и радиусе окружности скрепляющих колец они имели максимальную вместимость.

Это стало для Кеплера поводом для дальнейших размышлений. Бочары пришли к оптимальному решению методом долгого поиска, ошибок и новых попыток, передавая свой опыт из поколения в поколение. Но Кеплер хотел ускорить процесс и научиться делать то же самое в короткий срок путём математических вычислений. Все его наработки, подхваченные коллегами, превратились в известные ныне теоремы Ферма и Ньютона - Лейбница.

Задача на нахождение максимальной площади

Представим, что мы имеем проволоку, длина которой равна 50 см. Как составить из неё прямоугольник, обладающий наибольшей площадью?

Начиная решение, следует исходить из простых и известных любому истин. Понятно, что периметр нашей фигуры будет составлять 50 см. Он же складывается из удвоенных длин обеих сторон. Это значит, что, обозначив за «Х» одну из них, другую возможно выразить как (25 - Х).

Отсюда получаем площадь, равную Х(25 - Х). Данное выражение можно представить как функцию, принимающую множество значений. Решение задачи требует найти максимальное из них, а значит, следует узнать точки экстремума.

Для этого находим первую производную и приравниваем её нулю. В результате получается простое уравнение: 25 - 2Х = 0.

Из него мы узнаём, что одна из сторон Х = 12,5.

Следовательно, другая: 25 - 12,5 = 12,5.

Получается, что решением задачи будет квадрат со стороной 12,5 см.

Как найти максимальную скорость

Рассмотрим ещё один пример. Представим, что существует тело, прямолинейное движение которого описывается уравнением S = - t 3 + 9t 2 - 24t - 8, где пройденное расстояние выражается в метрах, а время в секундах. Требуется найти максимальную скорость. Как это сделать? Скачала находим скорость, то есть первую производную.

Получаем уравнение: V = - 3t 2 + 18t - 24. Теперь для решения задачи снова нужно найти точки экстремума. Сделать это необходимо тем же способом, что и в предыдущей задаче. Находим первую производную от скорости и приравниваем её к нулю.

Получаем: - 6t + 18 = 0. Отсюда t = 3 с. Это время, когда скорость тела принимает критическое значение. Подставляем полученное данное в уравнение скорости и получаем: V = 3 м/с.

Но как понять, что это именно максимальная скорость, ведь критическими точками функции могут быть наибольшие или наименьшие её значения? Для проверки необходимо найти вторую производную от скорости. Она выражается числом 6 со знаком минус. Это значит, что найденная точка является максимумом. А в случае положительного значения второй производной был бы минимум. Значит, найденное решение оказалось правильным.

Приведённые в качестве примера задачи являются лишь частью из тех, которые возможно решить, умея находить точки экстремума функции. На самом деле их гораздо больше. А подобные знания открывают перед человеческой цивилизацией неограниченные возможности.

© БГЭУ Лекция № 2

проф. Дымков М. П.

Замечание 1. Обратное утверждение звучит несколько иначе. Если

функция возрастает на промежутке, то f ′ (x 0 )≥ 0 или не существует.

Пример 1.

y = x3

возрастает на

всей числовой

соответственно

f (x )> 0 , но в точке

x = 0 производная

f (0)= 0.

Пример 2 . Функция

x ≥ 0 ,

не имеет производной в точке

х=0

x < 0

(левая и правая производная различны), однако она возрастает при всех значениях х , в том числе и в точкех = 0.

Замечание 2. Опираясь на более «мягкие» условия, можно сформулировать прямую теорему: если производная функции, непрерывной на промежутке, неотрицательна, то функция на этом промежутке не убывает. Тогда прямая и обратная теоремы на формализованном языке звучат так:

для того,

чтобы непрерывная на промежутке функция y = f(x) была

неубывающей

этом промежутке, необходимо

и достаточно, чтобы

f ′ (x0 ) ≥ 0 .

Понятие экстремума

Определение.

x0 называется точкой

локального максимума

функции f (x) , если существует такая окрестность точки x0 , что для всех х из этой окрестности f(x) ≤ f(x0 ) .

Определение. Точка x0 называется точкой локального минимума функции f(x) , если существует такая окрестность точки x0 , что для всех х из этой окрестности f(x) ≥ f(x0 ) .

Значение функции в точке максимума называется локальным максимумом, значение функции в точке минимума - локальным минимумом данной функции. Максимум и минимум функции называются ее локальными экстремумами

(extremum – крайний).

Определение. Точка x0 называется точкой строгого локального максимума (минимума) функции y= f(x) , если для всех х из окрестности точки x0 верно строгое неравенство f(x) < f(x0 ) (соответственно

f (x) > f(x0 ) ).

Замечание. В приведенном определении локального экстремума мы не предполагаем непрерывности функции в точкеx 0 .

X ≠ 0 ,

разрывна в точке

х = 0, но имеет в этой

Функция y =

x = 0

точке максимум, поскольку существует окрестность точки х = 0, в которойf (x )< f (x 0 ).

Наибольшее (наименьшее) значение функции на промежутке называется глобальным экстремумом. Глобальный экстремум может достигаться либо в точках локального экстремума, либо на концах отрезка.

Необходимое условие экстремума

Теорема 2. (о необходимом условии экстремума).

Если функция y = f(x) имеет экстремум в точке x0 , то ее производная f′ (x0 ) в этой точке либо равна нулю, либо не существует.

◄Если в точке x 0 функция имеет экстремум и дифференцируема, то в

некоторой окрестности этой точки выполнены условия теоремы Ферма, следовательно, производная функции в этой точке равна нулю.

Но функция y = f (x ) может иметь экстремум и не быть дифференцируемой в этой точке. Достаточно указать пример. Примером может

служить функция y =

которая имеет минимум в точке

x = 0,

однако не

дифференцируема в этой точке.

Замечание

Геометрическую

иллюстрацию теоремы дает Рис.1. Функция

y = f (x ), график которой представлен на этом

y = f (x)

рисунке, имеет экстремумы в точках x 1 , x 3 , x 4 ,

производная

существует,

она равна нулю, в

обращается

бесконечность.

точках x 2 ,

функция экстремума не имеет,

причем в точке x 2 производная обращается в

бесконечность, в точке x 5

производная равна

Замечание 2. Точки, в которых выполняется необходимое условие

экстремума для непрерывной функции, называются критическими

Они определяются из уравнения

f (x )= 0

(стационарные

точки) или f

(x )= ∞ .

Замечание 3 . Не в каждой своей критической точке функция обязательно имеет максимум или минимум.

Пример 4. Рассмотрим функциюy = x 3 . Критической для этой функции

является точка х = 0, что следует из уравненияf ′ (x )= 3x 2 = 0. Однако эта функция при всехх является возрастающей и экстремума не имеет.

© БГЭУ Лекция № 2

Исследование функций с помощью производных проф. Дымков М. П.

Теорема 3.

(о достаточных условиях экстремума).

Пусть для

y = f(x) выполнены следующие условия:

1) y = f(x)

непрерывна в окрестности точки x0 ;

(x )= 0

f (x) = ∞

меняет свой знак.

(x) при переходе через точку x0

Тогда в точке x = x0 функция y= f(x) имеет экстремум:

минимум , если при переходе через точку x0

производная меняет свой знак

с минуса на плюс;

максимум , если при переходе через точку

x0 производная меняет свой

знак с плюса на минус.

f (x) при переходе через точку x0 не меняет своего

Если производная

знака, экстремума в точке x = x0 нет.◄

Условия теоремы можно свести в следующую таблицу

Знак производной

Экстремум

Максимум

Так как по условию f (x )< 0 приx < x 0 , то на левом относительно точки

x 0 интервале функция

убывает. Так как f (x )> 0 приx > x 0 ,

y = f(x)

относительно точки

интервале

функция f (x ) возрастает.

Следовательно,

f (x0 )

есть наименьшее значение функции f (x ) в окрестности

x 0 , а это означает, чтоf (x 0 )

есть локальный минимум функции

f (x) .

Если при переходе с левого интервала на правый функция продолжает убывать, то в точке x 0 не будет достигаться минимальное значение функции

(экстремума нет).

Аналогично доказывается существование максимума.

На рис. 2 a-h представлены возможные случаи наличия или отсутствия экстремума непрерывной функции, производная которой в критической точке равна нулю или обращается в бесконечность.

© БГЭУ Лекция № 2

Исследование функций с помощью производных

проф. Дымков М. П.

Замечание.

Если условие непрерывности функции в

не выполнено, то вопрос о наличии

экстремума остается открытым.

Пример 5.

Рассмотрим

разрывную

X + 1,

x ≤ 0,

(рис.3). Производная

этой функции меняет знак

f (x) =

x > 0

переходе через точку x 0 = 0 ,

однако функция в точке

x 0= 0

экстремума не

Пример 6. Пусть дана функция

X ≠ 0,

(рис.4). Как видно из рисунка,

f (x)

f (x) =

x = 0

имеет локальный максимум в точке

x 0= 0

Однако функция

имеет разрыв в точке x 0 = 0 .

Замечание

функция имеет в точке x 0 экстремум, например,

минимум, то необязательно слева от точки

x 0 функция монотонно убывает, а

справа от x 0 монотонно возрастает.

Пример 7. Пусть дана функция

2 − cos

X ≠ 0,

f (x) =

x = 0

y = 3 x2

y = x

Можно показать, что в

х = 0

непрерывна

Производная функции

f (x) = 2 x

− sin

в любой окрестности

точки х = 0 меняет знак бесконечно много раз. Поэтому функцияf (x ) не

является монотонно убывающей или возрастающей ни слева, ни справа от точки х = 0.

Схема исследования функции на экстремум:

1) найти производную f ′ (x );

2) найти критические точки, т.е. такие значения х , в которыхf ′ (x )= 0 или

f ′ (x ) = ∞;

3) исследовать знак производной слева и справа от каждой критической

© БГЭУ Лекция № 2

Исследование функций с помощью производных

проф. Дымков М. П.

точки. Если при переходе через критическую точку

производная f (x )

свой знак с плюса на минус, то в точке x 0

f (x)

имеет максимум, если

знак f (x )

меняется с минуса на плюс,

то в точке x 0

функция f (x )

Если при переходе х через критическую точкуx 0 знакf

(x ) не

меняется, то в точке x 0 функцияf (x ) не имеет ни максимума, ни минимума; 4) найти значения функции в экстремальных точках.

Теорема 4. (2 -ое достаточное условие экстремума). Пусть для функцииy = f (x ) выполнены следующие условия:

1. y = f (x ) непрерывна в окрестности точкиx 0 ,

2. f ′ (x )= 0 в точкеx 0

3. f ′′ (x )≠ 0 в точкеx 0 .

Тогда, в точке x 0

достигается экстремум, причем:

если f ′′ (x 0 )> 0, то в точке

x = x0

y = f(x)

имеет минимум,

f ′′ (x 0 )< 0 , то

x = x0

функция y = f (x ) имеет максимум.

◄ По определению 2-й производнойf

f ′ (x) − f′ (x0 )

) = lim

− x

x→ x0

Но по условию f

) = lim

(x )= 0.

− x

(x )> 0, то

x→ x0

f ′ (x)

в некоторой

окрестности

x = x.

x < x

x − x0

x > x0

дробь положительна,

при условии

положительна, если f (x )< 0 .

f (x ) при переходе через точку

x = x0

меняет знак,

f (x )> 0 . Следовательно,

поэтому есть экстремум. Знак производной меняется с минуса на плюс, значит, это минимум. Аналогично доказывается случай f ′′ (x 0 )< 0 .

Пример 8 . Исследовать на экстремум функциюy = x 2 + 2x + 3. Находим производнуюy ′= 2x + 2 .

1) Находим критические точки, для чего приравниваем к нулю производную: y ′= 2x + 2= 0,→ x 0 = - 1.

2) Изучаем знак производной слева и справа от этой точки (рис. 6).

Поскольку знак производной меняется с минуса на плюс, в точке х = − 1 достигается минимум.

3) Находим величину минимума: ymin (− 1)= 2.

.

3) Исследуем знак у" слева и справа от точкиx = 0. Очевидно,f ′ (x )< 0 ,

минимума данной функции.

4) ymin (0)= 1.

Пример 10.

Исследовать на экстремум функцию y = e -x 2 .

1) Находим первую производную: y ′= - 2xe -x 2 .

2) Приравнивая производную нулю, находим единственную критическую точку x = 0.

3) Далее находим вторую производную: y ′′= − 2e - x 2 + 4x 2 e − x 2 . Ее значение

в точке x = 0 равно -2.

4) Делаем вывод о наличии максимума функции и вычисляем: y max (0)= 1.

Наибольшее и наименьшее значение функции, непрерывной на отрезке

Если функция f (x ) определена и непрерывна на отрезке [а ;b ], то,

согласно 2-й теореме Вейерштрасса, она на этом отрезке достигает своего наибольшего и наименьшего значения.

Если свое наибольшее значение М функцияf (x ) принимает вовнутренней точке x 0 отрезка [а ;b ], тоM = f (x 0 ) будет локальным максимумом функцииf (x ), т. к. в этом случае существует окрестность точкиx 0 такая, что значенияf (x ) для всех точекх из этой окрестности будут не

больше f (x 0 ) .

Однако свое наибольшее значение М функцияf (x )может принимать и на концах отрезка [а ;b ]. Поэтому, чтобы найти наибольшее значениеМ непрерывной на отрезке [а ;b ] функцииf (x ), надо найти все максимумы функции в интервале(а ;b ) и значенияf (x ) на концах отрезка [а ;b ] и выбрать

среди них наибольшее число. Вместо ограничиться нахождением значений Наименьшим значением m непрерывной

исследования на максимум можно функции в критических точках. на отрезке [а ;b ] функцииf (x ) будет

наименьшее число среди всех минимумов функции f (x ) в интервале (a ;b ) и значенийf (a ) иf (b ) .

f ′ (x) -

Исследовать на экстремум функцию y = 3

1) Находим производную y ′=