Система замкнутого дыхания своими руками. Российский спецназ получит двухсредный дыхательный аппарат

Inspiration - первый сертифицированный в странах ЕС дыхательный аппарат замкнутого цикла. Глубина применения - до 50 м (рекомендуемая - до 40 м) с воздухом в качестве разжижающего газа и до 100 м с гелиоксом

Акроним SCUBA расшифровывается как Self-Contained Underwater Breathing Apparatus (автономный подводный дыхательный аппарат ). При пользовании системой с открытым циклом дыхания большую часть вдыхаемого кислорода мы просто выдыхаем в воду.

Слева. Дайвер готовится использовать регенератор при прохождении курса Try-a-Rebreather в британском клубе BS-AC
В центре. Рекреационным регенератором Drager Dolphin Rebreather полузамкнутого цикла на найтроксе пользоваться легче, чем аппаратами замкнутого цикла.
Справа. Вот что скрыто под футуристическим корпусом регенератора замкнутого цикла Ambient Pressure (Buddy) Inspiration

Некоторые компании трансформировали регенераторы замкнутого и полузамкнутого цикла дтя нужд рекреационного дайвинга . Выдыхаемый дайвером углекислый газ химическим способом извлекается из выдыхаемого газа в результате пропускания последнею через известково-содовый скруббер с выделением смеси гидроксидов кальция и натрия. В очищенный таким образом газ добавляется некоторое количество кислорода, и получаемая в итоге смесь вновь вдыхается.

Акваланг открытого дыхательного цикла
1. Баллон с дыхательным газом
2. Вентиль баллона
3. Первая ступень регулятора
4. Вторая ступень регулятора
5.Манометр

Дыхательный аппарат полузамкнутого цикла
1. Загубник
2. Запорный клапан загубника
3. Нижний обратный клапан
4. Верхний обратный клапан
5. Поглотитель СО2
6. Контрланг
7. Предохранительный клапан
8. Баллон с дыхательным газом
9. Вентиль баллона
10. Регулятор
11. Байпас подачи дыхательного газа с ручной регулировкой
12. Манометр
Дыхательный аппарат замкнутого цикла
1. Загубник
2. Запорный клапан загубника
3. Нижний обратный клапан
4. Верхний обратный клапан
5. Поглотитель СО2
6. Контрланг
7. Клапан подачи разжижающего газа
8. Предохранительный клапан
9. Баллон с разжижающим газом
10. Запорный вентиль
11. Регулятор разжижающего газа
12. Байпас подачи разжижающего газа с ручной регулировкой
13. Манометр разжижающего газа
14. Баллон с кислородом
15. Запорный вентиль
16. Кислородный регулятор
17. Байпас подачи кислорода с ручной регулировкой
18. Кислородный манометр
19. Кислородные датчики
20. Кабели кислородных датчиков
21. Электронный блок
22. Кислородный электромагнитный клапан
23. Основной дисплей
24. Вспомогательный дисплей

Поскольку химическая реакция, в результате которой поглощается двуокись углерода, ваяется экзотермической, идет с выделением тепла и влаги, вдыхаемый газ теплый и влажный. Регенераторы замкнутого цикла не выбрасывают в воду никакого газа. Регенераторы полузамкнутого цикла выбрасывают малую часть выдыхаемого газа при каждом выдохе. В итоге дайверы могут длительное время оставаться под водой, располагая лишь небольшим объемом дыхательной смеси. Регенераторы могут работать на найтроксе, а для более глубоких погружений - на граймиксе или гелиоксе.

Дыхательные аппараты подобною типа требуют тщательной подготовки и проверки работоспособности. Они нуждаются в довольно сложном обслуживании, требуют постоянного контроля за показаниями измерительных приборов.

Преимущества использования регенератора

  • Эффективность использования газа, что существенно, когда дело касается дорогих газов, в особенности гелия.
  • Лучшая видимость в замкнутом пространстве из-за меньшего количества взвешенных твердых частиц в воде.
  • Тихая работа, благодаря чему дайвер может ближе подойти к особенно осторожным морским обитателям.

Недостатки

  • Высокая стоимость - регенераторы в целом дороже обычных аквалангов.
  • Сложность эксплуатации требует дополнительной подготовки, неукоснительного внимания к деталям, так как аппараты включают большое число компонентов, способных выйти из строя. Теплая и влажная среда внутри шлангов и контр-ланга идеальна для развития бактерий - эти элементы необходимо разбирать и чистить после каждого дня погружений.
  • Большинство производителей отказываются продавать регенераторы тем. кто не прошел специального курса подготовки но эксплуатации подобных аппаратов.

Энциклопедичный YouTube

    1 / 5

    ✪ Взрываем РП-4 | Делаем большой бум

    ✪ Донецкий завод горноспасательной аппаратуры

    ✪ разборка респиратора Р-30,Р-34

    ✪ Deutscher Sauerstoff Selbstretter SAR 30 review (ger.)

    ✪ Разведопрос: Юрий Бычков о работе пожарного

    Субтитры

Ребризёры замкнутого цикла

Кислородный ребризёр замкнутого типа - O2-CCR

Это родоначальник ребризёров вообще. Первый такой аппарат был создан и применен британским изобретателем Генри Флюссом в середине XIX века при работе в затопленной шахте. Кислородный ребризёр замкнутого цикла имеет все основные детали, характерные для ребризёра любого типа: дыхательный мешок, канистра с химпоглотителем, дыхательные шланги с клапанной коробкой, байпасный клапан (ручной или автоматический), травящий клапан и баллон с редуктором высокого давления. Принцип работы следующий: кислород из дыхательного мешка поступает через невозвратный клапан в легкие водолаза, оттуда, через другой невозвратный клапан кислород и образовавшийся при дыхании углекислый газ попадает в канистру химпоглотителя, где углекислый газ связывается каустической содой , а оставшийся кислород возвращается в дыхательный мешок. Кислород, заменяющий потребленный водолазом, подается в дыхательный мешок через калиброванную дюзу со скоростью примерно 1 - 1,5 литра в минуту или же добавляется водолазом с помощью ручного клапана. При погружении обжим дыхательного мешка компенсируется либо за счет срабатывания автоматического байпасного клапана, либо с помощью ручного клапана, управляемого самим водолазом. Надо заметить, что, несмотря на название «замкнутый», любой ребризёр замкнутого цикла выпускает через травящий клапан пузырьки дыхательного газа во время всплытия. Чтобы избавиться от пузырей, на травящие клапаны устанавливают колпачки из мелкой сетки или поролона. Это простое устройство весьма эффективно и снижает диаметр пузырьков до 0,5 мм. Такие пузырьки полностью растворяются в воде уже через полметра и не демаскируют водолаза на поверхности.

Ограничения, присущие кислородным ребризёрам замкнутого цикла, обусловлены в первую очередь тем, что в данных аппаратах применяется чистый кислород, парциальное давление которого и является ограничивающим фактором по глубине погружения. Так, в спортивных (рекреационных и технических) системах обучения этот предел составляет 1,6 ата, что ограничивает глубину погружения 6-ю метрами в теплой воде при минимальной физической нагрузке. В военно-морском флоте ФРГ такой предел составляет 8 метров, а в ВМФ СССР - 22 метра.

Ребризёр замкнутого цикла с ручной подачей кислорода - mCCR или KISS

Эта система называется ещё K.I.S.S. (Keep It Simple Stupid) и изобретена канадцем Гордоном Смитом. Это ребризёр замкнутого цикла с приготовлением смеси «на лету» (selfmixer), но в максимально простом исполнении. Принцип работы аппарата состоит в том, что используются 2 газа. Первый, называемый дилюэнтом, автоматически или вручную подается в дыхательный мешок аппарата через легочной автомат или байпасный клапан соответственно для компенсации обжима дыхательного мешка при погружении. Второй газ (кислород) подается в дыхательный мешок через калиброванную дюзу с постоянной скоростью, меньшей, однако, чем темп потребления кислорода водолазом (примерно 0,8-1,0 литров в минуту). При погружении водолаз обязан сам контролировать парциальное давление кислорода в дыхательном мешке по показаниям электролитических датчиков парциального давления кислорода и добавлять недостающий кислород с помощью ручного клапана подачи. На практике это выглядит так: перед погружением водолаз добавляет в дыхательный мешок какое-то количество кислорода, устанавливая по датчикам требуемое парциальное давление кислорода (в пределах 0,4-0,7 ата). В процессе погружения для компенсации по глубине в дыхательный мешок автоматически или вручную добавляется газ-дилюэнт, снижая концентрацию кислорода в мешке, но парциальное давление кислорода всё равно остается относительно стабильным из-за роста давления водяного столба. Достигнув запланированной глубины, водолаз с помощью ручного клапана устанавливает какое-либо парциальное давление кислорода (обычно 1,3) работает на грунте, раз в 10-15 минут контролируя показания датчиков парциального давления кислорода и добавляя при необходимости кислород для поддержания необходимого парциального давления. Обычно за 10-15 минут парциальное давление кислорода снижается на 0,2-0,5 ата в зависимости от физической нагрузки.

В качестве газа-дилюэнта может использоваться не только воздух, но и тримикс или гелиокс , что позволяет погружаться с таким аппаратом на весьма приличные глубины, однако относительное непостоянство парциального давления кислорода в дыхательном контуре затрудняет точный расчет декомпрессии. Обычно с аппаратами, имеющими только индикацию парциального давления кислорода в контуре, погружаются не глубже 40 метров. Если же к контуру подключен компьютер, способный отслеживать парциальное давление кислорода в контуре и рассчитывать декомпрессию на лету, то глубина погружения может быть увеличена. Самым глубоким погружением с аппаратом подобного типа можно считать погружение Матиаса Пфайзера, нырнувшего в Хургаде на 160 (сто шестьдесят) метров. Кроме датчиков парциального давления кислорода Матиас использовал ещё и компьютер VR-3 с кислородным датчиком, который отслеживал парциальное давление кислорода в смеси и рассчитывал декомпрессию с учетом всех изменений дыхательного газа.

Существует большое количество переделок коммерческих, военных и спортивных ребризёров под систему K.I.S.S., но всё это, разумеется, неофициально и под личную ответственность переделавшего и использующего их водолаза.

Ребризёр замкнутого цикла с электронным управлением - eCCR

Собственно, настоящий ребризёр замкнутого цикла (electronicaly controled selfmixer). Первый в истории такой аппарат был изобретен Вальтером Старком и назывался Electrolung. Принцип функционирования состоит в том, что газ-дилюэнт (воздух или тримикс или гелиокс) подается ручным или автоматическим байпасным клапаном для компенсации обжима дыхательного мешка при погружении, а кислород подается с помощью электромагнитного клапана, управляемого микропроцессором. Микропроцессор опрашивает 3 кислородных датчика, сравнивает их показания и усредняя два ближайших, выдает сигнал на соленоидный клапан. Показания третьего датчика, отличающиеся от двух других сильнее всего - игнорируются. Обычно соленоидный клапан срабатывает раз в 3-6 секунд в зависимости от потребления водолазом кислорода.

Погружение выглядит примерно так: водолаз вводит в микропроцессор два значения парциального давления кислорода, которые электроника будет поддерживать на разных этапах погружения. Обычно это 0,7 ата для выхода с поверхности на рабочую глубину и 1,3 ата для нахождения на глубине, прохождения декомпрессии и всплытия до 3 метров. Переключение осуществляется тумблером на консоли ребризёра. В процессе погружения водолаз обязан контролировать работу микропроцессора для выявления возможных проблем с электроникой и датчиками.

Конструктивно ребризёры замкнутого цикла с электронным управлением практически не имеют ограничений по глубине и реальная глубина, на которой возможно их использование, обусловлена в основном погрешностью кислородных датчиков и прочностью корпуса микропроцессора. Обычно предельная глубина составляет 150-200 метров. Других ограничений электронные ребризёры замкнутого цикла не имеют. Основным недостатком этих ребризёров, существенно ограничивающим их распространение является высокая цена самого аппарата и расходных материалов. Важно помнить, что обычные компьютеры и декомпрессионные таблицы не подходят для погружений с электронными ребризёрами, поскольку парциальное давление кислорода остается неизменным на протяжении практически всего погружения. С ребризёрами такого типа должны использоваться либо специальные компьютеры (VR-3, VRX, Shearwater Predator, DiveRite NitekX, HS Explorer) или же погружение должно рассчитываться предварительно с помощью таких программ, как Z-Plan или V-Planer по минимально возможному парциальному давлению кислорода (при этом необходимо очень строго следить, чтобы значение парциального давления не снижалось ниже расчётного, иначе риск получить ДКБ многократно возрастает). Обе программы рекомендованы для применения производителями и создателями всех электронных ребризёров.

Ребризёры полузамкнутого цикла

Ребризёр полузамкнутого цикла с активной подачей - aSCR

Это наиболее распространенный в спортивном дайвинге тип ребризёра. Принцип его действия в том, что в дыхательный мешок с постоянной скоростью подается через калиброванную дюзу дыхательная смесь EANx Nitrox . Скорость подачи зависит только от концентрации кислорода в смеси, но не зависит от глубины погружения и физической нагрузки. Таким образом, концентрация кислорода в дыхательном контуре остается постоянной при постоянной физической нагрузке. Очевидно, что при таком способе подачи дыхательного газа возникают его излишки, которые удаляются в воду через травящий клапан. Вследствие этого ребризёр полузамкнутого цикла выпускает несколько пузырьков дыхательной смеси не только при всплытии, но и при каждом выдохе водолаза. Стравливается примерно 1/5 часть выдыхаемого газа. Для повышения скрытности на травящие клапаны могут устанавливаться колпачки-дефлекторы, аналогичные применяемым в кислородных ребризёрах замкнутого цикла.

В зависимости от концентрации кислорода в дыхательной смеси EANx (Nitrox)скорость подачи может варьироваться в пределах от 7 до 17 литров в минуту, таким образом, время нахождения на глубине при использовании ребризёра полузамкнутого цикла зависит от объёма баллона с дыхательным газом. Глубина погружения ограничивается парциальным давлением кислорода в дыхательном мешке (не должно превышать 1,6 ата) и установочным давлением редуктора. Дело в том, что истечение газа через калиброванную дюзу имеет сверхзвуковую скорость, что позволяет сохранять подачу неизменной до тех пор, пока установочное давление редуктора превышает давление окружающей среды в два или более раз.

Ребризёр полузамкнутого цикла с пассивной подачей - pSCR

Принцип работы аппарата состоит в том, что часть выдыхаемого газа принудительно стравливается в воду (обычно это 1/7 до 1/5 от объёма вдоха), а объём дыхательного мешка заведомо меньше объёма легких водолаза. За счет этого на каждый вдох через легочной автомат в дыхательный контур подается свежая порция дыхательного газа. Такой принцип позволяет использовать в качестве дыхательной смеси любые газы, кроме воздуха и весьма точно поддерживать парциальное давление кислорода в дыхательном контуре вне зависимости от физической нагрузки и глубины. Поскольку подача дыхательного газа осуществляется только на вдох, а не постоянно, как в случае с ребризёрами с активной подачей, то ребризёр полузамкнутого цикла с пассивной подачей ограничен по глубине только парциальным давлением кислорода в дыхательном контуре. Существенным отрицательным моментом в конструкции ребризёров полузамкнутого цикла с пассивной подачей является то, что автоматика приводится в действие за счет дыхательных движений водолаза, а значит, тяжесть дыхания заведомо больше чем на аппаратах другого типа. Аппараты, использующие подобный принцип работы, предпочитают использовать подводные спелеологи и последователи учения DIR в дайвинге.

Механический селфмиксер - mSCR

Весьма редкая конструкция ребризёра полузамкнутого цикла. Первый такой аппарат был создан и испытан Drägerwerk в 1914 году. Принцип работы следующий: имеются 2 газа (кислород и дилюэнт), которые подаются через калиброванные дюзы в дыхательный мешок, как в ребризёре полузамкнутого цикла с активной подачей. Причем, подача кислорода осуществляется с постоянной объемной скоростью, как в замкнутом ребризёре с ручной подачей, а дилюэнт поступает через дюзу с дозвуковой скоростью истечения, причем количество подаваемого дилюэнта увеличивается с увеличением глубины. Компенсация обжима дыхательного мешка осуществляется подачей дилюэнта через автоматический байпасный клапан, а избытки дыхательной смеси стравливаются в воду так же, как в случае с ребризёром полузамкнутого цикла с активной подачей. Таким образом, только за счет изменения давления воды в процессе погружения происходит изменение параметров дыхательной смеси, причем в сторону уменьшения концентрации кислорода при увеличении глубины. Механическим селфмиксерам свойственно изменение концентрации кислорода в дыхательном мешке при изменении физической нагрузки, и это прямое следствие того, что их принцип действия очень схож с принципом, по которому построены полузамкнутые ребризёры с активной подачей.

Ограничения по глубине для механического селфмиксера такие же, как для ребризёра полузамкнутого цикла с активной подачей с тем исключением, что только установочное давление кислородного редуктора должно превышать давление окружающей среды в 2 и более раз. По времени же селфмиксер в основном ограничен объёмом газа-дилюэнта, скорость подачи которого увеличивается с глубиной. В качестве газа-дилюэнта могут использоваться воздух, Trimix и HeliOx .

Ребризёр полузамкнутого цикла с активной подачей с приготовлением смеси в процессе подачи

Очень редкая конструкция ребризёра полузамкнутого цикла. Данный тип ребризёра по своему принципу работы полностью аналогичен ребризёру полузамкнутого цикла с активной подачей за исключением того, что дыхательная смесь приготавливается не заранее, а в процессе работы ребризёра. Принцип работы следующий: имеются 2 газа (кислород и дилюэнт), которые подаются через калиброванные дюзы в дыхательный мешок, так же как в ребризёре полузамкнутого цикла с активной подачей. Подача и кислорода и дилюэнта происходит с постоянной скоростью независимо от глубины, при этом газы смешиваются в дыхательном мешке. В зависимости от скорости подачи кислорода и дилюэнта, мы получаем нужный нам газ. Данному типу ребризёра присущи все недостатки, что и ребризёру полузамкнутого типа с активной подачей, кроме того, он сложнее конструктивно и требует как минимум два баллона с газами (в то время как для нормальной работы aSCR необходим только один баллонон с газом). Преимущество ребризёров этого типа состоит в том, что нет нужды заранее готовить дыхательную смесь и есть возможность задавать нужный газ в контуре (регулируя скорость подачи О2 и дилюэнта) не меняя исходные газы, а лишь их пропорцию. В качестве газа-дилюэнта могут использоваться: воздух, Trimix и HeliOx .

Регенеративные ребризёры

Регенеративные ребризёры могут работать как по замкнутой, так и по полузамкнутой схеме дыхания. Основное их отличие в том, что кроме (вместо) обычного поглотителя углекислого газа используется регенеративное вещество: О3 (о-три), ВПВ или ОКЧ-3 созданное на основе пероксида натрия . Регенеративное вещество способно не только поглощать углекислый газ, но и выделять кислород. Принцип работы регенеративного ребризёра состоит в том, что потребление кислорода водолазом компенсируется не только за счет подачи свежей дыхательной смеси из баллона, но и за счет выделения кислорода регенеративным веществом.

Классическими представителями регенеративных ребризёров можно назвать аппараты ИДА-59, ИДА-71, ИДА-72, ИДА-75, ИДА-85.

Отдельно, как наиболее удачную конструкцию можно отметить аппараты типа ИДА-71, которые до сих пор используются в подразделениях боевых пловцов и водолазов-разведчиков. Конструкция аппарата и принцип его работы просты и доступны. При грамотной эксплуатации он очень надёжен. Несмотря на его «почтенный» возраст (в принципе, аппарат считают морально устаревшим) считается наиболее удачной конструкцией аппаратов подобного типа и выпускается до сих пор (завод «Респиратор»). Аппараты ИДА-75 и ИДА-85 были выпущены опытной серией, но в связи с развалом СССР в серию так и не пошли. После развала СССР конструкторские бюро пока не изобрели аппарата превосходящего по своим характеристикам ИДА-71.

При спусках в аппаратах замкнутого цикла на чистом кислороде не используются режимы декомпрессии. Согласно Правилам водолазной службы ВМФ, спуски на чистом кислороде разрешены на глубины до 20 метров. При использовании смесей типа АКС и ААКС бездекомпрессионные спуски допускаются на глубины до 40 метров - в аппарате ИДА-71, и до 60 метров в аппаратах ИДА-75 и ИДА-85. Максимально допустимое бездекомпрессионное время пребывания на этих глубинах составляет 30 минут. При превышении указанного времени пребывания выход осуществляется с соблюдением режима декомпрессии.

В аппарате с замкнутым циклом дыхания

Я должен сознаться, что пессимистические высказывания Джуда Вандевера, здесь, на борту „Оршиллы“, в нескольких милях от станции Гопкинса, были подобны холодному душу.

Но все же это лучше, чем отступить. Не всегда борьба венчается поражением.

Экологическая битва - дело сложное: тысячу раз потеряешь, тысячу раз начнешь сначала, однако во имя будущих поколений мы должны вести ее беспроигрышно. Мы должны сделать это для самих себя.

Джуд Вандевер согласен с этим полностью. Большая часть его жизни ушла на поиски средств спасения последних каланов, и уж его-то никак не упрекнешь в пораженчестве… Попросту ученый не может опираться только на свои чувства: реалисты должны смотреть правде в лицо.

Интересно, что же хочет сказать мне, именно сейчас, пока я объясняю все это, калан, который смотрит на меня из водорослей метрах в двух от нас…

Ныряльщики „Калипсо“, которые были уже наготове, спускаются в воду. Мгновенная реакция: каланы, еще секунду назад настроенные вполне добродушно, разбегаются в разные стороны. Действительно, до сих пор ныряльщик был их заклятым врагом - он приходил со своим подводным ружьем, чтобы истреблять их. Первый раз каланы имеют дело с посетителями без оружия - но их право на недоверие к человеку вполне законно.

До определенного момента, однако. Есть еще одно обстоятельство.

Нам понадобилось некоторое время, чтобы понять, что вид и шум пузырьков воздуха из наших аквалангов привлекает их и отпугивает одновременно. Если мы действительно хотим приблизиться к каланам в их среде, нам следует найти для этого какой-то другой, более спокойный способ.

Пока пловцы поднимаются на поверхность с пустыми раковинами морского уха - каланы отбросили их, после того как оторвали моллюсков от подводных скал и съели их плоть, - я говорю себе, что существуют лишь два способа приблизиться к каланам, поиграть в прятки среди морских водорослей с этими застенчивыми клоунами - либо аппарат с замкнутым циклом дыхания либо ничего.

Кислородный аппарат с замкнутым циклом дыхания, основным достоинством которого являются отсутствие пузырьков воздуха и полная бесшумность, был создан военными для своих собственных нужд. Благодаря ему бойцы-подводники не выдают себя дыханием и становятся неразличимыми с поверхности.

Мы применяли эту хитрую систему в тех случаях, когда имели дело с дикими зверями, которых гирлянды серебристых пузырьков и шум дыхания пловцов в обыкновенных скафандрах приводили в ужас.

Но я не скрываю, что от этого я ничего не выигрываю. Хотя пловцы „Калипсо“ имеют большой опыт работы со всевозможными подводными аппаратами, я не люблю, когда они пользуются кислородными аппаратами. Кислородный аппарат доставляет многочисленные неприятности даже хорошо подготовленным пловцам. С подобным аппаратом любая ошибка может стать роковой.

Суть аппарата заключается в том, что он снабжен гранулированным веществом, которое регенерирует воздух, выдыхаемый пловцом в дыхательный мешок. Если из системы ничего и не выходит наружу, то следует внимательно следить за тем, чтобы ни одна капля воды туда не проникла: эффективность очистительного резервуара будет нарушена, и это чревато для человека серьезными и болезненными ожогами полости рта.

Каланиха укусила Филиппа Кусто, потому что он ей нравится.

Но основная опасность таится в использовании чистого кислорода. Этот газ, когда он поступает в большом количестве в кровь, - что происходит при увеличении давления воды соответственно глубине погружения, - вызывает серьезные органические нарушения. Он действует на нервную систему, вызывая знаменитое „глубинное опьянение“, которое ведет к судорогам и коме - и в последнем случае к печальному концу.

Пловцы и каланы в заливе Стилуотер.

Глубина, на которой ощущаются первые признаки „кислородного опьянения“, в среднем равняется всего 7 метрам: серьезное ограничение…

Из книги Антисемитизм в Советском Союзе автора Шварц Соломон Меерович

Из книги Владимир Путин автора Медведев Рой Александрович

Из книги Люди молчаливого подвига автора Василевский Александр Михайлович

3. До последнего дыхания Когда в Москве решался вопрос о составе организации «Рамзай», Зорге остановил свой выбор на Вукеличе. Выбор не был случайностью или результатом спешки. Рихард основательно взвесил все, что имело отношение к жизненному пути Вукелича.Бранко

Из книги Сугубо доверительно [Посол в Вашингтоне при шести президентах США (1962-1986 гг.)] автора Добрынин Анатолий Фёдорович

Работа в центральном аппарате МИД После защиты диссертации меня назначили на работу в МИД в качестве помощника заведующего Учебным отделом, поскольку у меня была теперь ученая степень. Отдел был далек от практической дипломатической деятельности, поскольку занимался

Из книги Абд-аль-Кадир автора Оганисьян Юлий

Не переводя дыхания Эта внутренняя война давалась Абд-аль-Кадиру не менее трудно, чем борьба против французов. И победы и поражения в этой войне имели одинаково горький привкус, потому что в любом случае приходилось сражаться со своими земляками и единоверцами. Но это

Из книги Явка до востребования автора Окулов Василий Николаевич

1. РАБОТА В ЦЕНТРАЛЬНОМ АППАРАТЕ РАЗВЕДКИ В Москву мы вернулись в праздник - 9 мая 1959 года, и рано утром следующего дня я вылетел в Архангельск к больному отцу.По возвращении был отчет у заместителя начальника Главка. Все прошло гладко. Похвалили, объявили о повышении в

Из книги Революция Гайдара автора Кох Альфред Рейнгольдович

Сергей Шахрай: «После этих событий Ельцин стал более замкнутым, более злым и мстительным» Сергей Шахрай, как и Андрей Козырев, не был членом гайдаровской команды. В публичную политику он пришел на полтора года раньше и к ноябрю 1991 года уже был, как теперь модно выражаться,

Из книги Беспокойное сердце автора Семичастный Владимир Ефимович

В аппарате ЦК КПСС Известие о том, что мне собираются доверить отдел ЦК партии по кадрам союзных республик, было для меня неожиданным. Я весь был поглощен работой в комсомоле. Проектов было много, контакт с работниками ЦК ВЛКСМ хороший, так что вроде бы ничто не предвещало

Из книги Мерецков автора Великанов Николай Тимофеевич

В окружном аппарате Когда началась военная реформа, Мерецков не раз высказывал желание поработать в аппарате военного округа. Объяснял это тем, что «не обладал опытом штабной работы в масштабе военного округа и не участвовал в достаточно крупных организационных

Из книги Роман с Бузовой. История самой красивой любви автора Третьяков Роман

БЕЗ ДЫХАНИЯ РомаМы с радостью примеряли гидрокостюмы для погружения под воду. Я с трудом выбрал себе костюм, а ей, как всегда, было все к лицу, «Она великолепна!» - постоянно крутилось у меня в голове. Я так хочу ее! Мы прикасаемся друг к другу, и нас просто трясет от страсти.

Из книги Женское лицо СМЕРШа автора Терещенко Анатолий Степанович

В ЦЕНТРАЛЬНОМ АППАРАТЕ Лейтенант госбезопасности в отставке Анна Степановна Швагерева - оперуполномоченный отдела кадров ГУКР СМЕРШ НКО СССР.- Анна Степановна, что для вас война?- Интересный вопрос. Простой и сложный - одновременно. Прежде всего - бедствие,

Из книги Чекист Вася Исаев автора Маркевич Михаил Андреевич

До последнего дыхания В 1929 году, когда участились нарушения границы белогвардейскими бандами, Вася стал добиваться, чтобы его отправили в один из пограничных отрядов. И настоял на своем. Тепло прощались чекисты со своим товарищем....Ранним августовским утром советскую

Из книги Время Путина автора Медведев Рой Александрович

Перед новым политическим циклом Осенью 2003 года завершался пятый в истории новой России и первый в новом столетии политический цикл, начало которому было положено событиями и выборами 1999–2000 годов. Остались позади выборы в десяти регионах страны, которые показали нам

Из книги Подвиг 1972 № 06 (Приложение к журналу «Сельская молодежь») автора Лиханов Альберт Анатольевич

6. НЕ ПЕРЕВОДЯ ДЫХАНИЯ В воздухе закружились немецкие бомбардировщики - снова прилетели обрабатывать район метизного завода, мясокомбината и бензохранилища. Мы уже изучили тактику гитлеровских летчиков и знали, что в первом заходе они будут сыпать крупнокалиберные

Из книги Сергей Круглов [Два десятилетия в руководстве органов госбезопасности и внутренних дел СССР] автора Богданов Юрий Николаевич

Подводный дыхательный аппарат относится к области водолазной техники, а именно к подводным дыхательным аппаратам, и может использоваться при проведении водолазных спусков, подводно-спасательных работ, подводных технических работ. Задачей полезной модели является расширение возможностей использования подводного дыхательного аппарата открытого цикла дыхания, повышение безопасности водолазных спусков, упрощение переоборудования подводного дыхательного аппарата и, как следствие, его удешевление. Техническим результатом от использования полезной модели является мобильность размещения поглотительного патрона и баллонов в конструкции подводного дыхательного аппарата открытого цикла.


Полезная модель относится к области водолазной техники, а именно к подводным дыхательным аппаратам, и может использоваться при проведении водолазных спусков, подводно-спасательных работ, подводных технических работ.

Известен подводный дыхательный аппарат открытого цикла (Памятка подводного пловца. Ресурс «Библиотека Черноморского пловца» http://divinginfo.narod.ru/library/Rukovodstvo_dlia_plovtsov_kmas.doc), включающий в свой состав баллон с запорным устройством, редуктор, понижающий давление газовой смеси в баллоне; основные элементы конструкции данного аппарата имеют модульный характер, как следствие, могут размещаться в различных местоположениях, необходимых для конкретной задачи проведения подводных спусков, а именно могут быть размещены на спине, на боку или на груди водолаза, а также могут быть присоединены к основному дыхательному аппарату в качестве резерва. Данный аппарат принят за наиболее близкий аналог заявляемой полезной модели. Недостатком аппарата является то, что он имеет небольшое время защитного действия, обусловленное открытым циклом дыхания.

Известен подводный дыхательный аппарат замкнутого цикла дыхания APDiving Vision (Inspiration. Closed Circuit Rebreather. User Instruction Manual. http://www.apdiving.com/ , http://www.smrebreathers.ru/rebreathers/review/Inspiration_Evolution.htm), содержащий баллоны с запорными устройствами, редуктор, подвесную систему, поглотительный патрон, корпус, клапанную коробку, дыхательные мешки, емкость компенсации плавучести, запасной легочный автомат, выносной манометр. К преимуществам данного аппарата относятся: высокая физиологичность - водолаз, дыша из данного аппарата влажной, теплой, насыщенной кислородом газовой смесью, значительно меньше устает, мерзнет и обезвоживается, чем водолаз в аналогичных условиях, дышащий из аппарата открытого цикла холодным сухим воздухом; большее время защитного действия при сопоставимых с подводными аппаратами открытого цикла дыхания размерах и массе; снижение затрат на проведение спусков за счет экономии дорогих газовых смесей; увеличение бездекомпрессионного предела; обеспечение возможности проведения глубоководных автономных водолазных спусков; обеспечение высокой скрытности погружения, необходимой для выполнения военных задач.

Недостатком данного аппарата является расположение поглотительного патрона и баллонов путем закрепления в жестком корпусе, задаваемое при изготовлении аппарата. Жесткий корпус делает невозможным применение баллонов, имеющих размеры, большие, чем используемые в стандартной комплектации аппарата. Таким образом, конструкция аппарата не может быть изменена пользователем для обеспечения конкретных условий проведения водолазного спуска.

Анализ известных запатентованных решений выявил стремление разработчика к повышению автономности аппарата (патент на изобретение № SU 1722222 от 23.07.1986 г.), улучшению характеристик регенеративных веществ в водолазном дыхательном аппарате (патент на изобретение № RU 2225322 от 30.08.2001 г.), к повышению безопасности использования аппарата замкнутого цикла за счет количества входящих в его состав регенеративных патронов (патент № на изобретение RU 2302973 от 31.12.2002 г.), к улучшению управления формированием дыхательной смеси, поступающей в аппарат (патент на изобретение № RU 2236983 от 11.04.2002 г.), упрощению процедуры переснаряжения регенеративного продукта (патент на изобретение № RU 2254263 от 07.05.2004 г.).

Задачей полезной модели является расширение возможностей использования подводного дыхательного аппарата открытого цикла дыхания, повышение безопасности водолазных спусков, упрощение переоборудования подводного дыхательного аппарата и, как следствие, его удешевление.

Техническим результатом от использования полезной модели является мобильность размещения поглотительного патрона и баллонов в конструкции подводного дыхательного аппарата открытого цикла.

Также техническим результатом является обеспечение механической и тепловой защиты поглотительного патрона, используемого в конструкции подводного дыхательного аппарата.

Задача решается с помощью конструкции подводного дыхательного аппарата открытого цикла дыхания, содержащего баллон с запорным устройством, редуктор, отличающегося тем, что содержит поглотительный патрон, по меньшей мере один, дыхательный мешок, клапанную коробку, соединительные шланги низкого давления.

Также задача решается тем, что устройство содержит чехол для поглотительного патрона.

Также задача решается с помощью размещения баллона на чехле поглотительного патрона.

Также задача решается тем, что устройство содержит ремни крепления баллонов, стропу, хомуты, притягивающие стропу к корпусу патрона, лямки на дыхательных мешках.

Также задача решается тем, что устройство содержит легочный автомат.

Также задача решается тем, что устройство содержит подвесную систему.

Также задача решается с помощью размещения поглотительного патрона на подвесной системе.

Также задача решается тем, что устройство содержит манометр.

Также задача решается тем, что устройство содержит емкость компенсатора плавучести.

Также задача решается с помощью размещения поглотительного патрона на месте расположения баллона.

Также задача решается с помощью размещения поглотительного патрона на баллоне.

Также задача решается с помощью размещения поглотительного патрона сбоку от баллона.

Предлагаемая полезная модель поясняется следующими чертежами:

Фиг.1 Общая схема подводного дыхательного аппарата;

Фиг.2 Подводный дыхательный аппарат с использованием чехла;

Фиг.3 Подводный дыхательный аппарат с использованием стропы и хомутов.

Подводный дыхательный аппарат состоит из следующих узлов и деталей:

Подвесной системы 1, предназначенной для монтажа на ней узлов аппарата и его крепления на теле водолаза;

Клапанной коробки 2 с гофрированными шлангами вдоха и выдоха - обеспечивающей возможность дыхания газовой смесью из аппарата, а также атмосферным воздухом при нахождении на поверхности;

Комплекта дыхательных мешков: вдоха 3 - для снабжения необходимым объемом газовой смеси на вдохе используемой для дыхания водолаза, выдоха 4 - для сбора выдыхаемого воздуха;

Баллона с запорным устройством 5 или двух баллонов с запорными устройствами, предназначенных для содержания запаса газовых смесей;

Редуктора 6 - для понижения давления дыхательной смеси, поступающей из баллона;

Компенсатора плавучести, «крыла» 7, предназначенного для компенсации отрицательной плавучести водолаза, как в момент погружения, так и в момент пребывания на поверхности;

Легочного автомата со шлангом 8 - для дыхания водолаза непосредственно от баллона аппарата в аварийной ситуации;

Выносного манометра 9 - для визуального контроля за давлением газовой смеси в баллоне;

Индикатора кислорода 10 - для визуального контроля парциального давления кислорода;

Поглотительного патрона 11 - для очистки выдыхаемого газа от содержащегося в нем СO2;

Шлангов 12 вдоха и выдоха патрона;

Т-коннекторов 13;

Шланга поддува инфлятора 14;

Шланга поддува мешка вдоха 15;

Шланга поддува мешка выдоха 16;

Шланга подачи газа от редуктора к коллектору 17;

Шланга подачи дыхательной смеси в патрон 18;

Ремней 19;

Чехла 20 (для исполнений с чехлом).

Для расположения поглотительного патрона 11 на спине водолаза его закрепляют на компенсаторе плавучести 7, штатные ремни компенсатора продеваются в петли на боковой поверхности чехла 20 таким образом, чтобы патрон оказался притянутым аналогично баллону аппарата с открытой схемой дыхания. В отличие от последнего, благодаря наличию чехла нет необходимости притягивать патрон с усилием, аналогичным усилию, которое требуется для надежного крепления баллона - благодаря наличию петель поглотительный патрон оказывается надежно закреплен.

Для фиксации баллона малого объема 5 к поглотительному патрону 11, закрепленному на компенсаторе плавучести, в петли чехла поглотительного патрона продеваются ремни для крепления баллонов, которые охватывают баллон малого объема таким образом, чтобы поглотительный патрон оставался снаружи петли ремня.

Для закрепления поглотительного патрона на баллоне с дыхательной смесью, расположенном либо на компенсаторе плавучести на спине водолаза, либо на боковой подвеске, используются ремни того же типа, что и для закрепления баллона на компенсаторе плавучести. Для этого ремни продеваются через петли чехла поглотительного патрона так, что бы они охватывали баллон, к которому будет закреплен патрон, а сам патрон оставался снаружи петли из ремня.

Для непосредственного закрепления поглотительного патрона на боковой подвеске, к петлям чехла при помощи веревок привязываются карабины, которые крепятся к узлам крепления компенсатора плавучести.

Чехол поглотительного патрона состоит из матерчатой сумки, размеры которой точно соответствуют размерам поглотительного патрона и элементов, обеспечивающих его стыковку с другими элементами снаряжения. Горловина сумки, через которую патрон вставляется внутрь, имеет приспособление для стягивания, состоящие из веревки и фиксатора. Для надежной фиксации патрона внутри чехла горловина чехла имеет также стропы с замками.

Для крепления к другим элементам снаряжения чехол поглотительного патрона имеет петли из стропы на боковой и нижней торцевой поверхности (дне «сумки»).

Для перевода аппарата с открытого цикла на замкнутый либо полузамкнутый циклы дыхания, без применения в конструкции аппарата специального чехла, на поглотительном патроне 11 располагаются три стальных хомута, притягивающих стропу к корпусу патрона, таким образом, что бы она образовывала две петли, в которые могут быть продеты ремни крепления баллонов. На чехлах дыхательных мешков 3 имеется несколько пар лямок с креплением для обхвата наплечных лямок подвесной системы аппарата открытого цикла. Стропа с пряжками-фастексами обеспечивает плотную фиксацию дыхательных мешков на теле водолаза.

Поглотительный патрон при этом крепится к аппарату двумя способами:

Установкой патрона сбоку от заспинного баллона. Это обеспечивается путем продевания баллонных ремней подвесной системы в петли на поглотительном патроне;

Установкой патрона на место заспинного баллона. При этом баллонные ремни также продеваются в петли, но при этом ремни охватывают патрон, аналогично тому, как это делается при установке баллона.

Предлагаемое в качестве полезной модели техническое решение, используемое в конструкции подводного дыхательного аппарата, позволяет размещать поглотительный патрон аппарата в различных местах снаряжения, а именно:

На спине водолаза, путем фиксации на компенсаторе плавучести;

На спине водолаза или на боковой подвеске, при фиксации на баллоне с дыхательной смесью;

На боку водолаза, путем крепления непосредственно за крепежные узлы подвесной системы компенсатора плавучести.

Кроме того, при использовании легких тканевых материалов решение позволяет крепить баллоны малого объема непосредственно к чехлу поглотительного патрона, достигается уменьшение размеров и веса соединительного узла аппарата, обеспечивается механическая и тепловая защита поглотительного патрона.

Возможность перевода аппаратов открытого цикла на замкнутый и полузамкнутый цикл увеличивает время защитного действия аппарата, при этом для выполнения простых задач имеется возможность перевести аппарат обратно на работу по открытому циклу, сняв модуль расширения.

Изготовлены и переданы в эксплуатацию дыхательные аппараты производства ОАО «КАМПО», в которых реализуется заявляемое в качестве полезной модели техническое решение. Аппарат может быть изготовлен в условиях серийного машиностроительного производства с использованием оборудования общего применения без дополнительных капитальных вложений.


Формула полезной модели

1. Подводный дыхательный аппарат открытого цикла дыхания, содержащий баллон с запорным устройством, редуктор, отличающийся тем, что содержит поглотительный патрон, по меньшей мере, один дыхательный мешок, клапанную коробку, соединительные шланги низкого давления.

2. Устройство по п.1, отличающееся тем, что содержит чехол для поглотительного патрона.

3. Устройство по п.2, отличающееся тем, что баллон размещен на чехле поглотительного патрона.

4. Устройство по п.1, отличающееся тем, что содержит ремни крепления баллонов, стропу, хомуты, притягивающие стропу к корпусу патрона, лямки на дыхательных мешках.

5. Устройство по п.1, отличающееся тем, что содержит емкость компенсатора плавучести.

6. Устройство по п.1, отличающееся тем, что содержит легочный автомат.

7. Устройство по п.1, отличающееся тем, что содержит подвесную систему.

8. Устройство по п.7, отличающееся тем, что поглотительный патрон размещен на подвесной системе.

9. Устройство по п.1, отличающееся тем, что содержит манометр.

10. Устройство по п.1, отличающееся тем, что поглотительный патрон размещен на баллоне.

11. Устройство по п.1, отличающееся тем, что поглотительный патрон размещен на месте расположения баллона.

12. Устройство по п.1, отличающееся тем, что поглотительный патрон размещен сбоку от баллона.

Кислородный ребризер замкнутого типа

Это родоначальник ребризеров вообще. Первый такой аппарат был создан и применен британским изобретателем Генри Флюссом в середине XIX века при работе в затопленной шахте. Кислородный ребризер замкнутого цикла имеет все основные детали, характерные для ребризера любого типа: дыхательный мешок, канистра с химпоглотителем, дыхательные шланги с клапанной коробкой, байпасный клапан (ручной или автоматический), травящий клапан и баллон с редуктором высокого давления. Принцип работы следующий: кислород из дыхательного мешка поступает через невозвратный клапан в легкие водолаза, оттуда, через другой невозвратный клапан кислород и образовавшийся при дыхании углекислый газ попадает в канистру химпоглотителя, где углекислый газ связывается каустической содой , а оставшийся кислород возвращается в дыхательный мешок. Кислород, потребленный водолазом, подается в дыхательный мешок через калиброванную дюзу со скоростью примерно 1 - 1,5 литра в минуту или же добавляется водолазом с помощью ручного клапана. При погружении обжим дыхательного мешка компенсируется либо за счет срабатывания автоматического байпасного клапана, либо с помощью ручного клапана, управляемого самим водолазом. Надо заметить, что, несмотря на название «замкнутый», любой ребризер замкнутого цикла выпускает через травящий клапан пузырьки дыхательного газа во время всплытия. Чтобы избавиться от пузырей, на травящие клапаны устанавливают колпачки из мелкой сетки или поролона. Это простое устройство весьма эффективно и снижает диаметр пузырьков до 0,5 мм. Такие пузырьки полностью растворяются в воде уже через полметра и не демаскируют водолаза на поверхности.

Ограничения, присущие кислородным ребризерам замкнутого цикла, обусловлены в первую очередь тем, что в данных аппаратах применяется чистый кислород, парциальное давление которого и является ограничивающим фактором по глубине погружения. Так в спортивных (рекреационных и технических) системах обучения этот предел составляет 1,6 ата, что ограничивает глубину погружения 6-ю метрами в теплой воде при минимальной физической нагрузке. В военно-морском флоте ФРГ такой предел составляет 8 метров, а в ВМФ СССР - 22 метра.

Химический ребризер замкнутого цикла с предварительно приготовленной смесью

Такая модель в мире только одна и называется она ИДА-71 (Russian IDA71 military and naval rebreather , его дальнейшее развитие называется ИДА-85, но про этот ребризер мало чего известно). Сделано в СССР . Детали этого аппарата такие же, как и у кислородного ребризера замкнутого цикла, но с двумя отличиями. Во-первых есть автомат промывки. Это механическое устройство, которое при достижении глубины 18-20 метров (точнее его отрегулировать нельзя) прекращает подачу чистого кислорода в дыхательный мешок и начинает подачу смеси, состоящей из 40 % кислорода и 60 % азота (то есть Нитрокс). Вторая (и главная) особенность состоит в наличии у ИДА-71 двух канистр химпоглотителя. В первую заряжается обычный химпоглотитель на основе каустической соды, а во вторую - вещество О3 (о-три), созданное на основе пероксида натрия . Вещество О3 способно не только поглощать углекислый газ, но и выделять кислород. Принцип работы ИДА-71 состоит в том, что потребление кислорода водолазом компенсируется не только за счет подачи свежей дыхательной смеси, но и за счет выделения кислорода веществом О3. Таким образом, не возникает (по крайней мере теоретически) избытка дыхательной смеси и аппарат не выпускает пузырьков газа, получая право называться «замкнутым».

Поскольку скорость выделения кислорода веществом О3 непостоянна и зависит от множества неподдающихся учету факторов, таких, как, например, температура воды, то невозможно точно определить содержание кислорода в дыхательном мешке ребризера, но эта задача и не ставится. Просто водолаз должен скрытно выполнить боевое задание. Ограничения для данного аппарата заложены в самой его конструкции и кроме непредсказуемости содержания кислорода в дыхательном газе обусловлены еще и применением крайне опасного вещества О3. Если на вещество попадет вода - начинается бурная реакция с выделением кислорода, что, при протечке аппарата означет смерть от кислородного отравления на глубине. Ни одна из стран не запустила в серию подобный аппарат и не экспериментировала с ним в силу его крайней непредсказуемости и опасности.

Для планирования погружений используются декомпрессионные таблицы, рассчитанные под данный аппарат из предположения, что парциальное давление кислорода 3,2 ата вполне безопасно.

Ребризер замкнутого цикла с ручной подачей кислорода

Эта система называется ещё K.I.S.S. (Keep It Simple Stupid) и изобретена канадцем Гордоном Смитом. Это ребризер замкнутого цикла с приготовлением смеси «на лету» (selfmixer), но в максимально простом исполнении. Принцип работы аппарата состоит в том, что используются 2 газа. Первый, называемый дилюэнтом, подается в дыхательный мешок аппарата через автоматический байпасный клапан для компенсации обжима дыхательного мешка при погружении. Второй газ (кислород) подается в дыхательный мешок через калиброванную дюзу с постоянной скоростью, меньшей, однако, чем темп потребления кислорода водолазом (примерно 0,8-1,0 литров в минуту). При погружении водолаз обязан сам контролировать парциальное давление кислорода в дыхательном мешке по показаниям электролитических датчиков парциального давления кислорода и добавлять недостающий кислород с помощью ручного клапана. На практике это выглядит так: перед погружением водолаз добавляет в дыхательный мешок какое-то количество кислорода, устанавливая по датчикам требуемое парциальное давление кислорода (в пределах 0,4-0,7 ата). В процессе погружения для компенсации по глубине в дыхательный мешок автоматически добавляется газ-дилюэнт, снижая концентрацию кислорода в мешке, но парциальное давление кислорода остается относительно стабильным из-за роста давления водяного столба. Достигнув запланированной глубины, водолаз с помощью ручного клапана устанавливает какое-либо парциальное давление кислорода (обычно 1,3) работает на грунте, раз в 10-15 минут контролируя показания датчиков парциального давления кислорода и добавляя при необходимости кислород для поддержания необходимого парциального давления. Обычно за 10-15 минут парциальное давление кислорода снижается на 0,2-0,5 ата в зависимости от физической нагрузки.

Теоретически в качестве газа-дилюэнта может использоваться не только воздух, но и trimix, что позволяет погружаться с таким аппаратом на весьма приличные глубины, однако относительное непостоянство парциального давления кислорода в дыхательном контуре затрудняет точный расчет декомпрессии. Обычно с такими аппаратами погружаются не глубже 40 метров, хотя известны случаи успешного использования в качестве газа-дилюэнта trimix и погружений на глубины 50-70 метров. Самым глубоким погружением с аппаратом подобного типа можно считать выходку Матиаса Пфайзера, нырнувшего в Хургаде на 160 (сто шестьдесят) метров. Кроме датчиков парциального давления кислорода Матиас использовал еще и компьютер VR-3 с кислородным датчиком, который отслеживал парциальное давление кислорода в смеси и рассчитывал декомпрессию с учетом всех изменений дыхательного газа. В общем, все было достаточно безопасно, но повторять этот подвиг Матиас никому не рекомендовал. И правильно сделал.

Существует великое множество переделок коммерческих, военных и спортивных ребризеров под систему K.I.S.S., но всё это, разумеется неофициально и под личную ответственность переделавшего и использующего их водолаза.

Ребризер замкнутого цикла с электронным управлением

Inspiration - ребризер с электронным управлением

Собственно настоящий ребризер замкнутого цикла (electronicaly controled selfmixer). Первый в истории такой аппарат был изобретен Вальтером Старком и назывался Electrolung. Принцип функционирования состоит в том, что газ-дилюэнт (воздух или Trimix или HeliOx) подается ручным или автоматическим байпасным клапаном для компенсации обжима дыхательного мешка при погружении, а кислород подается с помощью электромагнитного клапана, управляемого микропроцессором. Микропроцессор опрашивает 3 кислородных датчика, сравнивает их показания и усредняя два ближайших, выдает сигнал на соленоидный клапан. Показания третьего датчика, отличающиеся от двух других сильнее всего - игнорируются. Обычно соленоидный клапан срабатывает раз в 3-6 секунд в зависимости от потребления водолазом кислорода.

Погружение выглядит примерно так: водолаз вводит в микропроцессор два значения парциального давления кислорода, которые электроника будет поддерживать на разных этапах погружения. Обычно это 0,7 ата для выхода с поверхности на рабочую глубину и 1,3 ата для нахождения на глубине, прохождения декомпрессии и всплытия до 3 метров. Переключение осуществляется тумблером на консоли ребризера. В процессе погружения водолаз обязан контролировать работу микропроцессора для выявления возможных проблем с электроникой и датчиками.

Конструктивно ребризеры замкнутого цикла с электронным управлением практически не имеют ограничений по глубине и реальная глубина, на которой возможно их использование, обусловлена в основном погрешностью кислородных датчиков и прочностью корпуса микропроцессора. Обычно предельная глубина составляет 150-200 метров. Других ограничений электронные ребризеры замкнутого цикла не имеют. Основным недостатком этих ребризеров, существенно ограничивающим их распространение является высокая цена самого аппарата и расходных материалов. Важно помнить, что обычные компьютеры и декомпрессионные таблицы не подходят для погружений с электронными ребризерами, поскольку парциальное давление кислорода остается неизменным на протяжении практически всего погружения. С ребризерами такого типа должны использоваться либо специальные компьютеры (VR-3, HS Explorer) или же погружение должно рассчитываться предварительно с помощью таких программ, как Z-Plan или V-Planer. Обе программы бесплатные и рекомендованы для применения производителями и создателями всех электронных ребризеров.

Ребризеры полузамкнутого цикла

Ребризер полузамкнутого цикла с активной подачей

Упрощённая схема ребризера полузамкнутого цикла

Это наиболее распространенный в спортивном дайвинге тип ребризера. Принцип его действия в том, что в дыхательный мешок с постоянной скоростью подается через калиброванную дюзу дыхательная смесь EANx Nitrox . Скорость подачи зависит только от концентрации кислорода в смеси, но не зависит от глубины погружения и физической нагрузки. Таким образом, концентрация кислорода в дыхательном контуре остается постоянной при постоянной физической нагрузке. Очевидно, что при таком способе подачи дыхательного газа возникают его излишки, которые удаляются в воду через травящий клапан. Вследствие этого ребризер полузамкнутого цикла выпускает несколько пузырьков дыхательной смеси не только при всплытии, но и при каждом выдохе водолаза. Стравливается примерно 1/5 часть выдыхаемого газа. Для повышения скрытности на травящие клапаны могут устанавливаться колпачки-дефлекторы, аналогичные применяемым в кислородных ребризерах замкнутого цикла.

В зависимости от концентрации кислорода в дыхательной смеси EANx (Nitrox) может варьироваться в пределах от 7 до 17 литров в минуту, таким образом, время нахождения на глубине при использовании ребризера полузамкнутого цикла зависит от объема баллона с дыхательным газом. Глубина погружения ограничивается парциальным давлением кислорода в дыхательном мешке (не должно превышать 1,6 ата) и установочным давлением редуктора. Дело в том, что истечение газа через калиброванную дюзу имеет сверхзвуковую скорость, что позволяет сохранять подачу неизменной до тех пор, пока установочное давление редуктора превышает давление окружающей среды в два или более раз.

Ребризер полузамкнутого цикла с пассивной подачей

Весьма малораспространенный тип ребризера, представленный в настоящее время только аппаратом Halcyon RB-80, который имеет сертификат безопасности для США и Европы . Принцип работы аппарата состоит в том, что от 1/7 до 1/5 выдыхаемого газа принудительно стравливается в воду, а объем дыхательного мешка заведомо меньше объема легких водолаза. За счет этого на каждый вдох в дыхательный контур подается свежая порция дыхательного газа. Такой принцип позволяет использовать в качестве дыхательной смеси любые газы, кроме воздуха и весьма точно поддерживать концентрацию кислорода в дыхательном контуре вне зависимости от физической нагрузки и глубины. Поскольку подача дыхательного газа осуществляется только на вдох, а не постоянно, как в случае с ребризерами с активной подачей, то ребризер полузамкнутого цикла с активной подачей ограничен по глубине только парциальным давлением кислорода в дыхательном контуре. Существенным отрицательным моментом в конструкции ребризеров полузамкнутого цикла с пассивной подачей является то, что автоматика приводится в действие за счет дыхательных движений водолаза. Из аппаратов, использующих подобный принцип известны французский ребризер Interspiro и немецкий СoRa. Первый не выпускается с середины 60-х годов прошлого века, а второй существует в единичных экземплярах, хотя и является относительно недавней разработкой.

Механический селфмиксер

Весьма редкая конструкция ребризера полузамкнутого цикла. Первый такой аппарат был создан и испытан Draeger в 1914 году. Принцип работы следующий: имеются 2 газа (кислород и дилюэнт), которые подаются через калиброванные дюзы в дыхательный мешок, как в ребризере полузамкнутого цикла с активной подачей. Причем, подача кислорода осуществляется с постоянной объемной скоростью, как в замкнутом ребризере с ручной подачей, а дилюэнт поступает через дюзу с дозвуковой скоростью истечения, причем количество подаваемого дилюэнта увеличивается с увеличением глубины. Компенсация обжима дыхательного мешка осуществляется подачей дилюэнта через автоматический байпасный клапан, а избытки дыхательной смеси стравливаются в воду так же, как в случае с ребризером полузамкнутого цикла с активной подачей. Таким образом, только за счет изменения давления воды в процессе погружения происходит изменение параметров дыхательной смеси, причем в сторону уменьшения концентрации кислорода при увеличении глубины. Механическим селфмиксерам свойственно изменение концентрации кислорода в дыхательном мешке при изменении физической нагрузки, и это прямое следствие того, что их принцип действия очень схож с принципом, по которому построены полузамкнутые ребризеры с активной подачей.

Ограничения по глубине для механического селфмиксера такие же, как для ребризера полузамкнутого цикла с активной подачей с тем исключением, что только установочное давление кислородного редуктора должно превышать давление окружающей среды в 2 и более раз. По времени же селфмиксер в основном ограничен объемом газа-дилюэнта, скорость подачи которого увеличивается с глубиной. В качестве газа-дилюэнта могут использоваться воздух, Trimix и HeliOx .

Литература

  • Андрей Яшин. Обзор ребризеров. (Проверено 7 октября 2007) . Разрешение об использовании статьи находится на странице обсуждения.