Теплопроводность гидроизоляции. Общая техническая и сравнительная информация (ППУ)

Теплоизоляция труб отопления применяется для снижения теплопотерь и помогает использовать тепловую энергию по назначению. Ведь, для правильного использования тепловой энергии необходимо обогревать только те помещения, которые в этом нуждаются, используя для этого специальные тепловые приборы (радиаторы, конвекторы и т.д.). Тепло, передаваемое горячими трубами ограждающим конструкциям и нежилым помещениям зданий, рассеивается без пользы для потребителя. Поэтому теплоизоляция труб отопления должна быть обязательной, благодаря ей, снижается количество тепловой энергии, отдаваемое перекрытиям и нежилым помещениям, тем самым идет экономия тепла.

Основными техническими параметрами, определяющими эксплуатационные характеристики теплоизоляции являются:

  • коэффициент теплопроводности (λ);
  • фактор сопротивления диффузии водяного пара (μ);
  • пожарные характеристики материала;
  • технологичность монтажа.

Коэффициент теплопроводности (λ, Вт/(м·К))

Коэффициент теплопроводности — это, другими словами, количество теплоты, проходящее в единицу времени через 1 м² материала при разности температур на его противоположных поверхностях равной 1 градусу. Чем λ меньше, тем лучшими теплоизоляционными свойствами обладает материал. У какой теплоизоляции коэффициент теплопроводности меньше? Теплоизоляционные материалы имеют различное строение.

Теплоизоляционные материалы:

  • минеральная вата — теплопроводность при 0° 0,032 — 0,056;
  • стеклянная вата — 0,033 — 0,042;
  • вспененный полиэтилен — 0,032 — 0,038;
  • вспененный каучук — 0,034 — 0,038;
  • пенополиуретан — 0,030 — 0,043;
  • пенополистирол — 0,030 — 0,042;

Принцип устройства всех материалов одинаков — это маленькие воздушные полости, стенки которых образованы либо волокнами, либо порами. Так как роль теплоизолятора играет воздух, то и коэффициент теплопроводности у всех качественных материалов примерно одинаков. Необходимо отметить, что X зависит от температуры вещества, поэтому сравнивать материалы по теплопроводности между собой корректно только при одинаковых температурах.

Фактор сопротивления диффузии водяного пара (μ)

В зависимости от устройства воздушных полостей материалы разделяются на два типа:

  • преимущественно с открытыми порами (волокнистая изоляция, твердые пенопласты);
  • преимущественно с замкнутыми порами (гибкие теплоизоляторы)

Материалы с открытыми порами хорошо впитывают влагу, содержащуюся в окружающем воздухе, особенно при «холодном» применении, а материалы с закрытыми порами — плохо. Для того, чтобы количественно обозначить способность материала противостоять диффузии водяного пара внутрь его пор, используется фактор сопротивления диффузии водяного пара (μ) — число, показывающее, во сколько раз материал хуже впитывает водяные пары из окружающей среды, чем сухой воздух

μ = Qb/Qm=(Паропроницаемость воздуха/паропроницаемость материала.)

Почему этот показатель важен для изоляции? Теплопроводность воды и ее паров значительно выше теплопроводности воздуха (соответственно ‘30,6 Вт/(мК) и 0,024 Вт/(мК)), поэтому при накапливании влаги внутри пор материала его теплопроводность увеличивается, то есть теплоизоляция перестает выполнять свою главную функцию — сохранение энергии. Чем выше у материала фактор μ, тем меньше он впитывает влагу, тем дольше сохраняет свои теплоизоляционные свойства.

Фактор сопротивляемости иеплоизоляционного материала:

  • стекловата — 2μ;
  • минвата — 2μ;
  • вспененный полиэтилен — 2700 — 3500μ;
  • вспененный каучук — 3000 — 7000μ;
  • пенополиуретан — 16μ;
  • пенополистирол — 16μ;

Пожарные характеристики

СНиП 41-03-2003 регламентирует области применения технической теплоизоляции согласно ее группы горючести. Группа горючести — это классификационная характеристика способности веществ и материалов к горению.

По горючести вещества и материалы подразделяют на три группы:

  • негорючие (несгораемые) — материалы, не способные к горению на воздухе (группа горючести НГ);
  • трудногорючие (трудносгораемые) — материалы, способные гореть на воздухе при воздействии источника зажигания, но не способные самостоятельно гореть после его удаления (группы горючести Г1 и Г2);
  • горючие (сгораемые) — материалы, способные самовозгораться, а также возгораться при воздействии источника зажигания и самостоятельно гореть после его удаления (группы горючести ГЗ и Г4).

Согласно СНиП 41-03-2003 допускается применение материалов, относящихся к группам НГ, Г1 и Г2, для изоляции инженерных коммуникаций в жилых и административных зданиях.

Расчет теплоизоляции

Толщина технической изоляции должна рассчитываться согласно нормативным документам, принятым в нашей стране: СНиП 41-03-2003 и СП 41-103-2000. Результаты расчета толщины теплоизоляции, полученные при помощи прикладных программ, должны точно соответствовать параметрам, указанным в нормативных документах.

  • Диффузия (поток) влажности (влаги) через наиболее распространенные строительные материалы стен, крыш и полов. Коэффициент диффузии.
  • Приведенное сопротивление теплопередаче Ro = (теплоусвоение) -1 , коэффициент затенения непрозрачными элементами τ, коэффициент относительного пропускания солнечной радиации окон, балконных дверей и фонарей k
  • СНиП 23-02 Расчетные теплотехнические показатели полимерных строительных материалов и изделий, теплоемкость, теплопроводность и теплоусвоение в зависимости от плотности и влажности, паропроницаемость. Пенополистиролы, пенополиуретаны, пенопласты,...
  • СНиП 23-02 Расчетные теплотехнические показатели бетонов на природных пористых заполнителях, теплоемкость, теплопроводность и теплоусвоение в зависимости от плотности и влажности, паропроницаемость.
  • СНиП 23-02 Расчетные теплотехнические показатели минеральных ват, пеностекла, газостекла, стекловаты, Роквула, URSA, теплоемкость, теплопроводность и теплоусвоение в зависимости от плотности и влажности, паропроницаемость.
  • СНиП 23-02 Расчетные теплотехнические показатели засыпок - керамзит, шлак, перлит, вермикулит, теплоемкость, теплопроводность и теплоусвоение в зависимости от плотности и влажности, паропроницаемость.
  • СНиП 23-02 Расчетные теплотехнические показатели строительных растворов - цементно-шлакового, -перлитового, гипсоперлитового, пористого, теплоемкость, теплопроводность и теплоусвоение в зависимости от плотности и влажности, паропроницаемость.
  • СНиП 23-02 Расчетные теплотехнические показатели бетонов на искуственных пористых заполнителях. Керамзитобетон, шунгизитобетон, перлитобетон, шлакопемзобетон..., теплоемкость, теплопроводность и теплоусвоение в зависимости от плотности и влажности, паропр
  • СНиП 23-02 Расчетные теплотехнические показатели бетонов ячеистых. Полистиролбетон, газо- и пено -бетон и -силикат, пенозолобетон, теплоемкость, теплопроводность и теплоусвоение в зависимости от плотности и влажности, паропроницаемость
  • СНиП 23-02 Расчетные теплотехнические показатели кирпичных кладок из сплошного кирпича. Теплоемкость, теплопроводность и теплоусвоение в зависимости от плотности и влажности, паропроницаемость.
  • СНиП 23-02 Расчетные теплотехнические показатели кирпичных кладок из пустотного кирпича. Теплоемкость, теплопроводность и теплоусвоение в зависимости от плотности и влажности, паропроницаемость.
  • СНиП 23-02 Расчетные теплотехнические показатели дерева и изделий из него. Теплоемкость, теплопроводность и теплоусвоение в зависимости от плотности и влажности, паропроницаемость.
  • СНиП 23-02 Расчетные теплотехнические показатели бетона и природного камня. Бетоны, Гранит, Гнейс, Базальт, Мрамор, известняк, Туф. Теплоемкость, теплопроводность и теплоусвоение в зависимости от плотности и влажности, паропроницаемость.
  • Современные утеплительные материалы имеют уникальные характеристики и применяются для решения задач определенного спектра. Большинство из них предназначены для обработки стен дома, но есть и специфичные, разработанные для обустройства дверных и оконных проемов, мест стыка кровли с несущими опорами, подвальных и чердачных помещений. Таким образом, выполняя сравнение теплоизоляционных материалов, нужно учитывать не только их эксплуатационные свойства, но и сферу применения.

    Главные параметры

    Дать оценку качеству материала можно исходя из нескольких основополагающих характеристик. Первая из них – коэффициент теплопроводности, который обозначается символом «лямбда» (ι). Этот коэффициент показывает, какой объем теплоты за 1 час проходит через отрезок материала толщиной 1 метр и площадью 1 м² при условии, что разница между температурами среды на обеих поверхностях составляет 10°С.

    Показатели коэффициента теплопроводности любых утеплителей зависят от множества факторов – от влажности, паропроницаемости, теплоемкости, пористости и других характеристик материала.

    Чувствительность к влаге

    Влажность – это объем влаги, которая содержится в теплоизоляции. Вода отлично проводит тепло, и насыщенная ею поверхность будет способствовать выхолаживанию помещения. Следовательно, переувлажненный теплоизоляционный материал потеряет свои качества и не даст желаемого эффекта. И наоборот: чем большими водоотталкивающими свойствами он обладает, тем лучше.

    Паропроницаемость – параметр, близкий к влажности. В числовом выражении он представляет собой объем водяного пара, проходящий через 1 м2 утеплителя за 1 час при соблюдении условия, что разность потенциального давления пара составляет 1Па, а температура среды одинакова.

    При высокой паропроницаемости материал может увлажняться. В связи с этим при утеплении стен и перекрытий дома рекомендуется выполнить монтаж пароизоляционного покрытия.

    Водопоглощение – способность изделия при соприкосновении с жидкостью впитывать ее. Коэффициент водопоглощения очень важен для материалов, которые используются для обустройства наружной теплоизоляции. Повышенная влажность воздуха, атмосферные осадки и роса могут привести к ухудшению характеристик материала.


    Плотность и теплоемкость

    Пористость – выраженное в процентах количество воздушных пор от общего объема изделия. Различают поры закрытые и открытые, крупные и мелкие. Важно, чтобы в структуре материала они были распределены равномерно: это свидетельствует о качестве продукции. Пористость иногда может достигать 50%, в случае с некоторыми видами ячеистых пластмасс этот показатель составляет 90-98%.

    Плотность – это одна из характеристик, влияющих на массу материала. Специальная таблица поможет определить оба этих параметра. Зная плотность, можно рассчитать, насколько увеличится нагрузка на стены дома или его перекрытия.


    Теплоемкость – показатель, демонстрирующий, какое количество тепла готова аккумулировать теплоизоляция. Биостойкость – способность материала сопротивляться воздействию биологических факторов, например, патогенной флоры. Огнестойкость – противодействие изоляции огню, при этом данный параметр не стоит путать с пожаробезопасностью. Различают и другие характеристики, к которым относятся прочность, выносливость на изгиб, морозостойкость, износоустойчивость.

    Также при выполнении расчетов нужно знать коэффициент U – сопротивление конструкций теплопередаче. Этот показатель не имеет никакого отношения к качествам самих материалов, но его нужно знать, чтобы сделать правильный выбор среди разнообразных утеплителей. Коэффициент U представляет собой отношение разности температур с двух сторон изоляции к объему проходящего через нее теплового потока. Чтобы найти теплосопротивление стен и перекрытий, нужна таблица, где рассчитана теплопроводность строительных материалов.


    Произвести необходимые вычисления можно и самостоятельно. Для этого толщину слоя материала делят на коэффициент его теплопроводности. Последний параметр - если речь идет об изоляции - должен быть указан на упаковке материала. В случае с элементами конструкции дома все немного сложнее: хотя их толщину можно измерить самостоятельно, коэффициент теплопроводности бетона, дерева или кирпича придется искать в специализированных пособиях.

    При этом часто для изоляции стен, потолка и пола в одном помещении используются материалы разного типа, поскольку для каждой плоскости коэффициент теплопроводности нужно рассчитывать отдельно.

    Теплопроводность основных видов утеплителей

    Исходя из коэффициента U, можно выбрать, какой из видов теплоизоляции лучше использовать, и какую толщину должен иметь слой материала. Расположенная ниже таблица содержит сведения о плотности, паропроницаемости и теплопроводности популярных утеплителей:


    Преимущества и недостатки

    При выборе теплоизоляции нужно учитывать не только ее физические свойства, но и такие параметры, как легкость монтажа, потребность в дополнительном обслуживании, долговечность и стоимость.

    Сравнение самых современных вариантов

    Как показывает практика, проще всего осуществлять монтаж пенополиуретана и пеноизола, которые наносятся на обрабатываемую поверхность в форме пены. Эти материалы пластичны, они с легкостью заполняют полости внутри стен постройки. Недостатком вспениваемых веществ является потребность в использовании специального оборудования для их распыления.


    Как показывает приведенная выше таблица, достойную конкуренцию пенополиуретану составляет экструдированный пенополистирол. Этот материал поставляются в виде твердых блоков, но с помощью обычного столярного ножа ему можно придать любую форму. Сравнивая характеристики пенных и твердых полимеров, стоит отметить, что пена не образует швов, и это является ее главным преимуществом по сравнению с блоками.

    Сравнение ватных материалов

    Минеральная вата по свойствам похожа на пенопласты и пенополистирол, однако при этом «дышит» и не горит. Также она обладает лучшей устойчивостью при воздействии влаги и практически не меняет свои качества в процессе эксплуатации. Если стоит выбор между твердыми полимерами и минеральной ватой, лучше отдать предпочтение последней.

    У каменной ваты сравнительные характеристики те же, что и у минеральной, но стоимость выше. Эковата имеет приемлемую цену и легко монтируется, но отличается низкой прочностью на сжатие и со временем проседает. Стекловолокно также проседает и, кроме того, осыпается.

    Сыпучие и органические материалы

    Для теплоизоляции дома иногда применяются сыпучие материалы – перлит и гранулы из бумаги. Они отталкивают воду и устойчивы к воздействию патогенных факторов. Перлит экологичен, он не горит и не оседает. Тем не менее, сыпучие материалы редко применяются для утепления стен, лучше с их помощью обустраивать полы и перекрытия.

    Из органических материалов необходимо выделить лен, древесное волокно и пробковое покрытие. Они безопасны для окружающей среды, но подвержены горению, если не пропитаны специальными веществами. Кроме того, древесное волокно подвержено воздействию биологических факторов.


    В целом, если учитывать стоимость, практичность, теплопроводность и долговечность утеплителей, то наилучшие материалы для отделки стен и перекрытий – это пенополиуретан, пеноизол и минеральная вата. Остальные виды изоляции обладают специфическими свойствами, так как разработаны для нестандартных ситуаций, а применять такие утеплители рекомендуется только в том случае, если других вариантов нет.