Что такое селекция. Селекция растений и животных

СЕЛЕКЦИЯ (от лат. selectio-выбор), форма разведения организмов человеком, приводящая к наследственному изменению их в желательном направлении [при неправильной методике С. или при «бессознательной селекции» (бессознательный отбор по Дарвину) могут произойти и нежелательные изменения].. Любое улучшение (лучшее приспособление к потребностям человека) сел.-хоз. организмов идет по одному из двух путей-это либо изменение их фенотипа путем изменения внешних условий (кормления, содержания, удобрения, севооборота и т. д.), либо изменение их генотипа посредством: замены более продуктивной породой, гибридизации (к-рую зоотехники неправильно называют метизацией), или С. Смена породы и гибридизация являются формами ис- пользования результатов С.-Селекция в народном хозяйстве дает менее быстрые, но значительно более устойчивые результаты, чем изменение внешних условий. Основательный эффект С. дает лишь через 5-10 поколений разведения, тогда как изменение условий дает основные результаты в том же поколении, но эти результаты полностью исчезают через одно, много два поколения при наступлении прежних условий.-Всякое разведение группы организмов приводит к некоторой перегруппировке их генов. Задача селекционера вести разведение таким образом, чтобы повысить в селекционируемой популяции концентрацию полезных генов. Современная С, основанная на данных генетики, доводит эту задачу до конца, требуя полного удаления других аллеломорфов этих генов, т. е. создания удовлетворяющей поставленной цели гомозиготной группы особей. Такая группа не будет изменяться при дальнейшем разведении без С. Для создания гомозиготности применяется инбридинг (см.). Не требуется гомозиготности лишь у растений, размножающихся вегетативно (напр. у картофеля или размножаемого корневищем хлопка); наследственная структура при размножении у них не меняется, так что у них гетерозигот-ность, наоборот, выгодна, позволяя использовать постоянно действующий гетерозис, т. е. благоприятный в первом поколении результат скрещивания двух сортов. Каждая форма С. включает в себя два момента-отбор среди организмов (т. е. оставление лишь наиболее удовлетворяющих задачам С. и отбраковку остальных) и нек-рую систему скрещиваний (последняя в более примитивных формах С. не контролируется и бывает беспорядочной) . Отбор требует объективного и точного учета признаков особи. Для такого учета надо в ряде случаев применять специальные приемы, вплоть до установок, воспроизводящих в лаборатории суховеи, или заражения организмов определенной инфекцией. Однако оценивать организм по его фенотипу недостаточно, для С. требуется оценка генотипа. Поэтому применяется оценка по фенотипу потомства и отбраковка целыми группами. Оценивая по признакам, к-рые желательно улучшить, и придавая им основное значение, необходимо все же и всесторонне учитывать свойства организма. Чем больше взято исходных особей и чем интенсивнее отбор, тем лучше получается результат. Время, потребное для С, выражается числом поколений: чем меньше его надо на одно поколение, тем быстрее проводится С. Методы С; зависят от: 1) биологии размножения (вегетативное или половое, самооплодотворение или перекрестное оплодотворение, много или мало дает организм потомства, оплодотворение и размножение раз в жизни или несколько раз и т. д.); 2) целей С.-какие признаки надо усовершенствовать; 3) степени генетической изученности организма и 4) способа хоз. использования организма (надо ли его убивать для оценки, можно ли учесть признак по одному организму или надо много и т. д.). Аналитической С. называется С. в пределах одной породы, синтетической С.-соединение свойств двух или многих пород в одну. В начале С. должна быть ясно сформулирована задача ее. На основе задачи и учета мирового наличия разнообразных форм данного организма выбирается исходный материал для С. Его выбор наполовину обеспечивает успех, поскольку С. не может создавать новых генов, а лишь перекомбинирует их. Поэтому правилен афоризм: «Чтобы создать породу, надо сперва получить ее в руки». По изучении материала исходных пород из него выбираются особи, наиболее удовлетворяющие задачам С,-особи-родоначальники. Самая С. может проходить однократно, т. е. в течение одного поколения, или многократно, в ряде поколений. Отбор может быть индивидуальный или массовый. Наиболее совершенным методом С. является применяемый для самоопыляющихся растений метод чистых линий (см.) (свалефский метод), примененный впервые в 1893 г. на Свалефской селекционной станции (Швеция) (следует отметить, что он начал применяться еще до разработки науки 6 чистых линиях). Число исходных особей берется значительное, до нескольких десятков тысяч. Браковка идет ежегодно на основании оценки всего потомства исходной особи, семена оставленных линий высеваются целиком, не смешиваясь друг с другом. По достаточном размножении линий начинается их агрономическая оценка. Через 6-8 поколений после начала работы в результате браковки из всех линий остается 2- 3 наилучшие, являющиеся готовыми и размноженными селекционными сортами.-У растений, размножающихся перекрестным опылением, но допускающих принудительное самоопыление, применяется последнее как наиболее тесный инбридинг (см.), быстрее всего приводящий к гомозиготности (среди животных подобный метод в наст, время возможно применять только у пчел, осеменяя матку ее партеногенети-чески развившимся сыном). После 4-5 поколений самоопыления с отбраковкой целых линий получаются линии практически гомозиготные. Т. к. жизнеспособность их в результате инбридинга несколько понижена, их скрещивают друг с другом попарно. Это скрещивание производится между оставленными линиями во всех комбинациях и носит название диал-лельного. Наилучшие комбинации линий оставляются и разводятся с применением инбридинга еще ряд поколений, на чем С. заканчивается.-Следующим методом, применяемым у неразмножающихся самоопылением растений и у всех животных, является метод кровных линий. Родоначальники подбираются парами и потомство отдельных пар скрещивается между собой в ряде поколений часто в комбинации со скрещиванием родителей с детьми тесным инбридингом (братья с сестрами), с применением отбраковки целых линий. Данный метод также приводит к практической гомозиготности, но требует для этого большего числа поколений, чем самооплодотворение. Получающиеся линии можно использовать или непосредственно или, при заметном понижении жизнеспособности в результате инбридинга, после диаллельных скрещиваний и повторения инбридинга, как в предыдущем методе. Кроме приведенных методов индивидуального отбора существует ряд методов массового отбора, в к-рых не применяется инбридинг и поэтому не получаются константные породы. Наиболее совершенным из них, широко применяемым в животноводстве, является массовый отбор с проверкой по потомству. Производители точно оцениваются, специальных систем скрещивания не применяется. Эта форма С. может значительно повысить концентрацию полезных генов.- Менее совершенен непрерывный массовый отбор с оценкой по фенотипу. Он может дать заметные результаты в первые поколения, особенно у организмов, не подвергшихся селекции ранее и имеющих большое наследственное разнообразие, но они не стойки и быстро утрачиваются.-Самый несовершенный метод С., хотя и самый быстрый,- однократный массовый отбор по фенотипу. Его результаты сказываются только в одном-двух поколениях, и этот метод"теперь оставлен. Наконец организмы, разводимые без специальной С, все же подвержены в той или иной степени бессознательной С, напр. оставление в хозяйстве более работоспособных лошадей для непосредственного использования также есть С, поскольку от них получается потомство. Нашей задачей является полная ликвидация бессознательной С, поскольку она часто приводит к отрицательным результатам; так напр. использование наиболее крупных животных из стада на мясо приводит к его измельчанию. Важная проблема С.-использование полученных сортов и пород. В этом особенно проявляются преимущества планового хозяйства, позволяющего в один сезон заменить один сорт на лучший в целом районе. Основную селекционную работу проводят селекционные станции. В СССР сеть их широко развернута. С. большинства растений объединена во Всесоюзном ин-те растениеводства, стоящем по своей работе впереди всех селекционных ин-тов мира. С. животных проводится трестами и отраслевыми институтами. Масштабы социалистического хозяйства позволили поставить С. по ряду культур На небывалую ВЫСОТУ.Д. Шасколъекий.

Селекция - наука об улучшении отдельных качеств животных и растений, необходимых человеку, а также о выведении новых сортов растений, пород животных, штаммов микроорганизмов. Для создания культурных сортов используют методы селекции растений.

Селекция

Большинство растений, которые современное человечество употребляет в пищу, является продуктом селекции (картофель, томат, кукуруза, пшеница). На протяжении нескольких веков люди культивировали дикие растения, переходя от собирательства к земледелию.

Направлениями селекции являются:

  • высокая урожайность;
  • питательность растений (например, содержание белка в пшенице);
  • улучшенный вкус;
  • устойчивость культур к погодным условиям;
  • скороспелость плодов;
  • интенсивность развития (например, «отзывчивость» на удобрения или полив).

Рис. 1. Сравнение дикой и сельскохозяйственной кукурузы.

Селекция решила проблемы с нехваткой пищи и продолжает развиваться, внедряя методы генной инженерии. Селекционеры не только улучшают вкус и повышают питательность растений, но и делают их полезными, насыщенными витаминами и химическими элементами, важными для метаболизма.

Для успешной селекции необходимо понимать закономерности наследования признаков, особенности влияния среды, морфологическое строение и способы размножения культивируемых растений.

Методы

Основными методами селекции являются:

ТОП-4 статьи которые читают вместе с этой

  • искусственный отбор - выбор человеком наиболее ценных культур для селекции;
  • гибридизация - процесс получения потомства от скрещивания разных генетических форм;
  • искусственный мутагенез - внесение изменений в ДНК.

Искусственный отбор включает в себя два вида - индивидуальный (по генотипу) и массовый (по фенотипу). В первом случае важны конкретные качества растений, во втором - отбирают наиболее приспособленные особи.

Гибридизация бывает двух видов:

  • внутривидовая или близкородственная - инбридинг ;
  • отдалённая (межвидовая) - аутбридинг .

Классические методы селекции растений описаны в таблице.

Метод

Суть

Примеры

Индивидуальный отбор

Проводят по отношению к самоопыляемым растениям. Выведение единичных особей с нужными качествами и получение от них улучшенного потомства

Пшеница, ячмень, горох

Массовый отбор

Проводят по отношению к перекрестноопыляемым растениям. Растения скрещиваются массово. Из полученного потомства отбирают лучшие экземпляры и снова проводят скрещивание. Может повторяться до тех пор, пока не будут выведены нужные качества растений

Подсолнечник

Инбридинг

Происходит при самоопылении перекрёстноопыляемых растений. В результате получают чистые (гомозиготные) линии, чтобы закрепить полученный признак. Наблюдается снижение жизнеспособности (инбредная депрессия), т.к. потомки постепенно переходят в гомозиготное рецессивное состояние

Сорта груш, яблонь

Аутбридинг

Скрещиваются разные виды, потомки обычно стерильны, т.к. при скрещивании нарушается мейоз, не образуются гаметы. В первом поколении наблюдается эффект гетерозиса - превосходство потомков над родительскими формами за счёт образования гетерозиготных генов. Чем отдалённее в родстве родители, тем ярче проявляется гетерозис

Гибриды пшеницы и ржи (тритикале), смородины и крыжовника (йошта)

Мутагенез

Подвергают растения ионизирующему, лазерному излучению, химическому или биологическому воздействию, в результате чего возникают мутации. Чаще всего таким способом вырабатывают устойчивость к заболеваниям и вредителям. Метод усовершенствовала генная инженерия - нужный ген можно «включить» или «выключить» вручную без потери других полезных признаков

Сорта пшеницы

Рис. 2. Примеры гибридов.

Неудачный опыт селекции - борщевик Сосновского. Растение культивировалось в качестве корма для скота. Однако впоследствии выяснилось, что новый борщевик легко проникает в экосистемы, вытесняя естественные растения, а также содержит вещества, повышающие чувствительность к ультрафиолету. Попав на кожу, сок вызывает ожог на солнце.

Что такое селекция

Селекция одновременно является наукой и практикой растениеводства. Построенная на чисто научной основе она не может обходиться без практической проверки ее положений. Селекция призвана постоянно и постепенно повышать урожаи культур и качественные (внутренние и внешние) показатели продукции.

В основе научной селекции лежит генетика с ее объективно существующими закономерностями наследования растениями в потомстве постоянных признаков своего вида и их изменчивости в ту или иную сторону под влиянием условий произрастания.

Из-за невозможности даже кратко осветить селекционную работу в целом овощеводстве, остановимся только на культуре томатов. Как и по другим культурам, здесь деятельность селекционеров направлена не только на увеличение урожайности, но и на улучшение химического состава плодов, получение раннеспелых форм, повышение холодостойкости и устойчивости к болезням, достижение дружности созревания плодов и их однородной окраски, увеличение сроков хранимости.

Селекционеры в своей деятельности используют различные методы получения новых сортов и гибридов:

Скрещивание (переопыление) местных сортов, отечественных с иностранными, географически отдаленных форм;

Метод вегетативного сближения путем прививок черенков одних сортов на другие;

Использование смеси пыльцы разных форм растений;

Межвидовое скрещивание диких и культурных форм.

Особое значение в селекции имеет получение гетерозисных гибридов, сочетающих в себе все лучшие стороны родительских пар и не имеющие их недостатков. В целом любые новые сорта и гибриды должны по одному или нескольким показателям превосходить предшествующие.

Создание скороспелых форм необходимо для любых климатических зон в открытом грунте и теплицах. На юге и в теплицах они могут давать не менее двух урожаев в год. Скороспелость обязательно должна сочетаться с холодостойкостью, что важно для высадки рассады в более ранние сроки в теплицах с солнечным обогревом и открытом грунте с временным укрытием.

Скороспелыми обычно бывают томаты с ограниченным ростом кустов (детерминантные) или даже карликовых размеров. Заложение первой кисти у таких растений может быть над пятым-шестым листом, а кисти с небольшим количеством плодов, мелких или средней крупности. Посадку делают более плотную, а зеленые операции получаются минимальными.

Семена скороспелых томатов прорастают при пониженных температурах, цветки лучше опыляются, плоды содержат больше яблочной кислоты.

Для получения более сладких плодов селекционеры стремятся, чтобы наружные стенки плодов были толще, число перегородок больше, а семян меньше. Вкус выводимых сортов определяется повышенным содержанием в них сухих веществ с преобладанием в последних сахаров. Для увеличения кислоты отбирают на селекционные цели растения с крупными и многосемянными камерами в плодах.

Выведение лучших по качеству сортов предполагает содержание в плодах больших количеств витаминов, минеральных солей, пектиновых веществ, а соотношение сахаров к кислотам, как 6:1. Вкус плодов не улучшается при снижении кислот и не ухудшается при небольшом их повышении.

Селекционеры знают пути получения сортов томатов с высоким содержанием сухих веществ и сахаров ранне- и позднеспелых, мелко- и крупноплодных. Повышение сухих веществ в плодах особенно важно при переработке на пасту и пюре. При увеличении сухих веществ плодов на 1% выход продукции из них возрастает не менее чем на 15%.

Для консервных сортов плоды должны быть массой до 45 г, с плотной и гладкой кожицей, способной легко отделяться при необходимости, стенки плодов толстые и сохраняющие форму. Необходимо повышенное содержание пектиновых веществ и высокие вкусовые качества.

Селекция томатов открытого грунта проводится в направлении одновременности созревания, легкого отделения плодоножки, хорошей транспортабельности и достаточно продолжительной хранимости. На больших томатных плантациях такие сорта должны быть пригодны для механизированной уборки.

Из тепличных сортотипов учеными выделены те, которые способны к партенокарпии, т. е. образованию плодов без опыления. Такие плоды могут быть отчасти пустотелыми и менее вкусными, но способными давать устойчивые урожаи в самых неблагоприятных погодных условиях: слабой освещенности, низких и высоких температурах.

Важнейшая часть селекционной работы - выведение образцов, устойчивых к отдельным или нескольким болезням. Лучше это получается с гибридами. Выведены томаты (по образцам зарубежных), устойчивые к бурой пятнистости, вирусам, фитофторозу, а также к галловой нематоде.

Научная селекция растений - сравнительно молодая отрасль науки. Задолго до нее и параллельно до настоящего времени ведет свою деятельность народная селекция. Основной метод последней - отбор - селекционеры широко используют в своей работе.

При отборе используют не только существующие овощные культуры, но и дикорастущие растения для введения в культуру и расширения овощного ассортимента. Времени для отбора необходимо гораздо больше, чем на выведение нового сорта, но результат нередко бывает более качественный и надежный в отношении долговечности.

Известно немало местных форм овощей, не имеющих сортовых названий: пряных культур, луков и др.

Проводить отбор растений на повышенную урожайность, форму, окраску плодов, морозостойкость и другие полезные признаки не представляет особых трудностей для любого огородника.

Э. Феофилов , заслуженный агроном России

(Из еженедельной газеты "Садовод")

На уроке мы рассмотрим, как на практике применяется открытая генетикой закономерность в медицине и сельском хозяйстве, узнаем основы селекции организмов, как селекция способствует выведению пород животных с необходимыми для человека признаками.

Ко-неч-но, вряд ли такой при-знак поз-во-лил бы этому пе-ту-ху вы-дер-жи-вать кон-ку-рент-ную борь-бу и есте-ствен-ный отбор в окру-жа-ю-щей среде. Но этот при-знак за-ин-те-ре-со-вал че-ло-ве-ка, и эта по-ро-да была со-зда-на. Кроме этого, от-ли-ча-ют-ся до-маш-ние формы от диких еще и своей очень боль-шой пло-до-ви-то-стью, это то глав-ное ка-че-ство, ради ко-то-ро-го че-ло-век и стал со-зда-вать эти по-ро-ды. К примеру, яй-це-нос-кость кур по-ро-ды белый лег-горн со-став-ля-ет около 350 яиц в год, а яй-це-нос-кость их ди-ко-го пред-ка бан-ки-вской ку-ри-цы со-став-ля-ет 18-20 яиц в год (рис.2).

Рис. 2. Курица породы белый леггорн и банкивская курица ()

Из этих при-ме-ров можно вы-ве-сти за-да-чи со-вре-мен-ной се-лек-ции, к ним от-но-сит-ся:

1. По-лу-че-ние новых вы-со-ко-уро-жай-ных и устой-чи-вых к за-бо-ле-ва-нию пород жи-вот-ных и сор-тов рас-те-ний.

2. По-лу-че-ние эко-ло-ги-че-ски пла-стич-ных сор-тов и пород, то есть тех, ко-то-рые могут жить в раз-лич-ных эко-ло-ги-че-ских усло-ви-ях.

3. По-лу-че-ние пород и сор-тов, удоб-ных для про-мыш-лен-но-го вы-ра-щи-ва-ния и ме-ха-ни-зи-ро-ван-ной убор-ки.

Воз-ник-ла се-лек-ция на заре че-ло-ве-че-ства, при-мер-но 20-30 тысяч лет тому назад, когда люди стали слу-чай-ным об-ра-зом одо-маш-ни-вать жи-вот-ных, ко-то-рые их окру-жа-ли. Глав-ным кри-те-ри-ем было то, что жи-вот-ные могут раз-мно-жать-ся в нево-ле и имеют до-ста-точ-но хо-ро-ший ха-рак-тер, их удоб-но со-дер-жать. Это и послужило пред-по-сыл-кой развития науки се-лек-ции. Ши-ро-кое одо-маш-ни-ва-ние на-ча-лось где-то в 8-6 веках до нашей эры, и уже в тот мо-мент были одо-маш-не-ны все из-вест-ные сей-час жи-вот-ные и окуль-ту-ре-ны рас-те-ния, но это еще была не наука. Пи-о-не-ром науки се-лек-ции в нашей стране был Ни-ко-лай Ива-но-вич Ва-ви-лов (рис. 3).

Рис. 3. Н.И. Вавилов (1887-1943) ()

Ва-ви-лов счи-тал, что в ос-но-ве се-лек-ции лежит пра-виль-ный выбор для ра-бо-ты ис-ход-но-го ма-те-ри-а-ла, ге-не-ти-че-ское раз-но-об-ра-зие и вли-я-ние окру-жа-ю-щей среды на про-яв-ле-ние на-след-ствен-ных при-зна-ков при ги-бри-ди-за-ции ор-га-низ-мов. В по-ис-ках ис-ход-но-го ма-те-ри-а-ла для по-лу-че-ния новых ги-бри-дов Ва-ви-лов ор-га-ни-зо-вал в 1920-30 годы де-сят-ки экс-пе-ди-ций по всему зем-но-му шару. Во время этих экс-пе-ди-ций ему с кол-ле-га-ми уда-лось со-брать более по-лу-то-ра тысяч видов куль-тур-ных рас-те-ний и огром-ное ко-ли-че-ство сор-тов. К 1940 году во Все-со-юз-ном ин-сти-ту-те рас-те-ние-вод-ства на-счи-ты-ва-лось уже 300 тысяч об-раз-цов. В на-сто-я-щее время кол-лек-ция по-сто-ян-но по-пол-ня-ет-ся и ис-поль-зу-ет-ся для по-лу-че-ния новых сор-тов на ос-но-ве уже из-вест-ных. Ис-сле-дуя по-лу-чен-ный во время экс-пе-ди-ции ма-те-ри-ал, Н.И. Ва-ви-лов при-шел к от-кры-тию опре-де-лен-ной за-ко-но-мер-но-сти, ко-то-рая и стала ге-не-ти-че-ской ос-но-вой се-лек-ции. Эта за-ко-но-мер-ность по-лу-чи-ла на-зва-ние «закон го-мо-ло-ги-че-ских рядов на-след-ствен-но-сти». Фор-му-ли-ров-ка этого за-ко-на, ко-то-рую пред-ло-жил сам Н.И. Ва-ви-лов: «Ге-не-ти-че-ски близ-кие роды и виды ха-рак-те-ри-зу-ют-ся сход-ны-ми ря-да-ми на-след-ствен-ной из-мен-чи-во-сти с такой пра-виль-но-стью, что, зная ряд форм в пре-де-лах од-но-го вида, можно пред-ви-деть на-хож-де-ние па-рал-лель-ных форм у дру-гих род-ствен-ных видов и родов. Чем более близ-ки виды и роды си-сте-ма-ти-че-ски, тем пол-нее сход-ство в рядах их из-мен-чи-во-сти».

Эту слож-ную фор-му-ли-ров-ку можно про-ил-лю-стри-ро-вать, на при-ме-ре се-мей-ства зла-ко-вых (рис. 4), куда вхо-дят хо-ро-шо из-вест-ные вам пше-ни-ца, рожь, яч-мень, рис, ку-ку-ру-за.

Рис. 4. Семейство злаковых ()

У этого се-мей-ства име-ет-ся ряд при-зна-ков, ко-то-рые про-сле-жи-ва-ют-ся у раз-ных видов, от-но-ся-щих-ся к этому се-мей-ству. К таким при-зна-кам от-но-сят-ся на-ли-чие ози-мых форм, крас-ная окрас-ка у зер-но-вок, на-при-мер, крас-ная окрас-ка встре-ча-ет-ся и у ржи, и у пше-ни-цы, и у ку-ку-ру-зы. Точно так же ози-мые формы встре-ча-ют-ся и у пше-ни-цы, и у ржи. Вот это и по-слу-жи-ло ос-но-вой от-кры-тия этого за-ко-на. Закон го-мо-ло-ги-че-ских рядов спра-вед-лив не толь-ко для рас-те-ний, но и для жи-вот-ных. Так, на-при-мер, яв-ле-ния аль-би-низ-ма на-блю-да-ют-ся и у че-ло-ве-ка, и у мле-ко-пи-та-ю-щих, и даже у птиц (рис. 5).

Рис. 5. Явление альбинизма ()

Закон, открытый Вавиловым, имеет практическое зна-че-ние, его можно разобрать на кон-крет-ном при-ме-ре: у растения лю-пи-на плоды со-дер-жат очень боль-шое ко-ли-че-ство белка, и люпин (рис. 6) мог бы быть очень цен-ной кор-мо-вой куль-ту-рой, но его се-ме-на со-дер-жат опас-ный ядо-ви-тый ал-ка-ло-ид.

Рис. 6. Люпин многолетний с семенами ядовитого алкалоида ()

По-это-му при-ме-нять люпин в ка-че-стве кор-мо-вой куль-ту-ры было невоз-мож-но. Од-на-ко из-вест-но, что дру-гие пред-ста-ви-те-ли се-мей-ства бо-бо-вых: горох, бобы, лю-цер-на, соя - не имеют та-ко-го гена. Зна-чит, можно преду-га-дать, что и у лю-пи-на воз-мож-на му-та-ция вот в такую без-ал-ка-ло-ид-ную форму. И дей-стви-тель-но, се-лек-ци-о-не-рам уда-лось по-лу-чить без-ал-ка-ло-ид-ную форму лю-пи-на, и сей-час люпин ак-тив-но ис-поль-зу-ет-ся в сель-ском хо-зяй-стве как пре-крас-ная кор-мо-вая куль-ту-ра (рис. 7).

Рис. 7. Кормовые сорта люпина ()

Мы рассмотрели историю возникновения новой, ин-те-рес-ной, а самое глав-ное - очень по-лез-ной и прак-ти-че-ски зна-чи-мой науки се-лек-ции, ее основные задачи. В ходе сле-ду-ю-щих наших уроков мы более по-дроб-но узна-ем о ме-то-дах селекции и ра-бо-тах Н.И. Ва-ви-ло-ва.

Список литературы

  1. Мамонтов С.Г., Захаров В.Б., Агафонова И.Б., Сонин Н.И. Биология. Общие закономерности. - Дрофа, 2009.
  2. Пономарева И.Н., Корнилова О.А., Чернова Н.М. Основы общей биологии. 9 класс: Учебник для учащихся 9 класса общеобразовательных учреждений/ Под ред. проф. И.Н. Пономаревой. - 2-е изд., перераб. - М.: Вентана-Граф, 2005.
  3. Пасечник В.В., Каменский А.А., Криксунов Е.А. Биология. Введение в общую биологию и экологию: Учебник для 9 класса, 3-е изд., стереотип. - М.: Дрофа, 2002.
  1. Genetics-b.ru ().
  2. Google Sites ().
  3. Moykonspekt.ru ().

Домашнее задание

  1. Что такое селекция?
  2. Каковы основные за-да-чи со-вре-мен-ной се-лек-ции?
  3. О чем говорит закон гомологических рядов наследственности?

Селекция - отбор и создание новых сортов растений, пород животных и штаммов микроорганизмов с нужными человеку свойствами.

Породы животных, сорта растений, штаммы микроорганизмов - это совокупности особей, созданные человеком и обладающие какими-либо ценными для него качествами. Теоретической основой селекции является генетика.

Основные методы селекции

Отбор

В селекции действует естественный и искусственный отбор. Искусственный отбор бывает бессознательным и методическим. Бессознательный отбор заключается в сохранении человеком лучших особей для разведения и употреблении в пищу худших без сознательного намерения вывести более совершенную породу или сорт. Методический отбор осознанно направлен на выведение нового сорта или породы с желаемыми качествами. В процессе селекции наряду с искусственным отбором не прекращает своего действия и естественный отбор, который повышает приспособляемость организмов к условиям окружающей среды.

Сравнительная характеристика естественного и искусственного отбора
Показатели Естественный отбор Искусственный отбор
Исходный материал для отбора Индивидуальные признаки организмов
Отбирающий фактор Условия среды (живая и неживая природа) Человек
Путь благоприятных изменений Остаются, накапливаются, передаются по наследству Отбираются, становятся производительными
Путь неблагоприятных изменений Уничтожаются в борьбе за существание Отбираются, бракуются, уничтожаются
Направленность действия Отбор признаков, полезных особи, популяции, виду Отбор признаков, полезных человеку
Результат отбора Новые виды Новые сорта растений, породы животных, штаммы микроорганизмов
Формы отбора Движущий, стабилизирующий, дизруптивный Массовый, индивидуальный, бессознательный (стихийный), методический (сознательный)

Массовый отбор - выделение из исходного материала целой группы особей с желательными признаками и получение от них потомства.
Индивидуальный отбор - выделение отдельных особей с желательными признаками и получение от них потомства.

Массовый отбор чаще применяют в селекции растений, а индивидуальный - в селекции животных, что связано с особенностями размножения растений и животных.

Гибридизация

Методом отбора нельзя получить новые генотипы. Для создания новых благоприятных комбинаций признаков (генотипов) применяют гибридизацию. Различают внутривидовую и межвидовую (отдалённую) гибридизацию.

Внутривидовая гибридизация - скрещивание особей одного вида. Применяют близкородственное скрещивание и скрещивание неродственных особей.

Близкородственное скрещивание (инбридинг) (например, самоопыление у растений) ведёт к повышению гомозиготности, что, с одной стороны, способствует закреплению наследственных свойств, но с другой - ведёт к снижению жизнеспособности, продуктивности и вырождению. Скрещивание неродственных особей (аутбридинг) позволяет получить гетерозисные гибриды. Если сначала вывести гомозиготные линии, закрепив желательные признаки, а затем провести перекрёстное опыление между разными самоопыляющимися линиями, то в результате в ряде случаев появляются высокоурожайные гибриды. Явление повышенной урожайности и жизнеспособности у гибридов первого поколения, полученных при скрещивании родителей чистых линий, называется гетерозисом . Основная причина эффекта гетерозиса - отсутствие проявления вредных рецессивных аллелей в гетерозиготном состоянии. Однако уже со второго поколения эффект гетерозиса быстро снижается.

Межвидовая (отдалённая) гибридизация - скрещивание разных видов.

Используется для получения гибридов, сочетающих ценные свойства родительских форм (тритикале - гибрид пшеницы и ржи, мул - гибрид кобылы с ослом, лошак - гибрид коня с ослицей). Обычно отдалённые гибриды бесплодны, так как хромосомы родительских видов отличаются настолько, что невозможен процесс конъюгации, в результате чего нарушается мейоз. Преодолеть бесплодие у отдалённых гибридов растений удаётся с помощью полиплоидии. Восстановление плодовитости у гибридов животных более сложная задача, так как получение полиплоидов у животных невозможно.

Полиплоидия

Полиплоидия - увеличение числа хромосомных наборов.

Полиплоидия позволяет избежать бесплодия межвидовых гибридов. Кроме того, многие полиплоидные сорта культурных растений (пшеница, картофель) имеют более высокую урожайность, чем родственные диплоидные виды. В основе явления полиплоидии лежат три причины: удвоение хромосом в неделящихся клетках, слияние соматических клеток или их ядер, нарушение процесса мейоза с образованием гамет с нередуцированным (двойным) набором хромосом. Искусственно полиплоидию вызывают обработкой семян или проростков растений колхицином. Колхицин разрушает нити веретена деления и препятствует расхождению гомологичных хромосом в процессе мейоза.

Индуцированный мутагенез

В естественных условиях частота возникновения мутаций сравнительно невелика. Поэтому в селекции используется индуцированный (искусственно вызванный) мутагенез - воздействие на организм в условиях эксперимента каким-либо мутагенным фактором для возникновения мутации с целью изучения влияния фактора на живой организм или получения нового признака. Мутации носят ненаправленный характер, поэтому селекционер сам отбирает организмы с новыми полезными свойствами.

Клеточная и генная инженерия

Биотехнология - методы и приёмы получения полезных для человека продуктов и явлений с помощью живых организмов (бактерий, дрожжей и др.). Биотехнология открывает новые возможности для селекции. Её основные направления: микробиологический синтез, генная и клеточная инженерия.
Микробиологический синтез - использование микроорганизмов для получения белков, ферментов, органических кислот, лекарственных препаратов и других веществ. Благодаря селекции удалось вывести микроорганизмы, которые вырабатывают нужные человеку вещества в количествах, в десятки, сотни и тысячи раз превышающих потребности самих микроорганизмов. С помощью микроорганизмов получают лизин (аминокислоту, не образующуюся в организме животных; её добавляют в растительную пищу), органические кислоты (уксусную, лимонную, молочную и др.), витамины, антибиотики и т. д.
Клеточная инженерия - выращивание клеток вне организма на специальных питательных средах, где они растут и размножаются, образуя культуру ткани. Из клеток животных нельзя вырастить организм, а из растительных клеток можно. Так получают и размножают ценные сорта растений. Клеточная инженерия позволяет проводить гибридизацию (слияние) как половых, так и соматических клеток. Гибридизация половых клеток позволяет проводить оплодотворение «в пробирке» и имплантацию оплодотворённой яйцеклетки в материнский организм. Гибридизация соматических клеток делает возможным создание новых сортов растений, обладающих полезными признаками и устойчивых к неблагоприятным факторам внешней среды.
Генная инженерия - искусственная перестройка генома. Позволяет встраивать в геном организма одного вида гены другого вида. Так, введя в генотип кишечной палочки соответствующий ген человека, получают гормон инсулин. В настоящее время человечество вступило в эпоху конструирования генотипов клеток.



Селекция растений, животных и микроорганизмов

Селекция растений Для селекционера очень важно знать свойства исходного материала, используемого в селекции. В этом плане очень важны два достижения отечественного селекционера Н. И. Вавилова: закон гомологических рядов в наследственной изменчивости и учение о центрах происхождения культурных растений.
Закон гомологических рядов в наследственной изменчивости: виды и роды, генетически близкие (связанные друг с другом единством происхождения), характеризуются сходными рядами в наследственной изменчивости. Так, например, у мягкой и твёрдой пшеницы и ячменя существуют остистые, короткоостые и безостые колосья. Зная наследственные изменения у одного вида, можно предвидеть нахождение сходных изменений у родственных видов и родов, что используется в селекции. Чем ближе между собой виды и роды, тем больше сходство в изменчивости их признаков. Н. И. Вавиловым закон был сформулирован применительно к растениям, а позднее подтверждён для животных и микроорганизмов.
В селекции растений наиболее широко используются такие методы, как массовый отбор, внутривидовая гибридизация, отдалённая гибридизация, полиплоидия.
Большой вклад в селекцию плодовых растений внёс отечественный селекционер И. В. Мичурин. На основе методов межсортовой и межвидовой гибридизации, отбора и воздействия условиями среды им были созданы многие сорта плодовых культур. Благодаря его работам многие южные сорта плодовых культур удалось распространить в средней полосе нашей страны.
Многие сорта культурных растений являются полиплоидными. Таковы некоторые сорта пшеницы, ржи, клевера, картофеля, свёклы и т. д. Сочетание отдалённой гибридизации с последующим получением полиплоидных форм позволило преодолеть бесплодие отдалённых гибридов. В результате многолетних работ Н. В. Цицина и его сотрудников были получены гибриды пырея и пшеницы, пшеницы и ржи (тритикале).
К наиболее важным достижениям селекции растений следует отнести создание большого количества высокопродуктивных сортов сельскохозяйственных растений.

Селекция животных

Как и культурные растения, домашние животные имеют диких предков. Процесс превращения диких животных в домашних называют одомашниванием (доместикацией) . Почти все домашние животные относятся к высшим позвоночным животным - птицам и млекопитающим.
В селекции животных наиболее широко используются такие методы, как индивидуальный отбор, внутривидовая гибридизация (родственное и неродственное скрещивание) и отдалённая (межвидовая) гибридизация .
Использование индивидуального отбора связано с половым размножением животных, когда получить сразу много потомков затруднительно. В связи с этим селекционеру важно определить наследственные признаки самцов, которые непосредственно у них не проявляются (жирномолочность, яйценоскость). Поэтому оценка животных может быть осуществлена по их родословной и по качеству их потомства. Имеет определённое значение также учёт экстерьера, то есть совокупности внешних признаков животного. Подбор производителей в животноводстве особенно актуален в связи с применением в настоящее время искусственного осеменения, позволяющего получить от одного организма значительное число потомков. Родственное скрещивание ведёт к гомозиготности и чаще всего сопровождается уменьшением устойчивости животных к неблагоприятным факторам среды, снижением плодовитости и т. п. Для устранения неблагоприятных последствий используют неродственное скрещивание разных линий и пород. На основе межпородного скрещивания были созданы высокопродуктивные сельскохозяйственные животные (в частности М. Ф. Иванов создал высокопродуктивную породу свиней Белая украинская, породу овец Асканийская рамбулье). Неродственное скрещивание сопровождается гетерозисом, сущность которого состоит в том, что гибриды первого поколения имеют повышенную жизнеспособность и усиленное развитие. Примером эффективного использования гетерозиса служит выведение гибридных цыплят (бройлерное производство).
Отдалённая (межвидовая) гибридизация животных приводит к бесплодию гибридов. Но благодаря проявлению гетерозиса широко используется человеком. Среди достижений по отдалённой гибридизации животных следует отметить мула - гибрида кобылы с ослом, бестера - гибрида белуги и стерляди, продуктивного гибрида карпа и карася, гибридов крупного рогатого скота с яками и зебу, отдалённых гибридов свиней и т. д.

Селекция микроорганизмов

К микроорганизмам относятся прокариоты - бактерии, сине-зелёные водоросли; эукариоты - грибы, микроскопические водоросли, простейшие.
В селекции микроорганизмов наиболее широко используются индуцированный мутагенез и последующий отбор групп генетически идентичных клеток (клонов), методы клеточной и генной инженерии .
Деятельность микроорганизмов используют в промышленности, сельском хозяйстве, медицине. Ферментативную активность микроорганизмов (грибов и бактерий) используют в производстве молочных продуктов, хлебопечении, виноделии и др. С помощью микроорганизмов получают аминокислоты, белки, ферменты, спирты, полисахариды, антибиотики, витамины, гормоны, интерферон и пр.
Выведены штаммы бактерий, способные разрушать нефтепродукты, что позволит использовать их для очистки окружающей среды. Ведутся работы по перенесению генетического материала азотфиксирующих микроорганизмов в геном почвенных бактерий, которые этими генами не обладают, а также непосредственно в геном растений. Это позволит избавиться от необходимости производить огромное количество азотных удобрений.