Подключение датчиков температуры к умному дому Loxone. Подключение датчиков температуры к умному дому Loxone Интерфейс 1 wire принцип работы

Разработчиком платформы 1-Wire является Dallas Semiconductor Corporation (US). В 2001 году она была приобретена гигантом мировой микроэлектроники фирмой Maxim Integrated Products (US). Платформа включает серию микросхем и устройств iButton на их основе, а также различные адаптеры, наборы для макетирования и программное обеспечение.

Производство микросхем и устройств iButton является исключительной прерогативой фирмы Maxim, их клонирование другими производителями политикой лицензирования не предусмотрено. В то же время сторонние фирмы разрабатывают и производят на основе микросхем данной платформы разнообразные модули для систем автоматизации, адаптеры, контроллеры, системы макетирования, а также ПО.

Рис.1. Компоненты платформы 1-Wire.

Платформа разрабатывалась с конца 80-х до конца 90-х годов и предназначалась для задач контактной идентификации объектов, в т.ч. с функциями измерения и регистрации температуры, влажности, параметров автономного электропитания, а также с функциями съема, хранения и переноса данных. Широко распространенным образцом такого рода применения является ключ-таблетка для домофона. Менее известным, но также широко распространенным является использование платформы 1-Wire для решения задач идентификации и регистрации параметров картриджей, материнских плат, биологических объектов, идентификации и защиты от несанкционированного доступа различных боксов, контейнеров и т.п. Суть данного целевого назначения и принципа действия отражена в термине «Touch Memory» (контактная память), который часто используют для упоминания устройств iButton. Подробную информацию о штатных областях применения и достоинствах платформы 1-Wire можно найти на следующих страницах сайта фирмы Maxim Integrated:

Несмотря на такое изначально узкоцелевое назначение, платформа 1-Wire по своим технико-экономическим характеристикам оказалась весьма подходящей для бюджетных решений определенных категорий АСУ ТП. Продвижение платформы в нишу автоматизации явилось предпосылкой ее использования в дальнейшем и в системах «умного» дома, в первую очередь в системах контроля микроклимата и метеоусловий, что обусловлено составом датчиков. Особо по вкусу платформа пришлась мелким частным компаниям и разного рода умельцам, разработавшим для нее ряд программных средств, контроллеров, периферийных модулей, а также создавшим ряд проектов домашней автоматизации.

Оценки доли платформы на рынке систем домашней автоматизации отсутствуют.

Базовыми решениями, на которых основана платформа, являются следующие:

A. Двухпроводный интерфейс.

Вместе с тем в устройствах, имеющих функцию автономной регистрации данных, т.е. без подключения к магистрали, предусматривается внутренний источник питания (литиевая батарейка), а питание устройств с повышенным потреблением производится от внешнего источника по отдельной линии.

Ограничение магистрали всего двумя линиями позволяет обеспечить гарантированный контакт внешних цепей устройства iButton с цепями контактного устройства магистрали «легким движением руки», т.к. для этого требуется механическое сопряжение всего двух пар элементов. Именно в этом, собственно говоря, и заключается главное достоинство «двухпроводности» применительно к первоначальным задачам платформы 1-Wire.

B. Индикация подключения в горячем режиме.

Протокол 1-Wire предусматривает выдачу устройством, поключаемым к магистрали в горячем режиме, импульса, оповещающего о появлении на магистрали нового устройства. Необходимость такого оповещения также дикутется особенностями целевого назначения платформы, поскольку обмен с устройством iButton должен инициироваться в момент его подключения к магистрали.

C. Уникальный идентификатор устройства

Каждая микросхема 1-Wire содержит уникальный 64-битный код, записываемый на этапе производства. Данный код позволяет индивидуализировать все выпускаемые устройства 1-Wire, для чего производитель гарантирует отсутствие одинаковых кодов (аналогично MAC-адресам сетевых адаптеров). При подключении к магистрали данный код считывается контроллером и используется для идентификации связанного с этим устройством объекта, а также для определения типа устройства. При подключении к магистрали нескольких устройств их коды могут использоваться в качестве их адресов, что позволяет строить технологические сети, получившие название MicroLAN.

Замечание. Для задач автоматизированного управления, к которым, в том числе, относятся и задачи «умного дома», данные решения не дают каких-либо преимуществ. Так, нет ощутимой разницы при использовании в современном интерьере двухпроводного и, например, четырехпроводного кабеля, тем более, что использование исполнительных устройств все равно потребует отдельной линии питания. Также не актуальна для домашней автоматики возможность подключения устройства в «горячем» режиме, если только это не ключ электронного замка. Использование же в качестве адреса устройства его идентификатора вместо установки фиксированного, регламентированного проектом, вообще сопряжено с определенными неудобствами наладки и ремонта сети, хотя разработчик и предлагает соответствующие алгоритмы самонастройки и адаптации, а также возможность установки с помощью внешних перемычек для ряда устройств дополнительного 4-х битного локального адреса. Пригодность платформы для отдельных ниш автоматизации вытекает из ее дешевизны, простоты применения, наличия в составе ряда востребованных датчиков, устройств сопряжения со стандартными интерфейсами, драйверов для распространенных операционных систем, а также наличием возможности расширения функционала за счет применения элементной базы общего назначения.

Сеть на базе протокола 1-Wire имеет централизованную архитектуру. Информационный обмен происходит под управлением центрального контроллера - «мастера», остальные сетевые устройства имеют статус «слэйв» (рис.3). В качестве контроллера сети может использоваться любое программируемое устройство, имеющее внешний интерфейс. Для согласования контроллеров с магистралью 1-Wire в составе программно-технических средств платформы имеются адаптеры и драйверы для проводных последовательных интерфейсов RS-232, RS-485, I2C, SPI, Ethernet, для параллельного интерфейса LPT, а также для Wi-Fi.

Рис.3. Конфигурация сети MicroLAN на базе протокола 1-Wire

Топология сети может иметь как линейную, так и ветвящуюся древовидную структуру. Основные параметры интерфейса 1-Wire следующие:

  • максимальная длина магистрали при использовании витой пары - до 300 м;
  • максимальное количество абонентов на магистрали максимальной длины - до 250;
  • скорость обмена по магистрали максимальной длины - до 16,3 кбит/c;

Для магистрали рекомендуется ипользовать стандартную витую телефонную пару CAT5. В случае использования стандартного телефонного провода с двумя парами вторую пару использовать для других целей не рекомендуется во избежание увеличения емкости линии, т.е. в случае подачи внешнего питания на устройства желателен отдельный кабель.

Обмен данными по магистрали включает три фазы (рис.4):

  • фазу сброса, включающую импульс сброса от контроллера и ответный импульс подтверждения присутствия от абонента (абонентов);
  • фазу выборки устройства, включающую команду его выборки (по коду, без кода, групповую, поиска) и его код, если командой он предусмотрен;
  • фазу записи/чтения данных, включающую код команды и данные.

Рис.4. Циклограмма обмена данными

Логика всех устройств тактируется отрицательным фронтом сигналов контроллера как в режиме записи, так и в режиме чтения. Биты кодируются длительностью положительного импульса: «1» передается длинным импульсом, а «0» - коротким. В режиме записи все импульсы данных формируются контроллером. В режиме чтения контроллер формирует последовательность единиц, а абонент накладывает на них свою маску нулей (рис.5).

Рис.5. Тактирование и кодирование на физическом уровне

Более подробные сведения об архитектуре магистрали 1-Wire приведены в следующих официальных документах фирмы Maxim:

Архитектура ЗУ и регистров периферийных устройств платформы организована таким образом, что совокупность всех сетевых устройств может быть представлена как единая файловая система, что позволяет работать с сетью как с интегрированным носителем данных. Описание ее структуры приведено в AN114 1-Wire File Structure .

Номенклатура микросхем платформы 1-Wire и устройств iButton включает как простые носители кода идентификации, так и носители кода идентификации с дополнительными функциями, в т.ч.

  • с функциями различных типов ЗУ - Memory EPROM, EEPROM, ROM, NV SRAM ;
  • с функциями измерения температуры - Temperature Sensors ;
  • с функциями мониторинга, защиты и конфигурирования элементов электропитания - Battery Monitors, Protectors, and Selectors и Battery ID and Authentication ;
  • с функциями хронирования - Timekeeping & Real-Time Clocks ,
а также интерфейсные микросхемы для сопряжения контроллеров с магистралью 1-Wire - 1-Wire Interface Products .

Вся схемотехника, реализующая архитектуру, уже заложена в микросхемах платформы. При разработке периферийных устройств разработчику остается только добавить обвязку для сопряжения с датчиками, актюаторами и устройствами индикации, элементы защиты внешних цепей и, если потребуется, элементы внешнего электропитания. При разработке интерфейсных адаптеров необходима, соответственно, обвязка для сопряжения микросхем - драйверов магистрали с интерфейсом контроллера сети. На рис. 6 в качестве примера приведен фрагмент схемы модуля дискретного ввода-вывода фирмы ЭлИн.

Рис.6. Фрагмент схемы модуля дискретного ввода-вывода фирмы ЭлИн

На базе комплектующих 1-Wire, выпускаемых фирмой Maxim, производится достаточно большое разнообразие конструктивно и функционально законченных устройств для систем автоматизации, в т.ч. для «умного» дома. Такие устройства включают различные адаптеры и серверы магистрали, модули ввода-вывода дискретных и аналоговых сигналов, датчики, кабели и пр. Номенклатура, характеристики и цены таких устройств приведены на сайтах их производителей, к числу наиболее известных из которых относятся:

Наиболее развитую номенклатуру OEM-устройств, включающую в т.ч. и управляемые розетки для коммутации электропитания, предлагает НТЛ ЭлИн. За рубежом наибольшей популярностью пользуются модули фирмы Embedded Data Systems. Однако в целом число OEM-производителей невелико, они не относятся к категории «гигантов» индустрии средств автоматизации и, кроме того, в значительной степени ориентированы на рынок домашних умельцев.

Рис.7. Примеры OEM-модулей 1-Wire

Фирма Maxim Integrated предоставляет для программирования систем на базе 1-Wire библиотеки API и SDK для широкого ряда платформ - персональных компьютеров с ОС Windows/Linux/MacOS, мобильных устройств, микроконтроллеров, .NET и JAVA. Их общее описание приведено в AN155 , а описание конкретных пакетов со ссылками на скачивание дистрибутивов и документации приведено в следующих документах:

Предлагается также программный cканер сети OneWire Viewer , позволяющий находить и идентифицировать подключенные к сети устройства и отображать полный перечень их параметров и данных.

Из сторонних разработок наибольший интерес представляют следующие:

Существует также большое число специализированных программ, разрабатываемых под узкие задачи (см., например, для модулей НТЛ ЭлИн).

Цифровые датчики температуры и относительной влажности и автономные регистраторы температуры и относительной влажности, а так же все модули расширения, подключаются к линии датчиков 1-wire прибора ГИГРОТЕРМОН параллельно, используя 3 провода: «DQ» (шина данных 1-wire), «GND» (общий) и «+5В» (питание). Однако для надежности необходимо использовать все контакты разъема 6P6C (RJ12). Внимание: важно, чтобы контакты «DQ» (1-wire) и «GND 1-wire» (контакты 3 и 4 на рис. ниже) были одной витой парой, например, зеленый и бело-зеленый. Внешний вид разъема 6Р6С, а также назначение контактов и рекомендуемая расцветка проводов см. рис. ниже.

Для надежности связи прибора с датчиками и достижения максимальной протяженности линии датчиков 1-wire цифровые датчики и модули расширения рекомендуется подключать по схеме «гирлянда»: кабель от прибора ГИГРОТЕРМОН должен подходить к первому датчику (или модулю расширения), от первого ко второму и т.п., чтобы все датчики и модули были на одной линии, без ответвлений. См. рис. ниже.

Рекомендуемая максимальная протяженность линии 1-wire при использовании кабеля «витая пара» категории 5Е – не более 100 метров. Если фактическая длина кабеля более 100 метров, рекомендуется разбить линию на две малые с использованием дополнительного прибора ГИГРОТЕРМОН. Для удобства подключения и монтажа, все модули расширения и цифровые датчики и адаптеры для цифровых автономных регистраторов имеют не менее 2-х разъемов 6P6C (RJ12) – вход/выход 1-wire.

Внешний вид платы цифрового датчика 1w-2/3

Внешний вид модуля расширения дискретных датчиков «1wio2»

Внешний вид платы модуля расширения унифицированных (аналоговых) сигналов «HIHx2»

Таблица 1. Результаты испытаний линии связи регистраторов температуры (и относительной влажности) на максимальную протяженность,
при которой наблюдается устойчивая связь регистраторов с прибором Гигротермон

Длина кабеля, м. Тип регистраторов температуры и влажности / наличие связи (да / нет)
Регистраторы температуры
DS1921G-F5, DS1921Z-F5
Регистраторы температуры и относительной влажности DS1923-F5, DS1922L-F5
350 да (с подтяжкой 5В)
нет (без подтяжки 5В)
300 да (с подтяжкой 5В)
нет (без подтяжки 5В)
250 да (с подтяжкой 5В) нет (с подтяжкой 5В)
нет (без подтяжки 5В) нет (без подтяжки 5В)
200 да (с подтяжкой 5В) да (с подтяжкой 5В)
нет (без подтяжки 5В) нет (без подтяжки 5В)
150 да (с подтяжкой 5В) да (с подтяжкой 5В)
да да (без подтяжки 5В)
100 да (с подтяжкой 5В) да (с подтяжкой 5В)
да да (без подтяжки 5В)
  • "да" - наличие устойчивой связи датчика с прибором Гигротермон
  • "нет" - отсутствие устойчивой связи датчика с прибором Гигротермон
  • "с подтяжкой" - использование схемы пассивной подтяжки сигнала +5В на конце линии. http://gigrotermon.ru/imag/shop.product_details/8/flypage.tpl/198.html

Таблица 2. Результаты испытаний линии связи комбинированных датчиков** 2RJ11-HIH5031E-DS18S20
на максимальную протяженность, при которой наблюдается устойчивая связь с прибором Гигротермон

Длина кабеля, м. Измеряемый параметр / наличие связи (да / нет)
Температура Относительная влажность
100 да (без подтяжки) да (без подтяжки)
125 да (с подтяжкой) да (с подтяжкой)
150 да (с подтяжкой) да (с подтяжкой)
175 да (с подтяжкой) да (с подтяжкой)
200 да (с подтяжкой) нет (с подтяжкой)
300 да (с подтяжкой) нет (с подтяжкой)

**) В испытаниях использовано 10 комплектов комбинированных (температура + влажность) датчиков 2RJ11-HIH5031E-DS18S20, подключенных одновременно в конце линии.

Данные получены в "идеальных" лабораторных условиях с использованием кабеля NIKOLAN NKL 4200A-GY F/UTP 4 пары кат.5e, 24 AWG. Поэтому, в реальных производственных условиях значения длин могут отличаться в меньшую сторону из-за присутствия электромагнитных помех или использования другого типа используемого кабеля.

Подскажите, проблема следующая, к WB5 по 1 wire подключены 4 температурных датчика DS18B20 не герметичные, работают и определяются нормально. Подключаю дополнительно ваш герметичный датчик DS18B20 совместно с 4 мя, герметичный датчик не определяется и данные не отображает. (подключение напрямую к WB5) По отдельности все работает, а вместе никак.

Негерметичные датчики (GND-GND, 1W - DAT, +5V - VCC)
Герметичный (GND- черный, 1W - желтый, +5V - красный), на сайте у вас распиновка не верно указана, только так он работает у меня в ед числе.

Только что взял два таких же датчика с трёхметровым кабелем, дополнительно взял выводной DS18B20 без кабеля, зажал всё в клеммники Wiren Board, и всё вместе заработало.
Собственно, то, что купленный у нас датчик в одиночестве работает, уже скорее всего значило, что дело не в нём, а в конфигурации шины. Основной способ её “починить” - свериться с подробным руководством по организации 1-Wire шины: https://www.maximintegrated.com/en/app-notes/index.mvp/id/148 .
Случай однозначно негарантийный, но можем вместе с вами попробовать понять, в чём тут дело. Для начала четыре вопроса:

  1. Надеюсь, все датчики подключены тремя проводами (то есть каждый подключён отдельным проводом к 5В, никто не питается от шины данных)?
  2. Какие длины кабелей до ваших датчиков?
  3. Какие кабели в них используются? Не может ли быть наводок?
  4. Работает ли конфигурация “наш датчик + один ваш датчик”?

А можете проанализировать, при каких условиях появляется ошибка контрольной суммы? Как часто повторяется? Какие датчики фигурируют? Можете измерить падение напряжения на датчиках? На шине данных относительно земли и питания (это когда все не работает).

Расстояния 30 см - 1 для шины 1-wire вообще незаметны при любой топологии подключения, если все исправно.
Работает ли конфигурация “наш датчик + один ваш датчик”?

в логах wirenboard-ABZ4PE4F user.warn kernel: [ 1484.461380] w1_slave_driver 28-0000073ba74b: Read failed CRC check. Напряжение когда все не работает ровно 5.00

wirenboard-ABZ4PE4F user.info kernel: [ 1242.799168] w1_master_driver w1_bus_master1: w1_search: max_slave_cou
nt 64 reached, will continue next search. Еще вот это

wirenboard-ABZ4PE4F user.info kernel: [ 1242.799168] w1_master_driver w1_bus_master1: w1_search: max_slave_count 64 reached, will continue next search. Еще вот это

Вот это обычно значит, что у вас потенциал на линии 1-Wire ноль. Где-то КЗ.

Напишите пожалуйста идентификаторы всех датчиков, наших и ваших.

Посмотрел вашу ссылку: у вас не собственно сам датчик DS18B20, а модуль (платка), на которой есть ещё резистор (как я понял, это подтяжка 4.7КОм линии DATA к VCC), и ещё конденсатор (скорее всего, между VCC и GND).
Если это так, то четыре таких модуля дают в сумме подтяжку 1.2КОм. При этом подтяжка на линии должна быть одна - в мастере (контроллере Wiren Board), и она там уже есть - 3КОм. Итоговая подтяжка получается 0.8КОм, и наш датчик на трёхметровом кабеле не может её “перетянуть”.

Проверьте, к каким линиям подключены компоненты на плате. Если всё действительно так, как я сказал, то попробуйте их отпаять на одном вашем модуле, и попробуйте подключить этот модуль вместе с нашим датчиком.

Информационное взаимодействие с "таблетками"?логгерами iButton и любая их поддержка осуществляется посредством т.н. 1-Wire-интерфейса, разработанного в конце 90?х годов фирмой Dallas Semiconductor, которая с 2001 году является частью компании Maxim Integrated. Этот интерфейс регламентирован разработчиками для применения в четырех основных сферах?приложениях:

  • обслуживание устройств, упакованных в специальные корпуса can F# (ранее MicroCAN), для решения задач идентификации, аутентификации, авторизации, защиты информации, контроля доступа, обеспечения электронных платежей, переноса или преобразования информации (технология iButton),
  • программирование встроенной памяти интегральных компонентов,
  • идентификация элементов оборудования и защита доступа к ресурсам электронной аппаратуры,
  • элементы и системы автоматизации (технология 1-Wire-сетей).

Первое из этих направлений, связанное в том числе с обслуживанием "таблеток"?логгеров iButton, очень широко распространено в мире, как и сами устройства iButton (подробнее см. здесь). Второе с успехом обеспечивает возможность легкой перестройки функций полупроводниковых компонентов, производимых компанией Maxim Integrated и имеющих малое количество внешних выводов. Третье позволяет обеспечить недорогую, но достаточно эффективную идентификацию и надежную защиту самого разнообразного оборудования. Что касается четвертого применения, то реализация локальных распределенных систем на базе 1-Wire-сетей является оптимальным для многих практических задач автоматизации.

Так в чем же особенность этого сетевого стандарта? Ведь в качестве среды для передачи информации по 1-Wire-магистрали чаще всего возможно использование обычного телефонного кабеля и, следовательно, скорость обмена в этом случае невелика. Однако если внимательно проанализировать большинство реальных объектов, требующих автоматизации, то больше чем для 60% из них предельная скорость обслуживания в 16,3 Кбит/с будет более чем удовлетворительной. А другие преимущества 1-Wire-технологии, такие как:

  • простое и оригинальное решение адресуемости абонентов,
  • несложный протокол,
  • простая структура магистрали,
  • малое потребление компонентов,
  • легкое изменение конфигурации сети,
  • значительная протяженность магистрали,
  • исключительная дешевизна всей технологии в целом,
отражают очевидную рациональность и высокую эффективность этого инструмента при решении задач комплексной автоматизации в самых различных областях деятельности.

Основные принципы

1-Wire-net представляет собой информационную сеть, использующую для осуществления цифровой связи 1-Wire-магистраль, состоящую из шины данных (DATA) и возвратной шины (RET). Таким образом, для реализации среды обмена этой сети могут быть применены доступные кабели, содержащие неэкранированную витую пару той или иной категории, и даже обычный телефонный шнур. Такие кабели при их прокладке не требуют наличия какого?либо специального оборудования, а ограничение максимальной протяжённость кабеля 1-Wire-магистрали регламентировано разработчиками на уровне 300 м.

Основой архитектуры 1-Wire-сетей является топология общей шины, когда каждый из абонентов подключён непосредственно к единой магистрали, без каких?либо каскадных соединений или ветвлений. При этом в качестве базовой используется структура сети с одним ведущим или мастером и многочисленными ведомыми абонентами (подробнее см. здесь).

Конфигурация любой 1-Wire-сети может произвольно меняться в процессе её работы, не создавая помех дальнейшей эксплуатации и работоспособности всей системы в целом, если при этих изменениях соблюдаются принципы организации 1-Wire-интерфейса. Эта возможность достигается благодаря присутствию в протоколе 1-Wire-интерфейса специальной команды поиска ведомых устройств (Поиск ПЗУ), которая позволяет быстро определить новых участников информационного обмена. Стандартная скорость отработки такой команды составляет ~75 узлов сети в секунду.

[Каждый из 1-Wire-компонентов имеет уникальный номер (адрес), как и денежные знаки] Благодаря наличию в составе любого устройства, снабженного 1-Wire-интерфейсом, индивидуального адреса, столь же уникального, как и номер денежной купюры (отсутствие совпадения адресов для компонентов, когда?либо выпускаемых Maxim Integrated, гарантируется самой фирмой?производителем), такая сеть имеет практически неограниченное адресное пространство. При этом каждый из 1-Wire-компонентов сразу готов к использованию в составе 1-Wire-сети, без каких?либо дополнительных аппаратно?программных модификаций.

1-Wire-компоненты являются самотактируемыми полупроводниковыми устройствами, в основе обмена информацией между которыми лежит управление длительностью импульсных сигналов, предаваемых по 1-Wire-магистрали, и их измерение. Передача сигналов для 1-Wire-интерфейса - асинхронная и полудуплексная, а вся информация, циркулирующая в сети, воспринимается абонентами либо как команды, либо как данные. Команды сети генерируются мастером и обеспечивают различные варианты поиска и адресации ведомых устройств, определяют активность на 1-Wire-магистрали даже без непосредственной адресации отдельных абонентов, управляют обменом данными в сети и т.д.

[Схема порта мастера 1-Wire-сети] Стандартная скорость работы 1-Wire-сети, изначально нормированная на уровне 16,3 Кбит/с, была выбрана, во?первых, исходя из обеспечения максимальной надёжности передачи данных на большие расстояния, и, во?вторых, с учётом быстродействия наиболее широко распространённых типов универсальных микроконтроллеров, которые в основном должны использоваться при реализации ведущих устройств 1-Wire-сети. Эта скорость обмена может быть снижена до любой возможной, благодаря введению принудительной задержки при передаче по магистрали отдельных битов данных (т.е. растягиванию временных слотов протокола). Однако увеличение скорости обмена в 1-Wire-сети с длиной кабеля магистрали более 1 м выше значения 16,3 Кбит/с приводит к сбоям и ошибкам. Если же протяженность 1-Wire-магистрали не превышает 0,5 м, то скорость обмена может быть значительно увеличена за счёт перехода на специальный режим ускоренной передачи (Overdrive ? до 125 Кбит/с), который допускается для отдельных типов 1-Wire-компонентов. Как правило, такой режим обмена аппаратно реализован для 1-Wire-компонентов, имеющих большой объём встроенной памяти, предназначенных для эксплуатации в составе небольшой, но качественной и не перегруженной другими устройствами 1-Wire-сети. Типичным примером таких компонентов являются микросхемы семейства iButton.

[Вид оболочки пакета OneWireViewer (для боле подробного просмотра щелкните левой кнопкой мыши)] Пожалуй, особенно привлекательным качеством 1-Wire-технологии является исключительная простота настройки, отладки и обслуживания сети практически любой конфигурации, построенной по этому стандарту. Действительно, для начала работы достаточно любого персонального компьютера, недорогого адаптера 1-Wire-интерфейса, а также свободно распространяемого компанией Maxim Integrated тестового программного пакета разработчика OneWireViewer. При наличии этого небольшого числа составляющих организация функционирования 1-Wire-сети практически любой сложности, построенной на базе стандартных 1-Wire-компонентов, реализуется буквально в течении нескольких минут. Возможности, предоставляемые программным пакетом OneWireViewer, позволяют с максимальным комфортом для разработчика идентифицировать любой 1-Wire-компонент, подключённый к 1-Wire-магистрали, ведомой компьютером через адаптер, и проверить в полном объёме правильность его функционирования в составе конфигурируемой 1-Wire-сети. Организация ведущих

Компания Maxim Integrated выпускает несколько видов адаптеров, которые позволяют наделить любой персональный компьютер функциями мастера 1-Wire-сети. К ним относятся адаптеры семейства DS9097U для COM?порта и адаптеры семейства DS9490R для USB?порта. А адаптер типа DS9481R обеспечивает возможность реализации на базе компьютера мастера 1-Wire-сети по спецификации USB 2.0. Эти устройства имеют различные функциональные возможности и конструктивные особенности, что обеспечивает разработчику максимальную свободу выбора при конструировании.

Часто в качестве ведущего 1-Wire-сети выступает не компьютер, а простейший универсальный микроконтроллер. Для организации его сопряжения с 1-Wire-магистралью используются различные программно?аппаратные методы. От простейшего, когда управляющая программа контроллера полностью реализует протокол 1-Wire-интерфейса на одном из своих функциональных двунаправленных выводов, связанных с шиной данных 1-Wire-магистрали, до вариантов, позволяющих высвободить значительные ресурсы контроллера, благодаря использованию специализированных микросхем поддержки взаимодействия с 1-Wire-сетью. Такие микросхемы подключаются к процессору, играющему роль ведущего 1-Wire-сети, через периферийные узлы ввода/вывода, входящие в состав любого универсального микроконтроллера. Например, драйвера семейства DS2482 позволяют управлять 1-Wire-сетью, используя популярный микроконтроллерный интерфейс I2C. Если же мастер 1-Wire-сети должен быть организован на базе типового узла последовательного интерфейса UART микроконтроллера, используется микросхема DS2480В. Эта микросхема, также как микросхемы DS2482 и DS2483, реализует так называемый программируемый механизм активной подтяжки шины данных 1-Wire-магистрали. Использование активной подтяжки гарантирует качественную передачу сигналов в проблемных 1-Wire-сетях с протяжённой магистралью. Также применение активной подтяжки обеспечивает увеличение нагрузочной способности ведущего по количеству обслуживаемых им ведомых абонентов сети. Кстати, адаптеры семейства DS9097U для COM?порта персонального компьютера, также построены именно на базе микросхемы DS2480В. Более того, учитывая особенности современных операционных сред Windows, именно использование микросхемы?драйвера DS2480В, которая по своей сути является управляемым по последовательному интерфейсу цифровым автоматом, способным взять на себя значительную часть функций по реализации сетевого протокола, и обеспечивает полномасштабное обслуживание 1-Wire-сети в реальном масштабе времени.

Ведомые 1-Wire-компоненты

[Кристалл 1-Wire в корпусе MicroCAN] [Так выглядят кристаллы 1-Wire-компонентов] Ведомые 1-Wire-компоненты, содержащие в составе своей схемы узел 1-Wire-интерфейса, выпускаются в двух различных видах. Либо в корпусах MicroCAN, похожих внешне на дисковый металлический аккумулятор, либо в обычных корпусах для монтажа на печатную плату. Футляр MicroCAN полый внутри. Он выполняет функцию защиты содержащегося в нём полупроводникового кристалла микросхемы с узлом 1-Wire-интерфейса, который соединён с внешним миром лишь через две, изолированные друг от друга, половинки металлического корпуса, являющиеся, по существу, контактными площадками для подключения 1-Wire-магистрали. В подобных “таблеточных” корпусах поставляются устройства iButton. Компоненты, которые предназначены для использования в составе 1-Wire-сетей, упаковываются в пластиковые корпуса, используемые для изготовления транзисторов и интегральных схем. Такой подход объясняется тем, что в отличие от устройств iButton компоненты, специально ориентированные для применения в составе 1-Wire-сетей, часто имеют более двух выводов. Помимо выводов, которые требуются для обмена данными по 1-Wire-магистрали, они располагают дополнительными выводами, необходимыми для обеспечения их питания и организации внешних цепей, связывающих такие устройства с объектами автоматизации, например, датчиками или исполнительными устройствами.

К наиболее простым ведомым 1-Wire-компонентам относятся кремниевый серийный номер DS2401 (или модифицированный вариант этого устройства с внешним питанием DS2411) и электронный ключ DS2413P, управляемый по 1-Wire-интерфейсу. Первое из этих устройств часто используется в качестве электронной метки, которая позволяет идентифицировать состояние, например, механического переключателя, коммутирующего шину данных 1-Wire-магистрали. С помощью DS2413P можно дистанционно осуществить простейшие функции переключения внешнего оборудования, изменяя состояние управляемого ключа относительно возвратной шины 1-Wire-магистрали (в настоящее время ключ DS2405 уже не поставляется, поскольку доступна более функционально совершенная замена – DS2413P).

[Термометры с 1-Wire-интерфейсом применяют во многих лабораториях мира] Однако наиболее популярными ведомыми 1-Wire-компонентами, на базе которых реализовано, пожалуй, наибольшее количество практических приложений, безусловно, являются цифровые термометры типа DS18S20 (более известные до 2001 года под обозначением уже давно снятого с производства устройства DS1820, успевшего стать международным брендом). Преимущества этих цифровых термометров с точки зрения организации магистрали, по сравнению с любыми другими интегральными температурными сенсорами, а также неплохие метрологические характеристики и хорошая помехоустойчивость, уже на протяжении двух десятков лет неизменно выводят их на первое место при построении многоточечных систем температурного контроля в диапазоне от –55°С до +125°С. Такие сенсоры позволяют не только осуществлять непосредственный мониторинг температуры в режиме реального времени, но и благодаря наличию встроенной энергонезависимой памяти температурных уставок, могут обеспечивать [Внешний вид популярнейших цифровых термометров семейства DS18#2# от Maxim Integrated] приоритетную оперативную сигнализацию в 1-Wire-сети о факте выхода контролируемого параметра за пределы заданных значений. Также поставляются более совершенные термометры DS18В20, у которых скорость преобразования определяется разрядностью результата, программируемой непосредственно по 1-Wire-интерфейсу. Цифровой код, считываемый с такого термометра, является прямым результатом измеренного значения температуры и не нуждается в дополнительных преобразованиях. Некалиброванная, но в тоже время более дешёвая версия микросхемы DS18B20 под обозначением DS1822 представляется оптимальным решением для разработчиков недорогих многоточечных систем контроля температурных процессов.

До 2010 года компания Maxim Integrated также поставляла целый спектр дискретных микросхем, оснащённых 1-Wire-интерфейсом и реализующих функции отдельных элементов систем автоматизации. Среди них: четырехканальный 16?разрядный АЦП типа DS2450, двухканальный счетчик, совмещённый с буферной памятью, типа DS2423, цифровой потенциометр на 256 градаций типа DS2890, узлы часов реального времени и календаря типа DS2415 и типа DS2417, причём последнее устройство через особый вывод прерывания, обеспечивало управление по времени переключением внешнего оборудования. Однако, как показал десятилетний опыт развития 1-Wire-сетей, для реальных объектов автоматизации, 1-Wire-компоненты, исполняющие отдельные функции, [Микросистемы, содержащие множество функциональных узлов, обеспечивают эффективную поддержку управления питанием многих портативных устройств] менее востребованы по сравнению с устройствами ориентированными на реализацию сразу нескольких функций на одном кристалле. Такие решения получили название 1-Wire-микросистем. Наиболее характерным представителем 1-Wire-микросистемы является микросхема DS2438, которая помимо узла 1-Wire-интерфейса также содержит узлы: цифрового термометра, АЦП с недифференциальным входом, токовый АЦП с дифференциальным входом, программируемый таймер, Flash?память, набор регистров для хранения данных общего назначения. Весь этот арсенал в составе одного 1-Wire-компонента позволяет легко решить, например, задачу по эффективному обслуживанию и сопровождению энергетических элементов питания различных типов. В настоящее время компания Maxim Integrated выпускает более эффективные 1-Wire-микросистемы: DS2760, DS2775, DS2776, DS2777, DS2781 и т.п.

[Сдвоенный ключ DS2406 – самый универсальный и востребованный элемент 1-Wire-сетей] Тем не менее наиболее незаменимыми «кирпичиками», лежащими в основе фундамента 1-Wire-сетей автоматизации, оказались универсальные сдвоенные адресуемые транзисторные ключи типа DS2406P. На базе этих устройств может быть реализована масса применений и, прежде всего, узлы контроля логических состояний (уровней) и схемы обслуживания датчиков «сухого контакта», а также разнообразные ключевые схемы. Таким образом, именно благодаря использованию этих компонентов осуществляется сбор дискретной информации с территориально рассредоточенных датчиков (мониторов дверей, контакторов положения арматуры, любых сенсоров, имеющих выход ДА/НЕТ, как?то: датчики положения, прохода, присутствия, пожарной и охранной сигнализации и т.д.).

[Универсальный двунаправленный порт DS2408 значительно расширяет возможности 1-Wire-сетей] Однако при всём многообразии 1-Wire-компонентов, все?таки наиболее универсальным из них является уникальная микросхема DS2408. Это двунаправленный восьмиразрядный свободно поразрядно программируемый по 1-Wire-магистрали порт ввода/вывода, который позволяет реализовать любой интерфейс между всяким цифровым устройством и 1-Wire-сетью. Использование порта DS2408 позволяет посредством 1-Wire-интерфейса обеспечить простое и гибкое управление вводом/выводом по 8 независимым каналам. Таким образом, на базе этого устройства возможна организация привода светодинамических или жидкокристаллических индикаторов и дисплеев различных видов, осуществление сканирования матричных клавиатур и дискретных датчиков самых различных типов.

Если же эксплуатация 1-Wire-сети или любого иного электронного оборудования, имеющего минимум выводов для реализации обмена данными, требует обеспечения хранения дополнительных объёмов информации, в распоряжении разработчика имеются специальные 1-Wire-компоненты, содержащие только лишь узлы ЕPROM (DS2502/ DS2505/ DS2506) или EЕPROM (DS2431/ DS2432/ DS2433/ DS28E02/ DS28E04/ DS28EC20) различных объёмов. Причём некоторые из этих микросхем имеют специальные узлы механизма шифрования SHA, что позволяет довольно просто обеспечить достаточно высокий уровень криптографической защиты данных, как при их передаче, так и при их хранении. "Таблетки" iButton и 1-Wire-сеть

[На базе устройств iButton также возможно построение 1-Wire-сетей] Целый ряд компонентов семейства iButton в корпусах MicroCAN также может быть использован в составе 1-Wire-сетей в качестве ведомых абонентов, которые решают специфические задачи идентификации, преобразования, накопления, хранения и переноса информации. Например, для реализации процедуры идентификации в системах промышленной автоматизации обычно достаточно применения распространённых носимых электронных меток DS1990A. Более сложное устройство DS1904 позволяет синхронизовать работу узлов часов/календаря микропроцессорных систем. [Устройство ТЕРМОХРОН DS1921 является удобным защищённым автономным логгером] А многоточечный температурный контроль может быть выполнен сетью из нескольких “таблеток” DS1920. Если же использовать “таблетки”-логгеры DS1921/DS1922/DS1923/DS1925 или иначе устройства ТЕРМОХРОН и устройства ГИГРОХРОН, каждое из которых регистрирует или температурные значения, или значения температуры и относительной влажности, измеренные через определённые, заранее заданные, промежутки времени и сохраняет полученную информацию в собственной энергонезависимой памяти, легко построить территориально распределённую систему мониторинга микроклимата любой сложности.

Для решения проблемы переноса данных, накопленных территориально удалённой автономной 1-Wire-системой, к стационарному персональному компьютеру удобны различные типы микросхем памяти из семейства iButton, которые в этом случае играют роль так называемых «транспортных таблеток». К подобным устройствам относятся, прежде всего, устройства энергонезависимой памяти, включающие в состав своей конструкции литиевый элемент питания. Это целый ряд “таблеток”: DS1992L (1 Кбит), DS1993L (4 Кбита), DS1995L (16 Кбит), DS1996L (64 Кбита). Кроме того, для целей транспорта информации могут быть использованы устройства с памятью типа EEPROM модификаций DS1971(32 байта), DS1972(128 байт), DS1973(512 байт) и DS1977(32 Кбайта). «Транспортные таблетки» входящие в состав семейства микросхем iButton EPROM?памяти? DS1982 (1 Кбит), DS1985 (16 Кбит), DS1986 (64 Кбита), ? удобны для заполнения памяти микропроцессорных систем (например, калибровочными константами или начальными установочными значениями).

Для сопряжения устройств в корпусах MicroCAN с шинами 1-Wire-магистрали используют специальные защелки типа DS9100 или DS9098P, или же более простые зажимы типа DS9094. Однако следует учитывать, что при организации 1-Wire-сети на базе “таблеток” iButton с помощью таких приспособлений теряется весь смысл в суперзащитных свойствах их корпуса. Поскольку подобные варианты включения этих “таблеток” в состав абонентов 1-Wire-сети делают соединение в любом случае уязвимым для внешних воздействий (воды, пыли, грязи, инея и т.д.). Поэтому вопрос об организации защищённых от внешних воздействий 1-Wire-сетей, реализованных на базе устройств iButton, требует особого подхода.

Магистраль и топология 1-Wire-сети

Большую роль при построении 1-Wire-сетей играет исполнение 1-Wire-магистрали. Как правило, протяжённые 1-Wire-магистрали имеют структуру, состоящую из трёх основных проводников: DATA ? шина данных, RET (GND) – возвратная шина или земляной провод, EXT_POWER – внешнее питание не только обслуживаемых ведомых абонентов, но и внешних относительно них цепей датчиков и органов управления. В зависимости от технологии прокладки кабеля, способа его сопряжения с ведомыми абонентами, особенностей используемых приёмов монтажа и качества применяемых материалов, в соответствии с нижеследующей Таблицей, различают четыре основных варианта организации 1-Wire-сетей, каждый из которых подразумевает использование особой технологии и аксессуаров при реализации магистрали.

Классификация 1-Wire-сети Протяжённость кабеля магистрали Количество ведомых абонентов Тип используемого кабеля Топология Мастер 1-Wire-сети
Миниатюрная До 5 м До 10 шт Любой Свободная Любой ведущий с пассивной подтяжкой (резистор к питанию)
Короткая До 30 м До 50 шт 4-х проводный телефонный Общая шина с патчами до 0,5 м Адаптеры на базе дискретных компонентов DS9097E, DS1410E
Средняя До 100 м До 100 шт Витая пара 3 категории Строгая общая шина Активная подтяжка (DS2480В, DS2482, DS2483 или специальное схемное решение (MAX6314))
Длинная До 300 м До 250 шт Витая пара 5 категории или IEEE1394 (Firewire) Общая шина без разрыва ствола Link или программная модификация временных слотов 1-Wire-протокола

[Адаптер LinkUSB – наиболее эффективный привод для проблемных 1-Wire-сетей] Если же организация 1-Wire-сети на базе персонального компьютера связана с особыми трудностями (большая протяжённость кабеля магистрали, большое количество ведомых абонентов, плохое качество кабеля или сложная топология, много помех и т.д.), то наиболее оптимально использование интеллектуального адаптера для COM-порта типа Link или его аналога для USB-порта адаптера LinkUSB. Основой любого из таких адаптеров является микропроцессор, оснащённый специализированной программой управления. При этом все устройства, реализованные по технологии Link, полностью эмулируют со стороны последовательного порта работу популярного адаптера DS9097U производства Maxim Integrated. Поэтому всё программное обеспечение, ранее разработанное для поддержки адаптеров DS9097U, также подходит для взаимодействия с любым из адаптеров Link. Но главное, что благодаря собственным интеллектуальным ресурсам адаптеры Link и LinkUSB обеспечивают льготный режим работы ведомых абонентов в составе проблемных 1-Wire-сетей, в условиях сложной помеховой обстановки. Адаптеры Link и LinkUSB многократно улучшают механизм активной подтяжки шины данных 1-Wire-магистрали, что позволяет действительно получать идеальные сигналы обмена при длинах кабеля до 300 метров и числе ведомых абонентов до 250 шт. Кроме того, использование процессором Link?адаптера специальных алгоритмов цифровой фильтрации многократно улучшает устойчивость обслуживаемой им 1-Wire-сети к электромагнитным помехам, шумам и отражениям сигналов.

  • Tutorial

Имеем в наличии гермозону на 4 ряда с 16-тью открытыми стойками в каждом ряду.
Схема кондиционирования: горячие-холодные коридоры, внутренние кондиционеры с внешними испарителями, 3 кондиционера на ряд, то есть 6 кондиционеров на холодный коридор.

Задача: построить систему мониторинга температуры гермозоны с возможностью предупреждения выхода кондиционеров из строя.

Для решения данной задачи решено было использовать сеть 1-wire температурных датчиков и систему мониторинга Zabbix 2.

Собираем сеть 1-wire.

Нам необходимо:

1. Контроллер 1-Wire сети DS9490R

2. Температурные датчики DS18B20 , в количестве, расчитываем: 4 ряда * 16 стоек в ряду * 2 датчика на стойку (холодный и горячие коридоры), то есть 128 датчика.

3. Для удобной установки датчика использовали вот такой переходник RJ45 на RJ45, кат. 5e GCT11-8p8c , так же в количестве 128 штук

4. И на каждый датчик по 2 патч-корда, то есть 128 * 2 = 256, длина патч-корда половина ширины стойки сервера

Собираем датчик, выбираем в переходнике три любых провода, делаем 3 дырки в переходнике, припаиваем датчик и так 128 раз:)
Рекомендуется залить место припоя клеем из термопистолета, получается что-то похоже на это:

Датчики сразу рекомендуется проверять на работу, прямым подключением к контролеру 1-wire сети и считывания с него информации. Так же рекомендуется пронумеровать датчики: последовательно наклеить номера с 1 по 128. Инициализация 1-wire сети будет описана ниже.

А так это смотрится если закрепить на стойке.

Так как на контролере разъем RJ11, а не RJ45, то рекомендую сделать нулевой датчик-переходник, его порядковый номер будет ноль, а номера стоек будут начинаться с 1, что более привычно.

ВАЖНО!
Протяженность нашей сети составила около 140 метров, так как сервер находился в 2 ряду.
В процессе тестирования выяснилось, что питания порта USB не хватает для такой длиной сети, контролер просто не может опросить датчики, дальше половины сети, поэтому рекомендую купить USB хаб, обязательно с внешнем питанием, и подключить контролер к нему. После подключения хаба, скорость опроса датчиков возросла, и в сети перестали появляться ошибки, все датчики читались.
Разбить сеть на два сегмента мне не удалось, так как программа которая считывает данные с датчиков, так и не смогла понять с каким контролером работать, по крайне мере заставить мне не удалось.

Инициализация 1-wire сети и получение значений датчиков.

Итак приступаем к настройке программной части.

Сервер к которому подключен USB контролер 1-wire сети работает под управлением FreeBSD 9.1, Zabbix 2.0.8 установлен из портов.

Для получения значений датчиков используется программа DigiTemp

Скачиваем исходники DigiTemp и компилируем, скомпилированные программы у меня располагаются: /usr/local/etc/digitemp/new/digitemp-3.6.0/

Для работы с нашем контроллером используем программу digitemp_DS2490

# cd /usr/local/etc/digitemp/new/digitemp-3.6.0/
# ./digitemp_DS2490 -i

DigiTemp нужно запускать из под root, чтобы она могла читать данные с устройства.
Необходимо запускать программу только из ее каталога, так как там хранится файл конфигурации сети.

./digitemp_DS2490 -i - результатом выполнения будет являться файл конфигурации сети 1-wire с названием.digitemprc, в домашнем каталоге программы.
При этом digitemp выведет 64-битные ID датчиков, которые запишет в файл.

Пример.digitemprc
TTY USB
READ_TIME 1000
LOG_TYPE 1
LOG_FORMAT "%b %d %H:%M:%S Sensor %s C: %.2C F: %.2F"
CNT_FORMAT "%b %d %H:%M:%S Sensor %s #%n %C"
HUM_FORMAT "%b %d %H:%M:%S Sensor %s C: %.2C F: %.2F H: %h%%"
SENSORS 133


ROM 5 0x28 0xCB 0xE2 0x19 0x03 0x00 0x00 0x6F

ВАЖНО
Номер счетчика ROM 0 0x28 0x62 0xB5 0x19 0x03 0x00 0x00 0x61, НЕ ЯВЛЯЕТСЯ его физически последовательным номером в сети, этот номер получен во время инициализации сети, то есть кто первым ответил, тот и записался в файл.
Поэтому на стадии пайки датчиков и их проверки рекомендую формировать, сразу последовательную сеть. То есть берем датчик, спаяли, подсоединили сразу к контролеру, запустили./digitemp_DS2490 -i получили его ID, скопировали его в Excel таблицу и так же добавили последовательно ROM номер … в таблицу.
Отсоединили датчик, наклеили на него последовательный номер, и повесили на гирлянду, соединяя патч-кардами. Не рекомендую подсоединять гирлянду к контролеру и запускать проверку, во-первых это будет гораздо дольше, а во-вторых в свете вышесказанного, из-за того, что ответы от датчиков приходят не последовательно, искать ID нового датчика будет сложнее.

После того как вы протестировали все датчики, подсоедините гирлянду к контролеру и запустите./digitemp_DS2490 -i

Сформируется конфигурационный файл вашей сети.digitemprc

Вам необходимо заменить
ROM 0 0x28 0x62 0xB5 0x19 0x03 0x00 0x00 0x61
ROM 1 0x28 0x29 0xD5 0x19 0x03 0x00 0x00 0xFD
ROM 2 0x28 0x59 0xDE 0x19 0x03 0x00 0x00 0x15
ROM 3 0x28 0xDA 0xD6 0x19 0x03 0x00 0x00 0x98
ROM 4 0x28 0xFD 0xBE 0x19 0x03 0x00 0x00 0x84

На ту последовательно которая у вас получилась в Excel файле в таком же формате.

Сохраните полученный файл.digitemprc в другой папке, так как если вы вдруг запустите еще раз./digitemp_DS2490 -i , то ваш файл будет перезаписан, и тогда физическая адресация будет неверной с большой долей вероятности.

После того как 1-wire сеть настроена, можно считывать значения датчиков, запустите./digitemp_DS2490 -q -a -r1 -n1 , программы выведет значения датчиков.

Проверьте правильность последовательного подключения в сети, например нагрейте 5 датчик, и запустите программу, температура должна возрастать на 4 (так как нумерация идет с 0)

Переходим к настройке Zabbix .

Сервер на котором установлен Zabbix в zabbix’е называется ZabbixServer.
Создаем в нем 129 элементов данных, то есть на каждый датчик температуры по элементу данных.

Для нас здесь важно понимать:
gmz.temp.t17 - это ключ элемента, они используется для отсылки значения датчика
и тип элемента должен быть “Zabbix trapper”, так как отправка значений будет происходить через программу zabbix_sender.

Создаем также 12 дополнительных элементов данных, на каждый из 12 кондиционеров. Датчики расположены так, что 3 датчика находится под выводом холодного воздуха кондиционера, поэтому считаем среднее этих трех датчиков, то элемент данных будет вычисляемым.

Обратите внимание на формулу, то есть складываются последние полученные значения датчиков и делится на три.

В crontab пользователя root добавляем задание:
*/1 * * * * /usr/local/etc/digitemp/digitemp_cron.sh > /dev/null 2>&1

То есть запускаем раз в минуту скрипт digitemp_cron.sh
cat /usr/local/etc/digitemp/digitemp_cron.sh

#!/usr/local/bin/bash
cd /usr/local/etc/digitemp/new/digitemp-3.6.0/
./digitemp_DS2490 -q -a -r1 -n1 -o"ZabbixServer gmz.temp.t%s %N %.2C" | /usr/local/bin/zabbix_sender -vv -z 127.0.0.1 -I 127.0.0.1 -T -i -

O"ZabbixServer gmz.temp.t%s %N %.2C" - это строка определяет формат вывода данных.

ВАЖНО!
ZabbixServer - это название хоста с установленным Zabbix server в Zabbix.

Запустите./digitemp_DS2490 -q -a -r1 -n1 -o"ZabbixServer gmz.temp.t%s %N %.2C" | /usr/local/bin/zabbix_sender -vv -z 127.0.0.1 -I 127.0.0.1 -T -i -

В результате работы zabbix_sender должно быть, что все строки отправлены и приняты:

Info from server: «Processed 133 Failed 0 Total133 Seconds spent 0.000540»
sent: 133; skipped: 0; total: 133

Если все так, то вы можете добавлять графики и триггеры, и настраивать оповещения.