Кислотные свойства азота. Азотная кислота (I)

Азотная кислота HNO 3 - бесцветная жидкость, имеет резкий запах, легко испаряется. При попадании на кожу азотная кислота может вызвать сильные ожоги (на коже образуется характерное желтое пятно, его сразу же следует промыть большим количеством воды, а затем нейтрализовать содой NaHCO 3)


Азотная кислота

Молекулярная формула: HNO 3 , B(N) = IV, С.О. (N) = +5

Атом азота образует 3 связи с атомами кислорода по обменному механизму и 1 связь - по донорно-акцепторному механизму.

Физические свойства

Безводная HNO 3 при обычной температуре - бесцветная летучая жидкость со специфическим запахом (т. кип. 82,6"С).


Концентрированная «дымящая» HNO 3 имеет красный или желтый цвет, так как разлагается с выделением NO 2 . Азотная кислота смешивается с водой в любых соотношениях.

Способы получения

I. Промышленный - 3-стадийный синтез по схеме: NH 3 → NO → NO 2 → HNO 3


1 стадия: 4NH 3 + 5O 2 = 4NO + 6H 2 O


2 стадия: 2NO + O 2 = 2NO 2


3 стадия: 4NO 2 + O 2 + 2H 2 O = 4HNO 3


II. Лабораторный - длительное нагревание селитры с конц. H 2 SO 4:


2NaNO 3 (тв.) +H 2 SO 4 (конц.) = 2HNO 3 + Na 2 SO 4


Ba(NO 3) 2 (тв) +H 2 SO 4 (конц.) = 2HNO 3 + BaSO 4

Химические свойства

HNO 3 как сильная кислота проявляет все общие свойства кислот

HNO 3 → H + + NO 3 -


HNO 3 - очень реакционноспособное вещество. В химических реакциях проявляет себя как сильная кислота и как сильный окислитель.


HNO 3 взаимодействует:


а) с оксидами металлов 2HNO 3 + CuO = Cu(NO 3) 2 + H 2 O


б) с основаниями и амфотерными гидроксидами 2HNO 3 + Cu(OH) 2 = Cu(NO 3) 2 + 2H 2 O


в) с солями слабых кислот 2HNO 3 + СaСO 3 = Ca(NO 3) 2 + СO 2 + H 2 O


г) с аммиаком HNO 3 + NH 3 = NH 4 NO 3

Отличие HNO 3 от других кислот

1. При взаимодействии HNO 3 с металлами практически никогда не выделяется Н 2 , так как ионы H + кислоты не участвуют в окислении металлов.


2. Вместо ионов H + окисляющее действие оказывают анионы NO 3 - .


3. HNO 3 способна растворять не только металлы, расположенные в ряду активности левее водорода, но и малоактивные металлы - Си, Аg, Нg. В смеси с HCl растворяет также Au, Pt.

HNO 3 - очень сильный окислитель

I. Окисление металлов:


Взаимодействие HNO 3: а) с Me низкой и средней активности: 4HNO 3 (конц.) + Сu = 2NO 2 + Cu(NO 3) 2 + 2H 2 O


8HNO 3 (разб.) + ЗСu = 2NO + 3Cu(NO 3) 2 + 4H 2 O


б) с активными Me: 10HNO 3 (разб.) + 4Zn = N 2 O + 4Zn(NO 3) 2 + 5H 2 O


в) с щелочными и щелочноземельными Me: 10HNO 3 (оч. разб.) + 4Са = NH 4 NO 3 + 4Ca(NO 3) 2 + 3H 2 O


Очень концентрированная HNO 3 при обычной температуре не растворяет некоторые металлы, в том числе Fe, Al, Cr.


II. Окисление неметаллов:


HNO 3 окисляет Р, S, С до их высших С.О., сама при этом восстанавливается до NO (HNO 3 разб.) или до NO 2 (HNO 3 конц).


5HNO 3 + Р = 5NO 2 + H 3 PO 4 + H 2 O


2HNO 3 + S = 2NO + H 2 SO 4


III. Окисление сложных веществ:


Особенно важными являются реакции окисления сульфидов некоторых Me, которые не растворяются в других кислотах. Примеры:


8HNO 3 + PbS = 8NO 2 + PbSO 4 + 4H 2 O


22HNO 3 + ЗСu 2 S = 10NO + 6Cu(NO 3) 2 + 3H 2 SO 4 + 8H 2 O

HNO 3 - нитрующий агент в реакциях органического синтеза

R-Н + НО-NO 2 → R-NO 2 + H 2 O



С 2 Н 6 + HNO 3 → C 2 H 5 NO 2 + H 2 O нитроэтан


С 6 Н 5 СН 3 + 3HNO 3 → С 6 Н 2 (NO 2) 3 СН 3 + ЗH 2 O тринитротолуол


С 6 Н 5 ОН + 3HNO 3 → С 6 Н 5 (NO 2) 3 OH + ЗH 2 O тринитрофенол

HNO 3 этерифицирует спирты

R-ОН + НO-NO 2 → R-O-NO 2 + H 2 O



С 3 Н 5 (ОН) 3 + 3HNO 3 → С 3 Н 5 (ONO 2) 3 + ЗH 2 O тринитрат глицерина

Разложение HNO 3

При хранении на свету, и особенно при нагревании, молекулы HNO 3 разлагаются за счет внутримолекулярного окисления-восстановления:


4HNO 3 = 4NO 2 + O 2 + 2H 2 O


Выделяется красно-бурый ядовитый газ NO 2 , который усиливает агрессивно-окислительные свойства HNO 3

Соли азотной кислоты - нитраты Me(NO 3) n

Нитраты - бесцветные кристаллические вещества, хорошо растворяются в воде. Имеют химические свойства, характерные для типичных солей.


Отличительные особенности:


1) окислительно-восстановительное разложение при нагревании;


2) сильные окислительные свойства расплавленных нитратов щелочных металлов.

Термическое разложение

1. Разложение нитратов щелочных и щелочноземельных металлов:


Me(NO 3) n → Me(NO 2) n + O 2


2. Разложение нитратов металлов, стоящих в ряду активности металлов от Mg до Cu:


Me(NO 3) n → Ме x О y + NO 2 + O 2


3. Разложение нитратов металлов, стоящих в ряду активности металлов превее Cu:


Me(NO 3) n → Ме + NO 2 + O 2


Примеры типичных реакций:


1) 2NaNO 3 = 2NaNO 2 + O 2


2) 2Cu(NO 3) 2 = 2CuO + 4NO 2 + O 2


3) 2AgNO 3 = 2Ag + 2NO 2 + O 2

Окислительное действие расплавов нитратов щелочных металлов

В водных растворах нитраты, в противоположность HNO 3 , почти не проявляют окислительной активности. Однако расплавы нитратов щелочных металлов и аммония (селитр) являются сильными окислителями, поскольку разлагаются с выделением активного кислорода.

Азотная кислота

Азо́тная кислота́ (HNO 3), — сильная одноосновная кислота. Твёрдая азотная кислота образует две кристаллические модификации смоноклинной и ромбической решётками.

Азотная кислота смешивается с водой в любых соотношениях. В водных растворах она практически полностью диссоциирует на ионы. Образует с водой азеотропную смесь с концентрацией 68,4 % и t кип 120 °C при атмосферном давлении. Известны два твёрдых гидрата: моногидрат (HNO 3 ·H 2 O) и тригидрат (HNO 3 ·3H 2 O).

Химические свойства

Высококонцентрированная HNO 3 имеет обычно бурую окраску вследствие происходящего на свету процесса разложения:

При нагревании азотная кислота распадается по той же реакции. Азотную кислоту можно перегонять (без разложения) только при пониженном давлении (указанная температура кипения при атмосферном давлении найдена экстраполяцией).

Золото, некоторые металлы платиновой группы и тантал инертны к азотной кислоте во всём диапазоне концентраций, остальные металлы реагируют с ней, ход реакции при этом определяется её концентрацией.

HNO 3 как сильная одноосновная кислота взаимодействует:

а) с основными и амфотерными оксидами:

б) с основаниями:

в) вытесняет слабые кислоты из их солей:

При кипении или под действием света азотная кислота частично разлагается:

Азотная кислота в любой концентрации проявляет свойства кислоты-окислителя, при этом азот восстанавливается до степени окисления от +4 до −3. Глубина восстановления зависит в первую очередь от природы восстановителя и от концентрации азотной кислоты. Как кислота-окислитель, HNO 3 взаимодействует:

а) с металлами, стоящими в ряду напряжений правее водорода:

Концентрированная HNO 3

Разбавленная HNO 3

б) с металлами, стоящими в ряду напряжений левее водорода:

Все приведенные выше уравнения отражают только доминирующий ход реакции. Это означает, что в данных условиях продуктов данной реакции больше, чем продуктов других реакций, например, при взаимодействии цинка с азотной кислотой (массовая доля азотной кислоты в растворе 0,3) в продуктах будет содержаться больше всего NO, но также будут содержаться (только в меньших количествах) и NO 2 , N 2 O, N 2 и NH 4 NO 3 .

Единственная общая закономерность при взаимодействии азотной кислоты с металлами: чем более разбавленная кислота и чем активнее металл, тем глубже восстанавливается азот:

Увеличение концентрации кислоты увеличение активности металла

Продукты взаимодействия железа с HNO 3 разной концентрации

С золотом и платиной азотная кислота, даже концентрированная не взаимодействует. Железо, алюминий, хром холодной концентрированной азотной кислотой пассивируются. С разбавленной азотной кислотой железо взаимодействует, причем в зависимости от концентрации кислоты образуются не только различные продукты восстановления азота, но и различные продукты окисления железа:

Азотная кислота окисляет неметаллы, при этом азот обычно восстанавливается до NO или NO 2:

и сложные вещества, например:

Некоторые органические соединения (например амины и гидразин, скипидар) самовоспламеняются при контакте с концентрированной азотной кислотой.

Азотная кислота

Некоторые металлы (железо, хром, алюминий, кобальт, никель, марганец, бериллий), реагирующие с разбавленной азотной кислотой, пассивируются концентрированной азотной кислотой и устойчивы к её воздействию.

Смесь азотной и серной кислот носит название «меланж». Благодаря наличию амила достигается концентрация в 104 % [источник не указан 150 дней ] (то есть при добавлении к 100 частям меланжа 4 частей дистиллята концентрация остаётся на уровне 100 %, вследствие поглощения воды амилом [источник не указан 150 дней ]).

Азотная кислота широко используется для получения нитросоединений.

Смесь трех объёмов соляной кислоты и одного объёма азотной называется «царской водкой». Царская водка растворяет большинство металлов, в том числе золото и платину. Её сильные окислительные способности обусловлены образующимся атомарным хлором ихлоридом нитрозила:

Нитраты

HNO 3 — сильная кислота. Её соли — нитраты — получают действием HNO 3 на металлы, оксиды, гидроксиды или карбонаты. Все нитраты хорошо растворимы в воде.

Соли азотной кислоты — нитраты — при нагревании необратимо разлагаются, продукты разложения определяются катионом:

а) нитраты металлов, стоящих в ряду напряжений левее магния:

2NaNO 3 = 2NaNO 2 + O 2

б) нитраты металлов, расположенных в ряду напряжений между магнием и медью:

4Al(NO 3) 3 = 2Al 2 O 3 + 12NO 2 + 3O 2

в) нитраты металлов, расположенных в ряду напряжений правее ртути:

2AgNO 3 = 2Ag + 2NO 2 + O 2

г) нитрат аммония:

NH 4 NO 3 = N 2 O + 2H 2 O

Нитраты в водных растворах практически не проявляют окислительных свойств, но при высокой температуре в твердом состоянии нитраты — сильные окислители, например:

Fe + 3KNO 3 + 2KOH = K 2 FeO 4 + 3KNO 2 + H 2 O — при сплавлении твердых веществ.

Цинк и алюминий в щелочном растворе восстанавливают нитраты до NH 3:

Соли азотной кислоты — нитраты — широко используются как удобрения. При этом практически все нитраты хорошо растворимы в воде, поэтому в виде минералов их в природе чрезвычайно мало; исключение составляют чилийская (натриевая) селитра и индийская селитра (нитрат калия). Большинство нитратов получают искусственно.

С азотной кислотой не реагируют стекло, фторопласт-4.

Исторические сведения

Методика получения разбавленной азотной кислоты путём сухой перегонки селитры с квасцами и медным купоросом была, по видимому, впервые описана трактатах Джабира(Гебера в латинизированных переводах) в VIII веке. Этот метод с теми или иными модификациями, наиболее существенной из которых была замена медного купоросажелезным, применялся в европейской и арабской алхимии вплоть до XVII века.

В XVII веке Глаубер предложил метод получения летучих кислот реакцией их солей с концентрированной серной кислотой, в том числе и азотной кислоты из калийной селитры, что позволило ввести в химическую практику концентрированную азотную кислоту и изучить её свойства. Метод Глаубера применялся до начала XX века, причём единственной существенной модификацией его оказалась замена калийной селитры на более дешёвую натриевую (чилийскую) селитру.

Во времена М. В. Ломоносова, азотную кислоту называли крепкой водкой.

Промышленное производство, применение и действие на организм

Азотная кислота является одним из самых крупнотоннажных продуктов химической промышленности.

Производство азотной кислоты

Современный способ её производства основан на каталитическом окислении синтетического аммиака на платино-родиевых катализаторах (процесс Оствальда) до смесиоксидов азота (нитрозных газов), с дальнейшим поглощением их водой

4NH 3 + 5O 2 (Pt) → 4NO + 6H 2 O 2NO + O 2 → 2NO 2 4NO 2 + O 2 + 2H 2 O → 4HNO 3 .

Концентрация полученной таким методом азотной кислоты колеблется в зависимости от технологического оформления процесса от 45 до 58 %. Впервые азотную кислоту получили алхимики, нагревая смесь селитры и железного купороса:

4KNO 3 + 2(FeSO 4 · 7H 2 O) (t°) → Fe 2 O 3 + 2K 2 SO 4 + 2HNO 3 + NO 2 + 13H 2 O

Чистую азотную кислоту получил впервые Иоганн Рудольф Глаубер, действуя на селитру концентрированной серной кислотой:

KNO 3 + H 2 SO 4 (конц.) (t°) → KHSO 4 + HNO 3

Дальнейшей дистилляцией может быть получена т. н. «дымящая азотная кислота», практически не содержащая воды.

Азотная кислота и ее свойства.

Чистая азотная кислота HNO 3 - бесцветная жидкость. На воздухе она, подобно концентрированной соляной кислоте, «дымит», так как пары ее образуют с влагой воздуха мелкие капельки тумана.

Азотная кислота не отличается прочностью. Уже под влиянием света она постепенно разлагается:

4HN0 3 = 4N0 2 + 0 2 + 2Н 2 0.

Чем выше температура и чем концентрированнее кислота, тем быстрее идет разложение. Выделяющийся диоксид азота растворяется в кислоте и придает ей бурую окраску.

Азотная кислота принадлежит к числу наиболее сильных кислот: в разбавленных растворах она полностью распадается на ионы Н+ и N0 _ .

Азотная кислота - один из энергичнейших окислителей. Многие неметаллы легко окисляются ею, превращаясь в соответствующие кислоты. Так, сера при кипячении с азотной кислотой постепенно окисляется в серную кислоту, фосфор -в фосфорную.

Азотная кислота действует почти на все металлы (см. разд. 11.3.2), превращая их в нитраты, а некоторые металлы - в оксиды.

Концентрированная HNO 3 пассивирует некоторые металлы.

Степень окисления азота в азотной кислоте равна +5. Выступая в качестве окислителя, HNO 3 может восстанавливаться до различных продуктов:

4 +3 +2 +1 0 -3

N0 2 N 2 0 3 NO N 2 О N 2 NH 4 N0 3

Какое из этих веществ образуется, т. е. насколько глубоко восстанавливается азотная кислота в том или ином случае, зависит от природы восстановителя и от условий реакции, прежде всего от концентрации кислоты. Чем выше концентрация HNO3, тем менее глубоко она восстанавливается. При реакциях с концентрированной кислотой чаще всего выделяется NO2. При взаимодействии разбавленной азотной кислоты с малоактивными металлами, например, с медью, выделяется N0. В случае более активных металлов - железа, цинка - образуется N2O. Сильно разбавленная азотная кислота взаимодействует с активными металлами - цинком, магнием, алюминием - с образованием иона аммония, дающего с кислотой нитрат аммония. Обычно одновременно образуются несколько продуктов.

Си + HN0 3(конц.) - Cu(N0 3) 2 + N0 2 + Н 2 0;

Си + HN0 3 (разбавл.) -^ Си(N0 3) 2 + N0 + Н 2 О;

Mg + HN0 3 (разбавл.) -> Mg(N0 3) 2 + N 2 0 + н 2 0 ;

Zn + HN0 3(очень разбавл.) - Zn(N0 3) 2 + NH 4 N0 3 + Н 2 0.

При действии азотной кислоты на металлы водород, как правило, не выделяется.

При окислении неметаллов концентрированная азотная кислота, как и в случае металлов, восстанавливается до N0 2 , например

S + 6HNO 3 = H 2 S0 4 + 6N0 2 + 2Н 2 0.

ЗР + 5HN0 3 + 2Н 2 0 = ЗН 3 РО 4 + 5N0

Приведенные схемы иллюстрируют наиболее типичные случаи взаимодействия азотной кислоты с металлами и неметаллами. Вообще же, окислительно-восстановительные реакции, идущие с участием HNO 3 , протекают сложно.

Смесь, состоящая из 1 объема азотной и 3-4 объемов концентрированной соляной кислоты, называется царской водкой. Царская водка растворяет не-которые металлы, не взаимодействующие с азотной кислотой, в том числе и «царя металлов» - золото. Действие ее объясняется тем, что азотная кислота окисляет соляную с выделением свободного хлора и образованием хлороксида азота (1П), или хлорида нитрозила, N0C1:

HN0 3 + ЗНС1 = С1 2 + 2Н 2 0 + N0C1.

Хлорид нитрозила является промежуточным продуктом реакции и разлага-ется:

2N0C1 = 2N0 + С1 2 .

Хлор в момент выделения состоит из атомов, что и обусловливает высокую окислительную способность царской водки. Реакции окисления золота и платины протекают в основном согласно следующим уравнениям:

Au + HN0 3 + ЗНС1 = AuCl 3 + NO + 2Н 2 0;

3Pt + 4HN0 3 + 12НС1 = 3PtCl 4 + 4N0 + 8Н 2 0.

На многие органические вещества азотная кислота действует так, что один или несколько атомов водорода в молекуле органического соединения замещаются нитрогруппами - NO 2 . Этот процесс называется нитрованием и имеет большое значение в органической химии.

Соли азотной кислоты называются нитратами. Все они хорошо растворяются в воде, а при нагревании разлагаются с выделением кислорода. При этом нитраты наиболее активных металлов переходят в нитриты:

2KN0 3 = 2KN0 2 +О 2

Промышленное получение азотной кислоты. Современные промышленные способы получения азотной кислоты основаны на каталитическом окислении аммиака кислородом воздуха. При описании свойств аммиака было указано, что он горит в кислороде, причем продуктами реакции являются вода и свободный азот. Но в присутствии катализаторов окисление аммиака кислородом может протекать иначе. Если пропускать смесь аммиака с воздухом над катализатором, то при 750 °С и определенном составе смеси происходит почти полное превращение NH 3 в N0:

4NH 3 (r) + 5О 2 (г) = 4NO(r) + 6Н 2 О(г), АН = -907 кДж.

Образовавшийся N0 легко переходит в NO 2 , который с водой в присутствии кислорода воздуха дает азотную кислоту.

В качестве катализаторов при окислении аммиака используют сплавы на основе платины.

Получаемая окислением аммиака азотная кислота имеет концентрацию, не превышающую 60%. При необходимости ее концентрируют.

Промышленностью выпускается разбавленная азотная кислота концентрацией 55, 47 и 45 %, а концентрированная - 98 и 97 %. Концентрированную кислоту перевозят в алюминиевых цистернах, разбавленную - в цистернах из кислотоупорной стали.

Билет 5

2. Роль железа в процессе жизнедеятельности организма.

Железо в организме. Железо присутствует в организмах всех животных и в растениях (в среднем около 0,02%); оно необходимо главным образом для кислородного обмена и окислительных процессов. Существуют организмы (так называемые концентраторы), способные накапливать его в больших количествах (например, железобактерии - до 17-20% Железа). Почти все Железо в организмах животных и растений связано с белками. Недостаток Железа вызывает задержку роста и явления хлороза растений, связанные с пониженным образованием хлорофилла. Вредное влияние на развитие растений оказывает и избыток Железа, вызывая, например, стерильность цветков риса и хлороз. В щелочных почвах образуются недоступные для усвоения корнями растений соединения Железа, и растения не получают его в достаточном количестве; в кислых почвах Железо переходит в растворимые соединения в избыточном количестве. При недостатке или избытке в почвах усвояемых соединений Железа заболевания растений могут наблюдаться на значительных территориях.

В организм животных и человека Железо поступает с пищей (наиболее богаты им печень, мясо, яйца, бобовые, хлеб, крупы, шпинат, свекла). В норме человек получает с рационом 60-110 мг Железа, что значительно превышает его суточную потребность. Всасывание поступившего с пищей Железа происходит в верхнем отделе тонких кишок, откуда оно в связанной с белками форме поступает в кровь и разносится с кровью к различным органам и тканям, где депонируется в виде Железо-белкового комплекса - ферритина. Основное депо Железа в организме - печень и селезенка. За счет ферритина происходит синтез всех железосодержащих соединений организма: в костном мозге синтезируется дыхательный пигмент гемоглобин, в мышцах - миоглобин, в различных тканях цитохромы и других железосодержащие ферменты. Выделяется Железо из организма главным образом через стенку толстых кишок (у человека около 6-10 мг в сутки) и в незначительной степени почками.

Рис. 97. Воспламенение скипидара в азотной кислоте

Чистая - бесцветная жидкость уд. веса 1,53, кипящая при 86°, а при -41° застывающая в прозрачную кристаллическую массу. На воздухе она, подобно концентрированной соляной кислоте, «дымит», так как пары ее образуют с влагой воздуха мелкие капельки тумана.

С водой смешивается в любом отношении, причем 68%-ный раствор кипит при 120,5° и перегоняется без изменения. Такой состав имеет обыкновенная продажная уд. веса 1,4. Концентрированная кислота, содержащая 96-98% HNO 3 и окрашенная растворенной в ней двуокисью азота в красно-бурый цвет, известна под названием дымящей азотной кислоты.

Азотная кислота не отличается особенной химической прочностью. Уже под влиянием света она постепенно разлагается на воду, и двуокись азота:

4HNO 3 = 2Н 2 O + 4NO 2 + O 2

Чем выше температура и чем концентрированнее кислота, тем быстрее идет разложение. Поэтому получаемая из селитры азотная кислота всегда бывает окрашена двуокисью азота в желтоватый цвет. Чтобы избежать разложения, перегонку ведут под уменьшенным давлением, под которым азотная кислота закипает при температуре, близкой к 20°.

Азотная кислота принадлежит к числу наиболее сильных кислот; в разбавленных растворах она сполна распадается на ионы Н и NO3′.

Самым характерным свойством азотной кислоты является ее ярко выраженная окислительная способность. Азотная кислота - один из энергичнейших окислителей. Многие металлоиды легко окисляются ею, превращаясь в соответствующие кислоты. Так, например, при кипячении с азотной кислотой постепенно окисляется в серную кислоту, - в фосфорную и т. д. Тлеющий уголек, погруженный в концентрированную азотную кислоту, не только не гаснет, но ярко разгорается, разлагая кислоту с образованием красно-бурой двуокиси азота.

Иногда при окислении выделяется так много тепла, что окисляющееся вещество само собой загорается без предварительного подогревания.

Нальем, например, в фарфоровую чашку немного дымящей азотной кислоты, поставим чашку на дно широкого стакана и, набрав в пипетку скипидара, будем по каплям пускать его в чашку с кислотой. Каждая капля, попадая в кислоту, воспламеняется и сгорает, образуя большое пламя и облако копоти (рис. 97). Нагретые древесные опилки также загораются от капли дымящей азотной кислоты. Азотная кислота действует почти на все , за исключением золота, платины и некоторых редких металлов, превращая их в азотнокислые соли. Так как последние растворимы в воде, азотной кислотой постоянно пользуются на практике для растворения металлов, особенно таких, как , на которые другие кислоты не действуют или действуют очень медленно.

Замечательно, что, как нашел еще М В, некоторые ( , и др.), легко растворяющиеся в разбавленной азотной кислоте, не растворяются в холодной концентрированной азотной кислоте. По видимому, это происходит вследствие образования на их поверхности тонкого, очень плотного слоя окисла, защищающего металл от дальнейшего действия кислоты. Такие после обработки их концентрированной азотной кислотой становятся «пассивными», т. е. утрачивают способность растворяться также и в разбавленных кислотах.

Окислительные свойства азотной кислоты обусловливаются неустойчивостью ее молекул и присутствием в них азота в его высшем состоянии окисления, отвечающем положительной валентности, равной 5. Производя окисление, азотная кислота последовательно восстанавливается в следующие соединения:

HNO 3 →NO 2 →HNO 2 →NO→N 2 O→N 2 →NH 3

Степень восстановления азотной кислоты зависит как от ее концентрации, так и от % активности восстановителя. Чем более кислота разбавлена, тем сильнее она восстанавливается. Концентрированная азотная кислота всегда восстанавливается до NO 2 . Разбавленная азотная кислота восстанавливается обычно до NO или при действии более активных металлов, как, например, Fe, Zn, Mg, - до N 2 O. Если же кислота очень разбавлена, главным продуктом восстановления является NH 3 , образующий с избытком кислоты аммонийную соль NH 4 NO 3 .

Для иллюстрации приведем схемы нескольких реакций окисления при помощи азотной кислоты;

1)Pb + HNO 3 → Pb(NO 3) 2 + NO 2 + Н 2 O

2)Сu + HNO 3 → Cu(NO 3) 2 + NO + H 2 O

разбавл,

3) Mg + HNO 3 → Mg(NO 3) 2 + N 2 O + H 2 O

разбавл,

4)Zn + HNO 3 → Zn(NO 3) 2 + NH 4 NO 3 + H 2 O

очень разбавл.

Следует отметить, что при действии разбавленной азотной кислоты на металлы , как правило, не выделяется.

При окислении металлоидов азотная кислота обычно восстанавливается до NO.Например:

S + 2HNO 3 = H 2 SO 4 +2NO

Приведенные выше схемы иллюстрируют наиболее типичные случаи окислительного действия азотной кислоты. Вообще же

необходимо заметить, что все реакции окисления, идущие с уча-стием азотной кислоты, протекают очень сложно вследствие одновременного образования различных продуктов восстановления и до сих пор не могут считаться вполне выясненными.

Смесь, состоящая из 1 объема азотной и 3 объемов соляной кислоты, называется царской водкой. Царская водка растворяет некоторые металлы, не растворяющиеся в азотной кислоте, в том числе и «царя металлов» - . Действие ее объясняется тем, что азотная кислота окисляет соляную кислоту с выделением свободного хлора и образованием хлористого ни-трозила NOCl:

HNO 3 + 3HCl = Сl 2 + 2Н 2 O + NOCl

Хлористый нитрозил является промежуточным продуктом реакции и разлагается на окись азота и :

2NOCl = 2NO + Сl 2

Выделяющийся соединяется с металлами, образуя металлов, поэтому при растворении металлов в царской водке получаются соли соляной, а не азотной кислоты:

Au + 3HCl+ HNO 3 = AuCl 3 +NO + 2H 2 O

На многие органические азотная кислота действует таким образом, что один или несколько атомов водорода в молекуле органического соединения замещаются нитрогруппами - NO 2 . Этот процесс, получивший название нитрования, играет чрезвычайно важную роль в органической химии.

При действии на азотную кислоту фосфорного ангидрида последний отнимает от азотной кислоты элементы воды и в результате образуются азотный ангидрид и метафосфорная кислота.

2HNO 3 + P 2 O 5 = N 2 O 5 + 2HPO 3

Азотная кислота является самым важным соединением азота благодаря разнообразному применению, которое она находит в народном хозяйстве.

В больших количествах азотная кислота расходуется в производстве азотных удобрений и органических красителей. Она применяется как окислитель во многих химических процессах, используется в производстве серной кислоты по нитрозному способу, служит для растворения металлов, для получения нитратов, применяется для изготовления целлюлозных лаков, кинопленки и в ряде других химических производств. Азотная кислота идет также на изготовление бездымного пороха и взрывчатых веществ, необходимых для обороны страны и широко используемых в горнорудном деле и при различных земляных работах (строительство каналов, плотин и т. п.).

ОПРЕДЕЛЕНИЕ

Чистая азотная кислота - бесцветная жидкость, при -42 o С застывающая в прозрачную кристаллическую массу (строение молекулы показано на рис. 1).

На воздухе она, подобно концентрированной соляной кислоте, «дымит», так как пары её образуют с влагой воздуха мелкие капельки тумана.

Азотная кислота не отличается прочностью. Уже под влияние света она постепенно разлагается:

4HNO 3 = 4NO 2 + O 2 + 2H 2 O.

Чем выше температура и чем концентрированнее кислота, тем быстрее идет разложение. Выделяющийся диоксид азота растворяется в кислоте и придает ей бурую окраску.

Рис. 1. Строение молекулы азотной кислоты.

Таблица 1. Физические свойства азотной кислоты.

Получение азотной кислоты

Азотная кислота образуется в результате действия окислителей на азотистую кислоту:

5HNO 2 + 2KMnO 4 + 3H 2 SO 4 = 5HNO 3 + 2MnSO 4 + K 2 SO 4 + 3H 2 O.

Безводная азотная кислота может быть получена перегонкой при пониженном давлении концентрированного раствора азотной кислоты в присутствии P 4 O 10 или H 2 SO 4 в полностью стеклянном оборудовании без смазки в темноте.

Промышленный процесс производства азотной кислоты основан на каталитическом окислении аммиака над нагретой платиной:

NH 3 + 2O 2 = HNO 3 + H 2 O.

Химические свойства азотной кислоты

Азотная кислоты принадлежит к числу наиболее сильных кислот; в разбавленных растворах она полностью диссоциирует на ионы. Её соли носят название нитраты.

HNO 3 ↔H + + NO 3 — .

Характерным свойством азотной кислоты является её ярко выраженная окислительная способность. Азотная кислота - один из энергичнейших окислителей. Многие неметаллы легко окисляются ею, превращаясь в соответствующие кислоты. Так, сера при кипячении с азотной кислотой постепенно окисляется в серную кислоту, фосфор - в фосфорную. Тлеющий уголек, погруженный в концентрированную HNO 3 , ярко разгорается.

Азотная кислота действует почти на все металлы (за исключением золота, платины, тантала, родия, иридия), превращая их в нитраты, а некоторые металлы - в оксиды.

Концентрированная азотная кислота пассивирует некоторые металлы.

При взаимодействии разбавленной азотной кислоты с малоактивными металлами, например, с медью, выделяется диоксид азота. В случае более активных металлов - железа, цинка - образуется оксид диазота. Сильно разбавленная азотная кислота взаимодействует с активными металлами - цинком, магнием, алюминием - с образованием иона аммония, дающего с кислотой нитрат аммония. Обычно одновременно образуются несколько продуктов.

Cu + HNO 3 (conc) = Cu(NO 3) 2 + NO 2 + H 2 O;

Cu + HNO 3 (dilute) = Cu(NO 3) 2 + NO + H 2 O;

Mg + HNO 3 (dilute) = Mg(NO 3) 2 + N 2 O + H 2 O;

Zn + HNO 3 (highly dilute) = Zn(NO 3) 2 + NH 4 NO 3 + H 2 O.

При действии азотной кислоты на металлы водород, как правило, не выделяется.

S + 6HNO 3 = H 2 SO 4 + 6NO 2 + 2H 2 O;

3P + 5HNO 3 + 2H 2 O = 3H 3 PO 4 + 5NO.

Смесь, состоящая из 1 объема азотной и 3-4 объемов концентрированной соляной кислоты, называется царской водкой. Царская водка растворяет некоторые металлы, не взаимодействующие с азотной кислотой, в том числе и «царя металлов» — золото. Действие её объясняется тем, что азотная кислота окисляет соляную с выделением свободного хлора и образованием хлороксида азота (III), или хлорида нитрозила, NOCl:

HNO 3 + 3HCl = Cl 2 + 2H 2 O + NOCl.

Применение азотной кислоты

Азотная кислота - одно из важнейших соединений азота: в больших количествах она расходуется в производстве азотных удобрений, взрывчатых веществ и органических красителей, служит окислителем во многих химических процессах, используется в производстве серной кислоты по нитрозному способу, применяется для изготовления целлюлозных лаков, кинопленки.

Примеры решения задач

ПРИМЕР 1