Магнетрон конструкция и принцип работы. Неисправности магнетрона микроволновой печи

Разогрев пищи в микроволновке осуществляется излучением, частота которого равна 2450 МГц, создаваемым магнетроном. Если после включения печи тарелка крутится, свет в камере горит, вентилятор работает, а еда остаётся холодной или греется неприлично долго — значит что-то не в порядке с этой лампой. Если знать, как проверить магнетрон в микроволновке, то можно обойтись без похода в мастерскую. Тем более что неисправной может оказаться какая-либо вспомогательная деталь в схеме магнетрона.

На что способна микроволновка. Что такое магнетрон и Свч-энергия магнетрона? Магнетрон — это цэлектровакуумная лампа, выполняющая функции диода и состоящая из нескольких частей:

  1. Цилиндрического медного анода, поделённого на 10 частей.
  2. В центре размещён катод со встроенной нитью накала. Его задачей является создание потока электронов.
  3. По торцам размещаются кольцевые магниты, необходимые для создания магнитного поля, за счёт которого создаётся свч излучение.
  4. Излучение улавливается проволочной петлёй, соединённой с катодом и выводится из магнетрона с помощью излучающей антенны, направляясь по волноводу в камеру.

Во время работы магнетрон сильно греется, поэтому его корпус оснащается пластинчатым радиатором, обдуваемым вентилятором. Для защиты от перегрева в схему питания включен термопредохранитель.

Как устроен магнетрон, схема.

Нарушение работоспособности магнетрона может возникнуть по следующим причинам:

  • Прогорел защитный колпачок и поэтому при работе искрит. Заменяется на любой целый, так как они одинаковы для всех магнетронов.
  • Перегорание нити накала.
  • Разгерметизация магнетрона вследствие перегрева.
  • Пробой высоковольтного диода.
  • Сгорел высоковольтный предохранитель.
  • Нет контакта в термопредохранителе.
  • Пробит высоковольтный конденсатор.

При всех неисправностях, кроме разгерметизации, возможен ремонт своими руками.

Измерение сопротивления омметром.

Определение неисправности

Чтобы узнать, почему не работает печь, нужно отключить её от розетки и снять крышку.

  1. Внимательно осматривается внутренность на предмет оплавления, обгорания, отпаявшихся проводов. Состояние высоковольтного предохранителя видно невооружённым взглядом. Предохранитель с оборванной нитью меняется на целый и если при опробовании печи опять перегорает, то поиск продолжается.
  2. Для дальнейшей диагностики потребуется мультиметр или тестер. Проверка начинается с печатной платы, на которой собрана схема питания магнетрона, состоящая из резисторов, диодов, конденсаторов, варисторов. Детали можно прозванивать по месту, без выпаивания.
  3. После чего тестером проверяют термопредохранитель. При нормальных контактах сопротивление равно нулю.
  4. Проверка высоковольтного конденсатора мультиметром возможна только на пробой. Если прибор покажет короткое замыкание — деталь заменяется. Так как некоторые типы конденсаторов имеют встроенные резисторы для разрядки, исправная ёмкость покажет сопротивление в 1 МОм, вместо бесконечности.
  5. Для проверки высоковольтного диода тестер не годится, поскольку у него мал диапазон измерения сопротивления. Чтобы правильно оценить состояние диода потребуется мегомметр со шкалой до 200 МОм. Но вряд ли он найдётся в домашней мастерской. Поэтому применяется метод диагностики с использованием двухпроводной домашней электросети с обязательным соблюдением правил безопасности. Один вывод диода подключается к сетевому проводу. Между вторым и другим проводником сети включается мультиметр для измерения постоянного напряжения в диапазоне до 250 В. Если диод цел, прибор покажет наличие выпрямленного напряжения. При пробое или обрыве стрелка останется на нуле. Для замены подойдёт любой высоковольтный диод с рабочим напряжением 5 кВ и током 0,7 А.
  6. Проверка магнетрона начинается с прозвонки накальной нити. Для этого измеряется сопротивление между его клеммами, которое у исправного накала составляет несколько Ом. Если тестер показывает бесконечность, это ещё не значит, что нить перегорела. Для полной уверенности проверяется, после снятия крышки, целостность соединений дросселей с клеммами магнетрона.
    Некоторые умельцы рекомендуют удалять дросселя. Делать это ни в коем случае нельзя, так как нарушается режим работы трансформатора, из-за чего возможно возгорание.
    После измерения сопротивления между выводами и корпусом можно судить о состоянии проходных конденсаторов. При бесконечности — всё нормально, при нуле — пробиты, а при наличии сопротивления — с утечкой тока. Неисправные конденсаторы откусываются кусачками и на их место припаиваются новые с ёмкостью не менее 2000 пФ.
  7. Если все элементы целы, но магнетронного излучения недостаточно для полноценного разогрева еды, значит, катод потерял эмиссию. Данная неисправность устраняется только заменой. При замене конденсаторов нельзя пользоваться обычным припоем, требуются тугоплавкие марки или компактный аппарат для контактной сварки.

На видео рассказ для чайников, как проверить магнетрон, всё очень доходчиво:

Замена магнетрона

Поскольку ремонт магнетрона не производится даже в хорошо оснащённых мастерских, придётся приобретать новый. Прежде чем извлечь магнетрон из микроволновки, необходимо пометить контакты разъёма, чтобы не перепутать их местами при установке новой детали. Если выводы подключить неправильно — магнетрон не будет работать.

Замену можно сделать самостоятельно, если хоть раз применял отвёртку по назначению и прозвонил пару диодов. Для этого не требуется специальных навыков и знания, как работает магнетрон. В случае невозможности найти определённый магнетрон для микроволновки, придётся применить подходящий аналог.

Его мощность должна быть равной или большей, чем у оригинала, а крепление и расположение разъёма совпадать. Устройство магнетрона у производителей одинаково, а конструкция может отличаться, поэтому нужно проследить, чтобы прилегание аналога к волноводу было плотным. Если теплопроводящая паста на термопредохранителе окажется засохшей — её заменяют свежей.

При покупке нового магнетрона необходимо, чтобы совпадала мощность, соответствовали контакты и отверстия для крепления. Если хотя бы одно из условий не совпадает — вы приобрели не годную вам деталь.

  • Если в микроволновке при включении что-то трещит и искрит — нужно перестать пользоваться печью и выяснить причину. Устранение неисправности обойдётся дешевле покупки новой детали. В данном случае виновником обычно оказывается прогорание колпачка, из-за этого СВЧ-печь искрит.
  • Необходимо постоянно следить за состоянием слюдяной накладки, защищающей выход волновода в камеру от попадания жира и крошек пищи. Если колпачок неисправен — слюда может оказаться прогоревшей, что приводит к выходу их строя магнетрона. Накладку следует держать в чистоте, так как попавший на неё жир обугливается под воздействием температуры и приобретает электропроводность. Взаимодействуя с излучением, он становится причиной искрения в камере.
  • При нестабильном напряжении, микроволновку лучше подключить через стабилизатор, так как даже незначительное падение негативно влияет на работу печи. Падает мощность, и ускоряется износ катода магнетрона. Например, при напряжении в сети 200 В мощность уменьшается вдвое.
  • У микроволновки много применений, поэтому в случае её неисправности нарушается привычный порядок вещей. Причиной поломки необязательно является магнетрон или схема его питания. Сначала следует проверить величину напряжения в месте подключения печи к сети и состояние слюдяной пластины.

Магнетрон - специальный электронный прибор, в котором генерирование сверхвысокочастотных колебаний (СВЧ-колебаний) осуществляется модуляцией электронного потока по скорости. Магнетроны значительно расширили область применения нагрева токами высокой и сверхвысокой частоты.
Менее распространены основанные на том же принципе амплитроны (платинотроны), клистроны, лампы бегущей волны.

Магнетрон является наиболее совершенным генератором сверхвысоких частот большой мощности. Это хорошо эвакуированная лампа с электронным потоком, управляемым электрическим и магнитным полями. Они позволяют получать весьма короткие волны (до долей сантиметра) при значительных мощностях.

В магнетронах используется движение электронов во взаимно перпендикулярных электрическом и магнитном полях, создаваемых в кольцевом зазоре между катодом и анодом. Между электродами подается анодное напряжение, создающее радиальное электрическое поле, под действием которого вырываемые из подогретого катода электроны устремляются к аноду.

Анодный блок помещается между полюсами электромагнита, который создает в кольцевом зазоре магнитное поле, направленное по оси магнетрона. Под действием магнитного поля электрон отклоняется от радиального направления и движется по сложной спиральной траектории. В пространстве между катодом и анодом образуется вращающееся электронное облако с языками, напоминающее ступицу колеса со спицами. Пролетая мимо щелей объемных резонаторов анода, электроны возбуждают в них высокочастотные колебания.

Рис. 1. Анодный блок магнетрона

Каждый из объемных резонаторов представляет собой колебательную систему с распределенными параметрами. Электрическое поле концентрируется у щелей, а магнитное поле сосредоточено внутри полости.

Вывод энергии из магнетрона осуществляется при помощи индуктивной петли, помещаемой в один или чаще два соседних резонатора. По коаксиальному кабелю энергия подводится к нагрузке.


Рис. 2. Устройство магнетрона

Нагрев токами СВЧ осуществляется в волноводах круглого или прямоугольного сечения или в объемных резонаторах, в которых возбуждаются простейших форм ТЕ10(Н10) (в волноводах) или ТЕ101 (в объемных резонаторах). Нагрев может осуществляться и излучением электромагнитной волны на объект нагрева.

Питание магнетронов осуществляется выпрямленным током с упрощенной схемой выпрямителя. Установки очень малой мощности могут питаться переменным током.

Магнетроны могут работать на различных частотах от 0,5 до 100 ГГц, с мощностями от нескольких Вт до десятков кВт в непрерывном режиме, и от 10 Вт до 5 МВт в импульсном режиме при длительностях импульсов главным образом от долей до десятков микросекунд.

Микроволновая печь применяется в быту для быстрого приготовления пищи уже довольно давно. Серийно их начали изготавливать в 1962 году и очень быстро эти приборы стали незаменимы практически на любой кухне. Приготовление пищи в печи происходит посредством обработки продуктов короткими электромагнитными волнами частотой 2,45 ГГц (сантиметровый диапазон), которые перемещаются в пространстве со скоростью 299,79 км/сек. При этом сама микроволновая печь не вырабатывает тепло, а только излучает радиоволны сверхвысокой частоты (СВЧ). Взаимодействуя с продуктами питания, эти волны заставляют молекулы жидкости, находящиеся в пище, вращаться с большой частотой. Возникающее при этом на молекулярном уровне трение и нагревает еду. Источником СВЧ-волн служит магнетрон, являющийся неотъемлемой частью микроволновки.

Принцип действия и конструкция магнетрона

Многие владельцы СВЧ-печей, изучая инструкцию по ее эксплуатации, задаются вопросом:

«Что такое магнетрон и как он работает?». Магнетроном (от греч. magnetis - магнит, электрон) в радиоэлектронике называют мощную вакуумную радиолампу-диод , в состав которой входят:

  • анод-резонатор цилиндрической формы, изготовленный из меди;
  • катод, в который встроена нить накала;
  • кольцевые магниты, установленные на торцах лампы.

Принцип работы магнетрона заключается в торможении потока электронов в пересекающихся под углом 90° электрическом и магнитном полях . Распределение магнитного поля, образованного торцевыми магнитами, обеспечивается магнитопроводом, роль которого выполняет внешний кожух магнетрона, оснащенный фланцем крепления его к волноводу. Взаимодействие потока электронов, эмитированного из катода, с этим магнитным полем вызывает появление СВЧ-волн, которые улавливаются проволочной петлей и выводятся наружу при помощи излучающей антенны, помещенной в керамический цилиндр. В качестве антенны используется специальная трубка (штенгель), с помощью которой из лампы откачивался воздух. На нее плотно запрессован металлический колпачок.

В процессе работы магнетрон сильно нагревается , поэтому в его конструкции предусмотрен пластинчатый радиатор, который к тому же обдувается вентилятором. Кроме того, прибор оснащается термопредохранителем. Проникновению высокочастотного излучения по проводам электропитания препятствует высокочастотный фильтр, состоящий из проходных конденсаторов и индуктивных выводов.

Совет! Магнетрон представляет собой сложный электронный прибор, разобрать и отремонтировать который непросто даже профессионалу. Поэтому, убедившись в том, что не работает именно магнетрон, лучше всего воспользоваться услугами сервисной службы, располагающей подготовленными сотрудниками, а также необходимым инструментарием и запчастями.

Ремонт магнетрона

самый сложный и дорогостоящий узел СВЧ-печ и. Отремонтировать его крайне сложно даже в условиях специализированных мастерских. Чаще всего неисправный магнетрон заменяют. Однако прежде, чем решиться на этот шаг, необходимо убедиться, что проблема именно в нем.

Важно! Выход из строя магнетрона сопровождается внешними проявлениями. Поэтому на первом этапе следует провести визуальный осмотр камеры микроволновки.

Основные внешние признаки , свидетельствующие о неисправности магнетрона, - необычные звуки, появление дыма или искрение, наличие оплавленных либо потемневших участков на стенах камеры.

Затем проверяют работоспособность таких узлов СВЧ-печки , как:

  • блок управления (БУ);
  • система, генерирующая высокочастотные радиоволны.

Диагностика блока управления

В зависимости от конструкции, СВЧ-печь может быть оснащена:

  • механическим БУ (Samsung ME81KRW-3|BW и др);
  • электронным БУ (Elenberg MG-2090D и аналогичные);
  • сенсорным БУ (LG MS20E47DKB и пр.).

Убедиться в неисправности блока управления можно, проверив мультиметром, поступает ли напряжение на вход повышающего трансформатор а. Если при включении таймера и выборе рабочего режима напряжение на выводах трансформатора отсутствует, значит БУ неисправен.

Блок управления, оснащенный механическим таймером и ручными переключателями режимов работы, отремонтировать несложно. Как правило, для этого достаточно визуально его осмотреть и проверить тестером наличие электрических сигналов на контактах переключателей и реле. Выявленные повреждения (поломанные детали, окисленные и обгоревшие контакты, оторванные провода и пр.) устраняют.

Если же СВЧ-печь оборудована электронным блоком управления , первичное диагностирование поможет провести дисплей, на котором при возникновении неисправности отображается некорректная информация. Если экран не засветился, то проверяют целостность его встроенного предохранителя. Электронный БУ устроен так, что способен самостоятельно диагностировать поломку. Включив режим диагностики и сверив коды ошибок на дисплее с таблицей их расшифровки (приведена в руководстве по эксплуатации), можно получить необходимую информацию о причине неисправности.

Совет! Электронный блок управления - это сложный радиоэлектронный узел, отремонтировать который без специальных измерительных приборов невозможно. Убедившись в его неисправности, нужно отнести печь в ближайшую мастерскую по ремонту сложной бытовой техники.

Проверка системы излучения радиоволн

Если БУ исправен, то проверяют узлы, относящиеся к системе СВЧ излучения. В общем случае она состоит из силового высоковольтного трансформатора и элементов электрической схемы вольтодобавки (цепи сдвига напряжения).

В СВЧ-печах используются специально разработанные высоковольтные трансформаторы типа МОТ (microwave oven transformator) . Конструктивно они содержат три обмотки:

  • первичную 220 В;
  • понижающую 3В;
  • повышающую 2 кВ.

Работоспособность трансформатора проверяют, последовательно прозванивая все обмотки тестером. При этом наименьшее сопротивление имеет понижающая обмотка (накал магнетрона), а наибольшее - высоковольтная. Если измерительный прибор показывает обрыв одной или нескольких обмоток, то трансформатор нужно заменить.

Важно! Может иметь место межвитковое замыкание в высоковольтной обмотке трансформатора. Об этом будет свидетельствовать недостаточная рабочая температура нагрева и/или повышенный гул. Измерить напряжение на выходных клеммах этой обмотки обычным тестером нельзя. Необходимо наличие специальных измерительных приборов. В случае межвиткового замыкания трансформатор также необходимо заменить.

Далее проверяют целостность элементов, входящих в схему умножителя напряжения. Кроме магнетрона, в нее входят высоковольтные радиоэлементы: конденсатор и диод. При этом проверить высоковольтный диод на пробой тестером нельзя - его внутреннее сопротивление достаточно велико. Измерить его можно исключительно посредством мегомметра. При выявлении неисправности детали, следует высоковольтный диод заменить.

Схема узла генерации СВЧ радиоволн

Затем должна быть проведена проверка конденсатора на пробой. Исправный прибор при измерении покажет сопротивление, близкое к «0», которое за несколько секунд должно вырастать до бесконечности. У неисправного - динамического изменения сопротивления не происходит, что свидетельствует об отсутствии контакта с обложками конденсатора. Также греть слабее печь может по причине утечки между обкладками прибора. Проверяется это при помощи мегомметра и источника высокого испытательного напряжения.

Неисправные высоковольтные радиоэлементы заменяют.

Причины неисправностей магнетрона

Проверить магнетрон в микроволновке без использования специальных приборов невозможно, однако он может выйти из строя по причине неисправности одной или нескольких деталей, входящих в его конструкцию .

  1. Защитный колпачок , обеспечивающий вакуумность штенгеля. Если он заискрил - значит прогорел. Поврежденный колпачок нужно снять и заменить.
  2. Нить накала , которая может оборваться в результате перегрева. Проверяют ее, используя обычный тестер. Сопротивление нити накала должно составлять от 2 до 7 Ом. Если измерительный прибор покажет «бесконечность», то нужно проверить целостность соединения дросселей с клеммами магнетрона.
  3. Монтажная плата с элементами электрической схемы питания магнетрона. Помимо визуального осмотра необходимо также прозвонить тестером установленные на ней комплектующие.
  4. Термопредохранитель , который также проверяется посредством тестера. В нормальном состоянии его сопротивление равно «0».
  5. Проходные конденсаторы , целостность которых проверяют, измеряя сопротивление между корпусом магнетрона и выводами. Они работоспособны, если их сопротивление равно бесконечности. Во всех остальных случаях конденсаторы подлежат замене.

Важно! Меняя конденсаторы, нельзя пользоваться обычным припоем. В обязательном порядке необходимо применение тугоплавкого припоя. Можно также воспользоваться устройством для контактной сварки.

Замена магнетрона

Убедившись, что микроволновка не функционирует из-за выхода из строя магнетрона, прибор меняют . Лучше, конечно, эту операцию поручить квалифицированным специалистам сервисного центра, но ее сможет осуществить и любой человек, умеющий работать с отверткой и тестером.

Выбирая новый магнетрон , особое внимание обращают на то, чтобы:

  • показатели мощности его и микроволновки совпадали, необходимый параметр указывается в сопроводительной документации к СВЧ-печи;
  • крепежные отверстия и расположение соединительных контактов сходились с имеющимися у демонтированного магнетрона;
  • длина и диаметр антенны соответствовали геометрическим размерам антенны старого изделия.

Совет! Демонтировать неисправный магнетрон и правильно подключить вместо него новый не составит большого труда, однако при этом нужно обеспечить плотное прилегание нового изделия к волноводу.

Профилактика неисправностей

Срок службы магнетрона можно значительно увеличить, если постоянно поддерживать чистоту слюдяной прокладки, защищающей волновод от попадания в него частиц жира и/или пищи. В противном случае пищевые фрагменты на накладке обугливаются и становятся электропроводными, что приводит к появлению искрения в камере. Также уберечь магнетрон от поломок можно, подключив СВЧ-печь к электросети через стабилизатор, который исключит колебания величины сетевого напряжения, вызывающие ускоренный износ нити накала.

Самые лучшие микроволновые печи

Микроволновая печь Samsung ME88SUG на Яндекс Маркете

Микроволновая печь Horizont 20MW700-1378AAW на Яндекс Маркете

Микроволновая печь BBK 20MWS-726S/W на Яндекс Маркете

Микроволновая печь Samsung GE88SUT на Яндекс Маркете

Микроволновая печь Bosch BFL524MS0 на Яндекс Маркете

Принцип действия магнетрона основан на влиянии электрического и магнитного полей на траекторию движения электронов. По своей сути, магнетрон является электровакуумным диодом. Другими словами «электронной лампой» с двумя электродами. В основе работы электровакуумных приборов лежит явление термоэлектронной эмиссии. Термоэлектронная эмиссия возникает при разогреве поверхности эмиттера (катода), в следствии чего увеличивается количество электронов, способных совершить работу выхода. Для того, что бы выяснить, как электроны ведут себя в электрическом поле, рассмотрим принцип действия обычного электровакуумного диода.

На рисунке выше изображена схема работы электровакуумного диода. На части «А» рисунка, составлена электрическая цепь состоящая из диода, батареи питания «В», и ключа «К». Ключ «К» разомкнут – следовательно, напряжение на аноде отсутствует «Ua = 0». Если нет напряжения, то ток анода тоже будет равен нулю «Ia = 0». На нить накала подано напряжение «Un» следовательно, катод диода разогрет, и самые активные электроны уже готовы покинуть его. Но своей энергии им для этого не хватает, поэтому они все еще находятся возле катода.

Перейдем ко второй части рисунка. На части «Б» данного рисунка все та же схема, но ключ «К» на ней замкнут. Следовательно — на аноде появилось напряжение «Ua = x», поданное с положительного полюса батареи питания «В» через ключ «К». В результате чего, между электродами диода возникло электрическое поле. Под действием силы этого поля электроны начали покидать катод и устремились к аноду. Таким образом, цепь замкнулась и по цепи начал протекать ток анода определенной величины «Ia = y». Из выше изложенного можно сделать вывод, что электрическое поле заставляет электроны двигаться по прямой вдоль, своих силовых линий.

Магнитное поле ни как не действует на не подвижный электрон. Но если электрон, движущийся по прямой траектории под действием электрического поля, попадает в магнитное поле, то последнее влияет на траекторию движения электрона, отклоняя ее вдоль своих силовых линий. Таким образом, электрон двигавшийся по прямой, под действием магнитного поля начинает двигаться по дуге.

Теперь рассмотрим внутренности магнетрона. Отличительной особенностью конструкции магнетрона – является конструкция анода. Анод магнетрона представляет собой толстостенный медный цилиндр с системой резонаторов внутри. В поперечном сечении, вид конструкции анода напоминает колесо телеги со спицами. Каждая «спица» — является резонатором. В центре анода расположен катод с подогревателем. По краям анодного блока находятся два кольцевых магнита, которые образуют магнитную систему, между полюсами которой и располагается анод. Если бы данная магнитная система отсутствовала, то не было бы и магнитного поля и в этом случае, при подаче напряжения накала и анодного напряжения, электроны двигались бы по прямой, от катода — к аноду т. е. вдоль силовых линий электрического поля.

На рисунке сверху изображена очень упрощенная схема работы магнетрона. На ней голубым цветом выделена приблизительная форма траектории движения одного электрона покинувшего катод и стремящегося к аноду. На рисунке видно, что благодаря наличию магнитного поля, траектория движения электрона изменяется таким образом, что покинувший катод электрон достигает анода, далеко не сразу. Из-за такого влияния магнитного поля на движение электрона, в рабочей области образуется своеобразное «электронное облако», которое вращается вокруг катода – внутри анода. Пролетая мимо резонаторов, электроны отдают им часть своей энергии и наводят в них токи высокой частоты которые в свою очередь, создают сильное СВЧ поле в полостях резонаторов. В одну из таких полостей помещена петля связи (на схеме не показана), посредством которой энергия СВЧ поля выводится наружу.

Это очень краткое описание работы магнетрона. Для тех, кто хотел бы познакомиться с принципом его действия поближе, даю ссылки на более подробные описания.

Впервые опубликовал результаты теоретических и экспериментальных исследований работы прибора в статическом режиме и предложил ряд конструкций магнетрона. Генерирование электромагнитных колебаний в дециметровом диапазоне волн посредством магнетрона открыл и запатентовал в чехословацкий физик А. Жачек.

Действующие магнетронные генераторы радиоволн были созданы независимо и почти одновременно в трех странах: в Чехословакии (Жачек, 1924 г.), в СССР (А.А. Слуцкин и Д.С. Штейнберг, 1925 г.), в Японии (Окабе и Яги, 1927 г.).

Французский ученый Морис Понт с сотрудниками из парижской фирмы «КСФ» в 1935 году создали электронную лампу с вольфрамовым катодом, окруженным резонаторными анодными сегментами. Она была предшественницей магнетронов с резонаторными камерами.

Конструкция многорезонаторного магнетрона Алексеева - Малярова, обеспечивающего 300-ваттное излучение на волне 10 сантиметров, созданного в 1936-39 гг., стала известна мировому сообществу благодаря публикации 1940 г. (Alexeev Н. F., Malyarov Д. Е. Getting powerful vibrations of magnetrons in centimeter wavelength range // Magazine of Technical Physics. 1940. Vol. 10. No. 15, P. 1297-1300.)

Своим появлением на свет многорезонаторный магнетрон Алексеева - Малярова обязан радиолокации. Работы по радиолокации были развернуты в СССР почти одновременно с началом радиолокационных работ в Англии и США. По признанию зарубежных авторов, к началу 1934 года СССР продвинулся в этих работах более, чем США и Англия. (Brown, Louis. A Radar History of World War II . Technical and Military Imperatives. Bristol: Institute of Physics Publishing, 1999. ISBN 0-7503-0659-9 .)

В 1940 британские физики Джон Рэндалл (англ. John Randall ) и Гарри Бут (англ. Harry Boot ) изобрели резонансный магнетрон Новый магнетрон давал импульсы высокой мощности, что позволило разработать радар сантиметрового диапазона. Радар с короткой длиной волны позволял обнаруживать более мелкие объекты . Кроме того, компактный размер магнетрона привел к резкому уменьшению размеров радарной аппаратуры , что позволило устанавливать ее на самолетах .

Явление перестройки частоты магнетрона напряжением впервые обнаружили в 1949 американские инженеры Д. Уилбур и Ф. Питерс. Магнетрон, настраиваемый напряжением, или митрон - генераторный прибор магнетронного типа, рабочая частота которого в широком диапазоне изменяется пропорционально анодному напряжению.

Магнетроны бывают как неперестраиваемые, так и перестраиваемые в небольшом диапазоне частот (обычно менее 10 %). Для медленной перестройки частоты применяются механизмы, приводимые в движение рукой, для быстрой (до нескольких тысяч перестроек в секунду) - ротационные и вибрационные механизмы.

Магнетроны как генераторы сверхвысоких частот широко используются в современной радиолокационной технике.

Конструкция

Магнетрон в продольном сечении

Резонансный магнетрон состоит из анодного блока, который представляет собой, как правило, металлический толстостенный цилиндр с прорезанными в стенках полостями, выполняющими роль объёмных резонаторов . Резонаторы образуют кольцевую колебательную систему . К анодному блоку закрепляется цилиндрический катод . Внутри катода закреплён подогреватель. Магнитное поле , параллельное оси прибора, создаётся внешними магнитами или электромагнитом.

Для вывода СВЧ энергии используется, как правило, проволочная петля, закреплённая в одном из резонаторов, или отверстие из резонатора наружу цилиндра.

Резонаторы магнетрона образуют кольцевую колебательную систему, около них происходит взаимодействие пучка электронов и электромагнитной волны. Поскольку эта система в результате кольцевой конструкции замкнута сама на себя, то её можно возбудить лишь на определённых видах колебаний, из которых важное значение имеет π -вид. Такая система имеет не одну, а несколько резонансных частот, при которых на кольцевой колебательной системе укладывается целое число стоячих волн от 1 до N/2 (N - число резонаторов). Наиболее выгодным является вид колебаний, при котором число полуволн равно числу резонаторов (так называемый π-вид колебаний). Этот вид колебаний назван так потому, что напряжения СВЧ на двух соседних резонаторах сдвинуты по фазе на π .

Для стабильной работы магнетрона (во избежание перескоков во время работы на другие виды колебаний, сопровождающиеся изменениями частоты и выходной мощности) необходимо, чтобы ближайшая резонансная частота колебательной системы значительно отличалась от рабочей частоты (примерно на 10 %). Так как в магнетроне с одинаковыми резонаторами разность этих частот получается недостаточной, её увеличивают либо введением связок в виде металлических колец, одно из которых соединяет все чётные, а другое все нечётные ламели анодного блока, либо применением разнорезонаторной колебательной системы (чётные резонаторы имеют один размер, нечётные - другой).

Отдельные модели магнетронов могут иметь различную конструкцию. Так, резонаторная система выполняется в виде резонаторов нескольких типов: щель-отверстие, лопаточных, щелевых и т. д.

Принцип работы

Электроны эмиттируются из катода в пространство взаимодействия, где на них воздействует постоянное электрическое поле анод-катод, постоянное магнитное поле и поле электромагнитной волны. Если бы не было поля электромагнитной волны, электроны бы двигались в скрещённых электрическом и магнитном полях по сравнительно простым кривым: эпициклоидам (кривая, которую описывает точка на круге, катящемся по наружной поверхности окружности большего диаметра, в конкретном случае - по наружной поверхности катода). При достаточно высоком магнитном поле (параллельном оси магнетрона) электрон, движущийся по этой кривой, не может достичь анода (по причине действия на него со стороны этого магнитного поля силы Лоренца), при этом говорят, что произошло магнитное запирание диода. В режиме магнитного запирания некоторая часть электронов движется по эпициклоидам в пространстве анод-катод. Под действием собственного поля электронов, а также статистических эффектов (дробовой шум) в этом электронном облаке возникают неустойчивости, которые приводят к генерации электромагнитных колебаний, эти колебания усиливаются резонаторами. Электрическое поле возникшей электромагнитной волны может замедлять или ускорять электроны. Если электрон ускоряется полем волны, то радиус его циклотронного движения уменьшается и он отклоняется в направлении катода. При этом энергия передаётся от волны к электрону. Если же электрон тормозится полем волны, то его энергия передаётся волне, при этом циклотронный радиус электрона увеличивается и он получает возможность достигнуть анода. Поскольку электрическое поле анод-катод совершает положительную работу только если электрон достигает анода, энергия всегда передаётся в основном от электронов к электромагнитной волне. Однако, если скорость вращения электронов вокруг катода не будет совпадать с фазовой скоростью электромагнитной волны, один и тот же электрон будет попеременно ускоряться и тормозиться волной, в результате эффективность передачи энергии волне будет небольшой. Если средняя скорость вращения электрона вокруг катода совпадает с фазовой скоростью волны, электрон может находиться непрерывно в тормозящей области, при этом передача энергии от электрона к волне наиболее эффективна. Такие электроны группируются в сгустки (так называемые «спицы»), вращающиеся вместе с полем. Многократное, в течение ряда периодов, взаимодействие электронов с ВЧ-полем и фазовая фокусировка в магнетроне обеспечивают высокий коэффициент полезного действия и возможность получения больших мощностей.

Применение

В радарных устройствах волновод подсоединён к антенне, которая может представлять собой как щелевой волновод, так и конический рупорный облучатель в паре с параболическим отражателем (так называемая «тарелка»). Магнетрон управляется короткими высокоинтенсивными импульсами подаваемого напряжения, в результате чего излучается короткий импульс микроволновой энергии . Небольшая порция этой энергии отражается обратно антенне и волноводу, где она направляется к чувствительному приёмнику. После дальнейшей обработки сигнала он, в конце концов, появляется на электронно-лучевой трубке (ЭЛТ) в виде радарной карты А1.

В микроволновых печах волновод заканчивается отверстием, прозрачным для радиочастот (непосредственно в камере для готовки). Важно, чтобы во время работы печи в ней находились продукты. Тогда микроволны поглощаются вместо того, чтобы отражаться обратно в волновод, где интенсивность стоячих волн может вызвать искрение. Искрение, продолжающееся достаточно долго, может повредить магнетрон. Если в микроволновой печи готовится небольшое количество пищи, лучше поставить в камеру ещё и стакан воды для поглощения микроволн.

Источники

Пассивные твердотельные Резистор · Переменный резистор · Подстроечный резистор · Варистор · Конденсатор · Переменный конденсатор · Подстроечный конденсатор · Катушка индуктивности · Кварцевый резонатор · Предохранитель · Самовосстанавливающийся предохранитель · Трансформатор
Активные твердотельные Диод · Светодиод · Фотодиод · Полупроводниковый лазер · Диод Шоттки · Стабилитрон · Стабистор · Варикап · Вариконд · Диодный мост · Лавинно-пролётный диод · Туннельный диод · Диод Ганна
Транзистор · Биполярный транзистор · Полевой транзистор · КМОП-транзистор · Однопереходный транзистор · Фототранзистор · Составной транзистор · Баллистический транзистор
Интегральная схема · Цифровая интегральная схема · Аналоговая интегральная схема
Тиристор · Симистор · Динистор · Мемристор
Пассивные вакуумные Бареттер
Активные вакуумные и газоразрядные Электронная лампа · Электровакуумный диод · Триод · Тетрод · Пентод · Гексод · Гептод · Пентагрид · Октод · Нонод · Механотрон · Клистрон · Магнетрон · Амплитрон · Платинотрон · Электронно-лучевая трубка · Лампа бегущей волны
Устройства отображения Электронно-лучевая трубка ·