Питание светодиодов. Подключение светодиодов через стабилизатор тока Интегральные стабилизаторы тока

Светодиоды получили большую популярность. Главную роль в этом сыграл светодиодный драйвер, поддерживающий постоянный выходной ток определенного значения. Можно сказать, что это устройство представляет собой источник тока для LED-приборов. Такой драйвер тока, работая вместе со светодиодом, обеспечивает долголетний срок службы и надежную яркость. Анализ характеристик и видов этих устройств позволяет понять, какие они выполняют функции, и как их правильно выбирать.

Что такое драйвер и каково его назначение?

Драйвер для светодиодов является электронным устройством, на выходе которого образуется постоянный ток после стабилизации. В данном случае образуется не напряжение, а именно ток. Устройства, которые стабилизируют напряжение, называются блоками питания. На их корпусе указывается выходное напряжение. Блоки питания 12 В применяют для питания LED-линеек, светодиодной ленты и модулей.

Основным параметром LED-драйвера, которым он сможет обеспечивать потребителя длительное время при определенной нагрузке, является выходной ток. В качестве нагрузки применяются отдельные светодиоды или сборки из аналогичных элементов.

Драйвер для светодиода обычно питается от сети напряжением 220 В. В большинстве случаев диапазон рабочего выходного напряжения составляет от трех вольт и может достигать нескольких десятков вольт. Для подключения светодиодов 3W в количестве шести штук потребуется драйвер с выходным напряжением от 9 до 21 В, рассчитанный на 780 мА. При своей универсальности он обладает малым КПД, если на него включить минимальную нагрузку.

При освещении в автомобилях, в фарах велосипедов, мотоциклов, мопедов и т. д., в оснащении переносных фонарей используется питание с постоянным напряжением, значение которого варьируется от 9 до 36 В. Можно не применять драйвер для светодиодов с небольшой мощностью, но в таких случаях потребуется внесение соответствующего резистора в питающую сеть напряжением 220 В. Несмотря на то, что в бытовых выключателях используется этот элемент, подключить светодиод к сети 220 В и рассчитывать на надежность достаточно проблематично.

Основные особенности

Мощность, которую эти устройства способны отдавать под нагрузкой, является важным показателем. Не стоит перегружать его, пытаясь добиться максимальных результатов. В результате таких действий могут выйти из строя драйверы для светодиодов или же сами LED-элементы.


На электронную начинку устройства влияет множество причин:

  • класс защиты аппарата;
  • элементная составляющая, которая применяется для сборки;
  • параметры входа и выхода;
  • марка производителя.

Изготовление современных драйверов выполняется при помощи микросхем с использованием технологии широтно-импульсного преобразования, в состав которых входят импульсные преобразователи и схемы, стабилизирующие ток. ШИМ-преобразователи запитываются от 220 В, обладают высоким классом защиты от коротких замыканий, перегрузок, а так же высоким КПД.

Технические характеристики

Перед приобретением преобразователя для светодиодов следует изучить характеристики устройства. К ним относятся следующие параметры:

  • выдаваемая мощность;
  • выходное напряжение;
  • номинальный ток.

Схема подключения LED-драйвера

На выходное напряжение влияет схема подключения к источнику питания, количество в ней светодиодов. Значение тока пропорционально зависит от мощности диодов и яркости их излучения. Светодиодный драйвер должен выдавать столько тока для светодиодов, сколько потребуется для обеспечения постоянной яркости. Стоит помнить, что мощность необходимого устройства должна быть более потребляемой всеми светодиодами. Рассчитать ее можно, используя следующую формулу:

P (led) – мощность одного LED-элемента;

n - количество LED-элементов.

Для обеспечения длительной и стабильной работы драйвера следует учитывать запас мощности устройства в 20–30% от номинальной.


Выполняя расчет, следует учитывать цветовой фактор потребителя, так как он влияет на падение напряжения. У разных цветов оно будет иметь отличающиеся значения.

Срок годности

Светодиодные драйверы, как и вся электроника, обладают определенным сроком службы, на который сильно влияют эксплуатационные условия. LED-элементы, изготовленные известными брендами, рассчитаны на работу до 100 тысяч часов, что намного дольше источников питания. По качеству рассчитанный драйвер можно классифицировать на три типа:

  • низкого качества, с работоспособностью до 20 тысяч часов;
  • с усредненными параметрами - до 50 тысяч часов;
  • преобразователь, состоящий из комплектующих известных брендов - до 70 тысяч часов.

Многие даже не знают, зачем обращать внимание на этот параметр. Это понадобится для выбора устройства для длительного использования и дальнейшей окупаемости. Для использования в бытовых помещениях подойдет первая категория (до 20 тысяч часов).

Как подобрать драйвер?

Насчитывается множество разновидностей драйверов, используемых для LED-освещения. Большинство из представленной продукции изготовлено в Китае и не имеет нужного качества, но выделяется при этом низким ценовым диапазоном. Если нужен хороший драйвер, лучше не гнаться за дешевизной китайского производства, так как их характеристики не всегда совпадают с заявленными, и редко когда к ним прилагается гарантия. Может быть брак на микросхеме или быстрый выход из строя устройства, в таком случае не удастся совершить обмен на более качественное изделие или вернуть средства.


Наиболее часто выбираемым вариантом является бескорпусный драйвер, питающийся от 220 В или 12 В. Различные модификации позволяют использовать их для одного или более светодиодов. Эти устройства можно выбрать для организации исследований в лаборатории или же проведения экспериментов. Для фито-ламп и бытового применения выбирают драйверы для светодиодов, находящиеся в корпусе. Бескорпусные устройства выигрывают в ценовом плане, но проигрывают в эстетике, безопасности и надежности.

Виды драйверов

Устройства, осуществляющие питание светодиодов, условно можно разделить на:

  • импульсные;
  • линейные.

Устройства импульсного типа производят на выходе множество токовых импульсов высокой частоты и работают по принципу ШИМ, КПД у них составляет до 95%. Импульсные преобразователи имеют один существенный недостаток - во время работы возникают сильные электромагнитные помехи. Для обеспечения стабильного выходного тока в линейный драйвер установлен генератор тока, который играет роль выхода. Такие устройства имеют небольшой КПД (до 80%), но при этом просты в техническом плане и стоят недорого. Такие устройства не получится использовать для потребителей большой мощности.

Из вышеперечисленного можно сделать вывод, что источник питания для светодиодов следует выбирать очень тщательно. Примером может послужить люминесцентная лампа, на которую подается ток, превышающий норму на 20%. В ее характеристиках практически не произойдет изменений, а вот работоспособность светодиода уменьшится в несколько раз.

Светодиоды в целом, и, в частности, мощные (более 1 Вт) светодиоды очень чувствительны к различным внешним факторам, которые могут негативно сказаться на их сроке службы и качественных показателях. В настоящее время величины максимальных питающих токов для светодиодов имеют весьма ощутимые значения: до 1…1,5 и даже до 2 А по сравнению с 0,35 А, на которые чаще всего нормируются характеристики светодиода. Желание получить максимальный световой поток с одного полупроводникового излучателя ведет к увеличению тока, пропускаемого через него, что отражается на его тепловыделении, и вся конструкция (светодиод + светодиодная арматура) работает на грани перегрева кристалла. При этом к источнику питания предъявляются высокие требования по стабильности выходных характеристик, которые он должен обеспечить. Это является довольно проблематичным при использовании для питания источника напряжения. Во-первых, предварительное выравнивание тока в цепи светодиодов потребует, по крайней мере, дополнительного резистора, который будет ограничивать ток и в то же время рассеивать на себе дополнительную мощность. Во-вторых, любая осветительная установка работает в некотором диапазоне температур, часто довольно широком, а светодиод, обладая отрицательной зависимостью прямого падения напряжения от температуры кристалла — обычно на уровне -2…-4 мВ/°С, будет иметь плавающую рабочую точку. В-третьих, свой вклад будет вносить нестабильность выходных характеристик самого источника. Эти причины изрядно сократят жизнь современному источнику света, особенно в случае его работы на токах, близких к максимальным. Так, повышение напряжения на переходе всего на 0,1 В будет причиной изменения силы тока на 200 мА, что приведет к повышенному тепловыделению и может крайне негативно сказаться на работе светового прибора.

ВАХ на рисунке 1 показывает, насколько важно использование блока питания (БП) с регулированием по току, а не по напряжению. Повышение напряжения питания на светодиоде на 3% (0,1 В) приводит к росту тока в первом приближении на 20% (200 мА). Соответственно, на 40% растет потребляемая мощность и тепловая отдача, что неизбежно приведет к перегреву, деградации структуры кристалла и выходу из строя светодиода. При кратковременном сильном превышении питающего светодиод тока может начаться деградация кристалла диода, за которой также последует выход из строя.

Рис. 1.

Понижение напряжения на диоде также нежелательно, так как при его падении на 3% от номинального, что соответствуют падению тока на 200 мА, мы теряем более 50% светового потока, что видно из зависимости относительного потока светодиода от питающего тока (рис. 2).

Рис. 2.

Самым простым способом обеспечить необходимый ток питания светодиода является применение высокочастотных (десятки кГц) широтно-импульсных преобразователей (ШИМ), способных поддерживать необходимый средний ток в широком диапазоне мощностей подключенного оборудования. В обиходе светотехников и электриков такие БП часто называют светодиодными драйверами. Некоторые модели в выходной цепи преобразуют чистый ШИМ-сигнал (прямоугольные импульсы) в более сглаженную кривую, среднее значение которой находится на уровне желаемого среднего тока.

Высокая частота работы блока питания обусловлена, прежде всего, требованиями к отсутствию видимых пульсаций источников света. Особенностью конструкции ШИМ-схем является также то, что существует запас для понижения сетевого напряжения, при котором световой поток оборудования не снижается, но уменьшается частота пульсаций выходного сигнала, особенно сильно проявляющаяся при работе БП на нагрузках, близких к максимально допустимым. К примеру, блоки питания компании Inventronics могут работать в диапазоне действующих значений напряжения сети питания от 90 до 305 В, при этом частота пульсаций выходного сигнала все еще значительно превышает порог, при котором мигание светодиода может быть заметным, т.е. явление фликера (мигания источника света согласно ГОСТ 13109-97) сводится к нулю. Таким образом, ШИМ-блоки питания могут быть рекомендованы для использования в осветительном оборудовании на расстоянии от региональных центров на территории России, где напряжения в сети может быть ощутимо ниже стандартных (действующее значение напряжения в сети может падать до 150 В и менее в регионах, удаленных от крупных электростанций), а кратковременные перенапряжения, вызванные подключением мощных удаленных потребителей, могут достигать 260 В и более.

Другой особенностью использования БП с ШИМ является простота интеграции с управляемыми диммерами. При этом БП могут получать информацию о степени ослабления светового потока по каналам 1…10 В, DMX, DALI или другим протоколам. Также нельзя не упомянуть малые габаритные размеры ШИМ-блока питания, позволяющие минимизировать размеры корпуса ОП с интегрированным БП или упростить установку внешнего блока питания недалеко от светильника.

Есть и другой подход к исполнению блоков питания: для упрощения адаптации к существующим сетям, минимизации объема БП внутри светильников и организации низковольтной сети по принципам электробезопасности используются отдельный низковольтный источник напряжения (12 или 24 В) за пределами корпуса осветительного прибора (ОП) и малогабаритный ШИМ-преобразователь внутри светильника. Несмотря на кажущуюся простоту, при таком подходе можно столкнуться с рядом серьезных опасностей при монтаже. В частности, при ошибке в полярности подключения ШИМ-преобразователь сразу выходит из строя.

Очень важным параметром любого импульсного блока питания является величина гармонических и нелинейных искажений формы питающего напряжения, которые он создает в сети. Они отрицательно сказываются на проводке электросети и потребителях, подключенных к ней. Это влияние выражается не только в различных помехах, которые сказываются на чувствительных электроприборах, но также и в самой трехфазной сети, в нулевом проводнике которой могут протекать токи, превышающие токи в фазных проводниках. Причина состоит в том, что импульсный БП потребляет из сети мощность лишь на пиках питающего напряжения; потребляемый ток имеет форму небольшого импульса и содержит в себе широкий набор гармонических составляющих. В случае симметричной нагрузки в нулевом проводнике высшие гармоники тока компенсируют друг друга (сдвиг фаз относительно друг друга составляет 120°), но это не относится к высшим гармоникам, кратным трем, которые в нулевом проводнике окажутся сложенными.

Коэффициент мощности l — комплексный показатель искажения потребляемой из сети мощности, который учитывает не только сдвиг фазы, но и искажение формы потребляемого тока (наличие гармонических составляющих). ГОСТ Р 51317.3.2-2006 устанавливает нормы гармонических составляющих тока для ТС класса С (таблица 1).

Таблица 1. Нормы гармонических составляющих тока для ТС класса С

Порядок гармонической
составляющей, n
Максимальное допустимое значение гармонической составляющей тока, % основной гармонической составляющей потребляемого тока
2 2
3 30 l *
5 10
7 7
9 5
11≤n≤39 (только для нечетных гармонических составляющих) 3
* Коэффициент мощности цепи

При этом данные нормы устанавливаются для световых приборов с активной потребляемой мощностью более 25 Вт, однако следует полагать, что распространение энергоэффективных маломощных светодиодных светильников заставит существенно снизить эту планку или вовсе отменить ограничение.

Для минимизации вносимых в сеть искажений применяют устройства, компенсирующие вышеуказанные помехи и приближающие коэффициент мощности к единице. В то время как для приборов с фиксированной потребляемой мощностью применяют пассивные компенсационные конденсаторы (например, в ПРА для металл-галогенных или люминесцентных ламп), в импульсные БП интегрируют активные компенсационные устройства, максимально приближающие их характеристики к резистивным в широком диапазоне подключенных нагрузок.

Несоблюдение этих норм негативно сказывается как на качестве питающей электроэнергии, так и на работе устройств и состоянии инфраструктуры. Предприятия, превышающие эти нормы, облагаются штрафами и вынуждены устанавливать дополнительные конденсаторные установки. Однако потребление электрической энергии предприятием в большой степени прогнозируемо, что и позволяет обойтись пассивной коррекцией.

Блоки питания на ШИМ с компенсаторами вносят крайне малые искажения в сеть. Например, серия мощных БП EUC (рис. 3) от Inventronics обеспечивает значение коэффициента мощности в пределах 0,97…0,99.

Рис. 3.

КПД современных блоков питания с широтно-импульсными модуляторами достигает величины 92% и более, что немаловажно, т.к. затрачиваемая ими энергия уходит в нагрев. Соответственно, чем выше КПД, тем меньше требуется эффективная площадь рассеяния радиатора и, соответственно, тем меньше будут габариты и масса БП, за которыми, безусловно, следует снижение стоимости драйвера.

В настоящее время БП производятся с корпусами в различном исполнении: как для установки внутрь СП, встройки в мебель или размещения в помещениях, так и во влагозащищенных корпусах с различными показателями пылевлагозащиты (IP): от IP23, допустимых к установке в сухих помещениях, и IP54 для установки во влажных помещениях и под навесом, до влагозащищенных с корпусами IP67, подходящих для установки снаружи помещений. Малораспространенная группа БП с IP68 предназначена для установки в грунт без дополнительных корпусов.

Цветовые характеристики светодиода также могут отклоняться при изменении тока питания. Например, диаграмма зависимости цветовых координат от рабочего тока мощного светодиода Osram Dragon plus (рис. 4) показывает относительное смещение цветовых координат излучения.

Рис. 4.

В первую очередь это относится к световым приборам с возможностью управления и создания различных цветодинамических сцен. Так при использовании световым прибором большого диапазона рабочих токов цветовые координаты в пространстве могут смещаться на 0,01 единиц по оси x и на 0,015 единиц по оси y. Это смещение в холодном белом диапазоне может достигать несколько сотен Кельвин (до 700К). Но в повседневных применениях этот фактор практически не заметен. Влияние изменения величины питающего тока исчезает в случае питания светодиодов ШИМ-сигналом, а управление можно осуществлять изменением скважности сигнала.

Заключение

На рынке появился большой объем светодиодной продукции, оснащенной качественными БП и самыми различными видами оптики. Большая их часть производится с использованием мощных светодиодов. Ряд приборов ведущих мировых производителей можно уже считать проверенными временем, так как они не первый год успешно и безотказно работают на самых различных объектах в России и за рубежом.

Получение технической информации, заказ образцов, поставка — e-mail:

На сегодняшний день существуют сотни разновидностей светодиодов, отличающихся внешним видом, цветом свечения и электрическими параметрами. Но всех их объединяет общий принцип действия, а значит, и схемы подключения к электрической цепи тоже базируются на общих принципах. Достаточно понять, как подключить один индикаторный светодиод, чтобы затем научиться составлять и рассчитывать любые схемы.

Распиновка светодиода

Прежде чем перейти к рассмотрению вопроса о правильном подключении светодиода, необходимо научиться определять его полярность. Чаще всего индикаторные светодиоды имеют два вывода: анод и катод. Гораздо реже в корпусе диаметром 5 мм встречаются экземпляры, имеющие 3 или 4 вывода для подключения. Но и с их распиновкой разобраться тоже несложно.

SMD-светодиоды могут иметь 4 вывода (2 анода и 2 катода), что обусловлено технологией их производства. Третий и четвёртый выводы могут быть электрически незадействованными, но использоваться в качестве дополнительного теплоотвода. Приведенное расположение выводов не является стандартом. Для вычисления полярности лучше сначала заглянуть в datasheet, а затем подтвердить увиденное мультиметром. Визуально определить полярность SMD-светодиода с двумя выводами можно по срезу. Срез (ключ) в одном из углов корпуса всегда расположен ближе к катоду (минусу).

Простейшая схема подключения светодиода

Нет ничего проще, чем подключить светодиод к низковольтному источнику постоянного напряжения. Это может быть батарейка, аккумулятор или маломощный блок питания. Лучше, если напряжение будет не менее 5 В и не более 24 В. Такое подключение будет безопасным, а для его реализации понадобится лишь 1 дополнительный элемент – маломощный резистор. Его задача – ограничить ток, протекающий через p-n-переход на уровне не выше номинального значения. Для этого резистор всегда устанавливают последовательно с излучающим диодом.

Всегда соблюдайте полярность при подключении светодиода к источнику постоянного напряжения (тока).

Если из схемы исключить резистор, то ток в цепи будет ограничен только внутренним сопротивлением источника ЭДС, которое очень мало. Результатом такого подключения станет мгновенный выход из строя излучающего кристалла.

Расчёт ограничительного резистора

Взглянув на вольт-амперную характеристику светодиода, становится понятно: насколько важно не ошибиться при расчёте ограничительного резистора. Даже небольшой рост номинального тока приведёт к перегреву кристалла и, как следствие, к снижению рабочего ресурса. Выбор резистора производят по двум параметрам: сопротивлению и мощности. Сопротивление рассчитывают по формуле:

  • U – напряжение питания, В;
  • U LED – прямое падение напряжения на светодиоде (паспортное значение), В;
  • I – номинальный ток (паспортное значение), А.

Полученный результат следует округлить до ближайшего номинала из ряда Е24 в большую сторону, а затем рассчитать мощность, которую должен будет рассеивать резистор:

R – сопротивление резистора, принятого к установке, Ом.

Более подробную информацию о расчётах с практическими примерами можно получить в статье . А тот, кто не желает погружаться в нюансы, может быстро рассчитать параметры резистора с помощью онлайн-калькулятора.

Включение светодиодов от блока питания

Речь пойдёт о блоках питания (БП), работающих от сети переменного тока 220 В. Но даже они могут сильно отличаться друг от друга выходными параметрами. Это могут быть:

  • источники переменного напряжения, внутри которых есть только понижающий трансформатор;
  • нестабилизированные источники постоянного напряжения (ИПН);
  • стабилизированные ИПН;
  • стабилизированные источники постоянного тока (светодиодные драйверы).

Подключить светодиод можно к любому из них, дополнив схему нужными радиоэлементами. Чаще всего в качестве блока питания применяют стабилизированные ИПН на 5 В или 12 В. Данный тип БП подразумевает, что при возможных колебаниях напряжения сети, а также при изменении тока нагрузки в заданном диапазоне напряжение на выходе изменяться не будет. Это преимущество позволяет подключать к БП светодиоды, используя только резисторы. И именно такой принцип подключения реализован в схемах с индикаторными светодиодами.
Подключение мощных светодиодов и нужно производить через стабилизатор тока (драйвер). Несмотря на их более высокую стоимость, только так можно гарантировать стабильную яркость и продолжительную работу, а также исключить преждевременную замену дорогостоящего светоизлучающего элемента. Такое подключение не требует наличия дополнительного резистора, а светодиод присоединяется непосредственно к выходу драйвера с соблюдением условия:

  • I драйвера - ток драйвера по паспорту, А;
  • I LED - номинальный ток светодиода, А.

При несоблюдении условия, подключенный светодиод перегорит от перегрузки по току.

Последовательное подключение

Собрать рабочую схему на одном светодиоде – несложно. Другое дело, когда их несколько. Как правильно подключить 2, 3 … N светодиодов? Для этого нужно научиться рассчитывать более сложные схемы включения. Схема последовательного подключения представляет собой цепь из нескольких светодиодов, в которой катод первого светодиода соединен с анодом второго, катод второго с анодом третьего и так далее. Через все элементы схемы течёт ток одинаковой величины:

А падения напряжений суммируются:

Исходя из этого, можно сделать выводы:

  • объединять в последовательную цепь целесообразно только светодиоды с одинаковым рабочим током;
  • при выходе из строя одного светодиода произойдёт обрыв цепи;
  • количество светодиодов ограничено напряжением БП.

Параллельное подключение

Если от БП с напряжением, например, 5 В, необходимо зажечь несколько светодиодов, то их придется соединить между собой параллельно. При этом последовательно с каждым светодиодом нужно поставить резистор. Формулы для расчёта токов и напряжений примут следующий вид:

Таким образом, сумма токов в каждой ветви не должна превышать максимально допустимый ток БП. При параллельном подключении однотипных светодиодов достаточно рассчитать параметры одного резистора, а остальные – будут такого же номинала.

Все правила последовательного и параллельного подключения, наглядные примеры, а также информацию о том, как нельзя включать светодиоды, можно найти в .

Смешанное включение

Разобравшись со схемами последовательного и параллельного подключения, пришло время комбинировать. Один из вариантов комбинированного подключения светодиодов показан на рисунке.

Кстати, именно так устроена каждая светодиодная лента.

Включение в сеть переменного тока

Подключать светодиоды от БП не всегда целесообразно. Особенно, если речь идёт о необходимости сделать подсветку выключателя или индикатор наличия напряжения в сетевом удлинителе. Для подобных целей достаточно будет собрать одну из простых . Например, схема с токоограничительным резистором и выпрямительным диодом, защищающим светодиод от обратного напряжения. Сопротивление и мощность резистора вычисляют по упрощённой формуле, пренебрегая падением напряжения на светодиоде и диоде, так как оно на 2 порядка меньше напряжения сети:

Из-за большой мощности рассеивания (2–5 Вт), резистор часто заменяют неполярным конденсатором. Работая на переменном токе, он как бы «гасит» лишнее напряжение и почти не нагревается.

Подключение мигающих и многоцветных светодиодов

Внешне мигающие светодиоды ничем не отличаются от обычных аналогов и могут мигать одним, двумя или тремя цветами по заданному производителем алгоритму. Внутреннее отличие состоит в наличии под корпусом ещё одной подложки, на которой расположен интегральный генератор импульсов. Номинальный рабочий ток, как правило, не превышает 20 мА, а падение напряжения может варьироваться от 3 до 14 В. Поэтому перед подключением мигающего светодиода нужно ознакомиться с его характеристиками. Если их нет, то узнать параметры можно экспериментальным путём, подключившись к регулируемому БП на 5–15 В через резистор сопротивлением 51-100 Ом.

В корпусе многоцветного расположены 3 независимых кристалла зелёного, красного и синего цвета. Поэтому при расчёте номиналов резисторов нужно помнить, что каждому цвету свечения соответствует своё падение напряжения.

Ещё раз о трёх важных моментах

  1. Прямой номинальный ток – главный параметр любого светодиода. Занижая его, мы теряем в яркости, а завышая – резко сокращаем срок службы. Поэтому лучшим источником питания является светодиодный драйвер, при подключении к которому через светодиод всегда будет протекать постоянный ток нужной величины.
  2. Напряжение, приведенное в datasheet к светодиоду, не является определяющим и лишь указывает на то, сколько вольт упадёт на p-n-переходе при протекании номинального тока. Его значение необходимо знать для того, чтобы правильно вычислить сопротивление резистора, если светодиод будет работать от обычного БП.
  3. Для подключения мощных светодиодов важно не только надёжное электропитание, но и качественная система охлаждения. Установка на радиатор светодиодов с мощностью потребления более 0,5 Вт станет залогом их стабильной и продолжительной работы.

Читайте так же

Имеется светодиодный светильник, состоящий из 50 штук последовательно включенных светодиодов GW PUSRA1.PM фирмы OSRAM. Рабочий ток светильника равен 700 мА. Светильник будет эксплуатироваться в диапазоне температур от -30 до +50 градусов Цельсия.

Необходимо: подобрать к этому светодиодному светильнику источник питания.

Смотрим характеристики светодиодов GW PUSRA1.PM, которые нам дает производитель:

Из документации видно, что типичное падение напряжения на одном светодиоде составляет 2.80 V при токе 700 mA.
Следовательно, типичное падение напряжения светодиодного светильника (последовательно включенных 50 светодиодах) составляет 2.80 X 50 = 140 V.

При производстве светодиодов существует важная проблема - повторяемость параметров. Самое высокотехнологичное производство не позволяет получить приборы с одинаковыми заданными рабочими параметрами.
Чтобы учесть это в расчетах, смотрим в технической документации, какое минимальное и максимальное падение напряжения на светодиоде при токе 700мА. Производитель указал максимальное падение напряжения: 3.20 V, минимальное: 2.70 V.
С учетом этих отклонений, расчетные падения напряжения на светодиодном светильнике будут:
минимальное: 2.70 x 50 = 135V
максимальное: 3.20 x 50 = 160V
Мы получили промежуточный рабочий диапазон падения напряжения светодиодного светильника 135…160 V при рабочем токе 700мА.

При расчете промежуточного рабочего диапазона падения напряжения, мы не учитывали диапазон рабочих температур светодиодного светильника. Этот диапазон определяется планируемыми климатическими условиями эксплуатации светодиодного светильника (от -30 до +50 градусов Цельсия).
Смотрим график зависимости падения напряжения на светодиоде от температуры:

Из графика видно, что чем ниже температура, тем больше падение напряжения на светодиоде.
Увеличение падения напряжения на светодиоде при -30 градусов относительно 85 градусов составит примерно 0,2 V
Увеличение падения напряжения на светодиоде при +50 градусов относительно 85 градусов составит примерно 0,05 V
Следовательно, падения напряжения на светодиодном светильнике с учетом температурного диапазона будут:

от (2,7 + 0,05) x 50 шт. = 137.5 V до (3,2 +0,2) x 50 шт. = 170 V

То есть, при типовом значении падения напряжения на светильнике 140 V расчетный диапазон падения напряжения составит: 137.5 … 170 V

Примечание: в реальном светильнике температура светодиодов из-за нагрева может превышать расчетные +50 градусов Цельсия. Строго говоря, это может привести к уменьшению падения напряжения на светодиодах и соответственно, небольшому уменьшению величины нижней границы диапазона напряжений светильника. Но так как мы используем данные расчеты для подбора источников питания - то позволим себе этой небольшой поправкой пренебречь, так как источник все равно нужно приобретать с приличным запасом по величине нижней и верхней границы выходного напряжения. Либо, если есть необходимость знать нижнюю границу совершенно точно - нужно производить практические замеры температуры светодиодов в реальном светильнике.

Обращаем внимание, что данный расчет велся для типичного тока этих светодиодов: 700 мА. Но вообще диапазон тока для этих светодиодов 200 … 1500 мА. То есть, при желании может быть выбран другой ток из этого диапазона. В этом случае, можно воспользоваться графиком:



Возвращаясь к нашему расчету для тока 700 мА, будем подбирать источник питания для светодиодного светильника.
Оценим максимальную мощность потребления светильника: 170 V x 0,7 A = 119 Вт
При выборе источника питания, фирма MEAN WELL рекомендует иметь запас по мощности примерно 30%. Следовательно, номинальная мощность источника составит величину около 150 Вт.

Выбираем модель ELG-150-C700.

Основные характеристики ELG-150-C700 представлены в таблице:


Как видно, источник ELG-150-C700 на выходе дает стабилизированный ток 700мА в диапазоне 107 … 214 V
Ток 700 мА совпадает с заданным током светодиодного светильника. Диапазон напряжений источника 107 … 214 V шире диапазона напряжений светодиодного светильника 137.5 … 170 V
Следовательно, совместно они должны работать нормально.
Проанализируем, как источник ведет себя в разных температурных режимах:

Видно, что в заданном диапазоне температур от -30 до +50 градусов Цельсия номинальная мощность источника не меняется и находится на уровне 100%.

Источник ELG-150-C700 к светильнику подобран.