Робот манипулятор своими руками чертежи. Недорогая роборука, программируемая на Ардуино: роботизированный манипулятор своими руками

Имеет подсветку. Всего робот работает на 6-ти серводвигателях. Для создания механической части использовался акрил толщиной два миллиметра. Для изготовления штатива было взято основание от диско-шара, при этом один мотор строен прямо в него.

Робот работает на плате Arduino . В качестве источника питания используется компьютерный блок.

Материалы и инструменты:
- 6 серводвигателей;
- акрил толщиной 2 мм (и еще небольшой кусок толщиной 4 мм);
- штатив (для создания основания);
- ультразвуковой датчик расстояния типа hc-sr04;
- контроллер Arduino Uno;
- контроллер питания (изготавливается самостоятельно);
- блок питания от компьютера;
- компьютер (нужен для программирования Arduino);
- провода, инструменты и прочее.



Процесс изготовления:

Шаг первый. Собираем механическую часть робота
Механическая часть собирается очень просто. Два куска акрила нужно соединить с помощью серводвигателя. Другие два звена соединяются аналогичным образом. Что касается схвата, то его лучше всего купить через интернет. Все элементы крепятся с помощью винтов.

Длина первой части составляет порядка 19 см, а второй примерно 17.5 см. Переднее звено имеет длину 5.5 см. Что касается остальных элементов, то их размеры выбираются на личное усмотрение.





Угол поворота в основании механической руки должен составлять 180 градусов, поэтому снизу нужно установить серводвигатель. В нашем случае его нужно установить в диско-шар. Робот же устанавливается уже на серводвигатель.

Для установки ультразвукового датчика понадобится кусок акрила толщиной 2 см.

Чтобы установить схват будет нужно несколько винтов и серводвигатель. Нужно взять качалку от серводвигателя и укорачивать ее до тех пор, пока она не подойдет ко схвату. Затем можно закрутить два маленьких винта. После установки серводвигатель нужно повернуть в крайнее левое положение и свести губки захвата.

Теперь серводвигатель крепится на 4 болта, при этом важно следить, чтобы он находился в крайнем левом положении, а губы были сведены.
Теперь сервпривод можно подключить к плате и проверить, работает ли схват.








Шаг второй. Подсветка робота
Чтобы робот был интереснее, ему можно сделать подсветку. Делается это с помощью светодиодов разнообразных цветов.


Шаг третий. Подключение электронной части
Основным контроллером для робота является плата Arduino. В качестве источника питания используется компьютерный блок, на его выходах нужно найти напряжение 5 Вольт. Оно должно быть, если замерить мультиметром напряжение на красном и черном проводе. Это напряжение нужно для питания серводвигателей и датчика расстояния. Желтый и черный провод блока выдает уже 12 Вольт, они нужны для работы Arduino.

Для сервомоторов нужно сделать пять коннекторов. К позитивным подключаем 5В, а негативные к земле. Аналогичным образом подключается и датчик расстояния.

Еще на плате имеется светодиодный индикатор питания. Для его подключения используется резистор 100 Ом между +5В и землей.










Выходы от серводвигателей подключаются к ШИМ-выходам на Arduino. Такие пины на плате обозначаются значком «~». Что касается ультразвукового датчика расстояния, то его можно подключить к пинам 6 и 7. Светодиод подключается к земле и 13-му пину.

Теперь можно приступать к программированию. Перед тем как подключаться через USB, нужно убедиться, что питание полностью отключено. При тестировании программы питание робота тоже нужно отключать. Если это не сделать, контроллер получить 5В от USB и 12В от блока питания.

На схеме можно увидеть, что для управления серводвигателями были добавлены потенциометры. Они не являются необходимой составляющей робота, но без них предложенный код работать не будет. Потенциометры подключаются к пинам 0,1,2,3 и 4.

На схеме есть резистор R1, его можно заменить потенциометром на 100 кОм. Это позволит регулировать яркость вручную. Что касается резисторов R2, то их номинал 118 Ом.

Вот перечень основных узлов, которые применялись:
- 7 светодиодов;
- R2 - резистор на 118 Ом;
- R1 - резистор на 100 кОм;
- переключатель;
- фоторезистор;
- транзистор bc547.

Шаг четвертый. Программирование и первый запуск робота
Чтобы управлять роботом, было использовано 5 потенциометров. Вполне реально заменить такую схему на один потенциометр и два джойстика. Как подключить потенциометр, было показано в предыдущем шаге. После установки скеча робота можно испытать.

Первые испытания робота показали, что установленные серводвигатели типа futuba s3003 оказались слабыми для робота. Их можно применять лишь для поворота руки или для схвата. Вместо них автор установил двигатели mg995. Идеальным вариантом будут двигатели типа mg946.

Мы разработали робо-руку, которую любой желающий сможет собрать самостоятельно. В этой статье речь пойдем о том, как собрать механические части нашего манипулятора.

Обратите внимание! Это старая статья! Вы можете ознакомиться с ней, если вас интересует история проекта. Актуальная версия .

Манипулятор от сайт

Вот видео ее работы:

Описание конструкции

За основу мы взяли, манипулятор представленный на сайте Kickstarter, который назывался uArm . Авторы этого проекта обещали, что после завершения компании выложат все исходники, но этого не произошло. Их проект представляет собой отличное сочетание качественно сделанного как аппаратного, так и программного обеспечения. Вдохновившись их опытом мы решили сделать подобный манипулятор самостоятельно.
Большинство существующих манипуляторов предполагают расположение двигателей непосредственно в суставах. Это проще конструктивно, но выходит, что двигатели должны поднимать не только полезную нагрузку, но и другие двигатели. В проекте с Kickstarter’а этого недостатка нет, так как усилия передаются через тяги и все двигатели расположены у основания.
Второе преимущество конструкции в том, что площадка для размещения инструмента (захвата, присоски и т.д.) всегда расположена параллельно рабочей поверхности.

В итоге манипулятор имеет три сервопривода (три степени свободы), которые позволяют ему перемещать инструмент по всем трем осям.

Сервоприводы

Для нашего манипулятора мы использовали сервоприводы Hitec HS-485 . Это достаточно дорогие цифровые сервомашинки, но за свои деньги они обеспечивают честное усилие 4,8кг/см, точную отработку позиции и приемлемую скорость.
Их можно заменить на другие с такими же размерами

Разработка манипулятора

Для начала мы составили модель в SketchUp. Проверили конструкцию на собираемость и подвижность.

Нам пришлось немного упростить конструкцию. В оригинальном проекте использовались подшипники, которые сложно купить. Еще мы решили на начальном этапе не делать захват. Для начала мы планируем сделать из манипулятора управляемый светильник.
Изготавливать манипулятор мы решили из оргстекла. Оно достаточно дешево, хорошо выглядит и легко режется лазером. Для резки достаточно нарисовать требуемые детали в любом векторном редакторе. Мы сделали это в NanoCad:

Резка оргстекла

Мы заказываем резку оргстекла в компании , находящейся недалеко от Екатеринбурга. Они делают быстро, качественно и не отказываются от небольших заказов. Стоить резка таких деталей будет около 800 рублей. В результате вы получите вырезанные детали с обоих сторон которых находится полиэтиленовая пленка. Эта пленка нужна для защиты материала от образования окалины.

Эту пленку необходимо удалить с обоих сторон.

Еще мы заказали гравировку на поверхности некоторых деталей. Для гравировки достаточно просто нарисовать изображение на отдельном слое и указать это при заказе. Места гравировки необходимо зачистить зубной щеткой и затереть пылью. Получилось очень неплохо:

В итоге после удаления пленки и затирки у нас получилось вот это:

Сборка манипулятора

Для начала необходимо собрать пять частей:






В основании необходимо использовать винты с готовкой в потай. Придется немного рассверлить отверстия, чтобы рука могла поворачиваться.


После того как эти части собраны остается только прикрутить их к качалкам сервоприводов и накинуть тяги для позиционирования инструмента. Достаточно трудно прикрутить именно два привода в основании:

Сначала необходимо установить шпильку длиной 40мм (показана желтой линией на фото), а затем прикрутить качалки.
Для шарниров мы использовали обычные винты М3 и гайки с нейлоновой вставкой для предотвращения самораскручивания. Эти гайки хорошо видно на конце манипулятора:

Пока это просто плоская площадка на которую мы для начала планируем приделать лампочку.

Собранный манипулятор

Итоги

Сейчас мы работаем над электроникой и программным обеспечением и скоро расскажем вам о продолжении проекта, так что пока у нас нет возможности продемонстрировать его работу.
В перспективе мы планируем оснастить манипулятор захватом и добавить подшипники.
Если у Вас возникло желание сделать свой манипулятор — вы можете скачать файл для резки .
Список крепежа, который потребуется:

  1. М4х10 винт с головкой под внутренний шестигранник, 12шт
  2. М3х60 винт, 1шт
  3. М3х40 шпилька, 1шт (возможно придется немного укоротить напильником)
  4. М3х16 винт с гол. под в/ш, 4шт
  5. М3х16 винт с головкой в потай, 8шт
  6. М3х12 винт с гол. под в/ш, 6шт
  7. М3х10 винт с гол. под в/ш, 22шт
  8. М3х10 винт с головкой в потай, 8шт
  9. М2х6 винт с гол. под в/ш, 12шт
  10. М3х40 стойка латунная мама-мама, 8шт
  11. М3х27 стойка латунная мама-мама, 5шт
  12. М4 гайка, 12шт
  13. М3 гайка, 33шт
  14. М3 гайка с нейлоновым фиксатором, 11шт
  15. М2 гайка, 12шт
  16. Шайбы

UPD1

С момента публикации этой статьи прошло много времени. Первая ее формация была желтой и она была предельно ужасна. Красную руку уже было не стыдно показать на сайте, но без подшипников она все еще работала не достаточно хорошо, а еще ее было трудно собирать.
Мы сделали прозрачную версию с подшипниками, которая стала работать уже гораздо лучше и лучше был продуман процесс сборки. Эта версия манипулятора даже успела побывать на нескольких выставках.

Всем привет!
Пару лет назад на kickstarter появился очень занятный проект от uFactory - настольная робо-рука uArm . Они обещали со временем сделать проект открытым, но я не мог ждать и занялся реверс-инжинирингом по фотографиям.
За эти годы я сделал четыре версии своего виденья этого манипулятора и в итоге разработал вот такую конструкцию:
Это робо-рука с интегрированным контроллером, приводимая в движение пятью сервпоприводами. Основное ее достоинство в том, что все детали либо можно купить, либо дешево и быстро вырязать из оргстекла лазером.
Так как в качестве источника вдохновения я брал open sorce - проект, то всеми своими результатми делюсь полностью. Вы сможете скачать все исходники по ссылкам в конце статьи и, при желании, собрать такую же (все ссылки в конце статьи).

Но проще один раз показать ее в работе, чем долго рассказывать что она из себя представляет:

Итак, перейдем к описанию.
Технические характеристики

  1. Высота: 300мм.
  2. Рабочая зона (при полностью вытянутом манипуляторе): от 140мм до 300мм вокруг основания
  3. Максимальная грузоподъемность на вытянутой руке, не менее: 200г
  4. Потребляемый ток, не более: 6А
Также мне хочется отметить некоторые особенности конструкции:
  1. Подшипники во всех подвижных частях манипулятора. Всего их одинадцать: 10 штук на вал 3мм и один на вал 30мм.
  2. Простота сборки. Я очень много внимания уделил тому, чтобы была такая последовательность сборки манипулятора при которой все детали прикручивать предельно удобно. Особенно сложно было сделать это для узлов мощных сервоприводов в основании.
  3. Все мощные сервоприводы расположены в основании. То есть "нижние" сервоприводы не таскают "верхние".
  4. За счет параллельных шарниров инструмент всегда остается параллелен или перпендикулярен земле.
  5. Положение манипулятора можно менять на 90 градусов.
  6. Готовое Arduino-совместимое программное обеспечение. Правильно собранная рука может управляться мышкой, а по примерам кода можно составить свои алгоритмы движения
Описание конструкции
Все детали манипулятора режутся из оргстекла толщиной 3 и 5мм:

Обратите внимание, как собирается поворотное основание:
Самый сложный, это узел в нижней части манипулятора. В первых версиях у меня уходило очень много сил, чтобы собрать его. В нем соединяются три сервопривода и передаются усилия на захват. Детали вращаются вокруг штифта диаметром 6мм. Захват удерживается парралельно (или перпендикулярно) рабочей поверхности за счет дополнительных тяг:

Манипулятор с установленым плечом и локтем показан на фотографии ниже. К нему еще только предстоит добавить клешню и тяги для нее:

Клешня тоже устанавливается на подшипниках. Она может сжиматься и поворачиваться вокруг своей оси:
Клешню можно установить как вертикально, так и горизонтально:

Управляется все Arduino-совместимой платой и шилдом для нее:

Сборка
Чтобы собрать манипулятор потребуется около двух часов и куча крепежа. Сам процесс сборки я офмил в виде инструкции в фотографиях (осторожно, траффик!) с подробными комментариями по каждой операции. Также я сделал подробную 3D-модель в простой и бесплатной программе SketchUp. Так что всегда можно повертеть ее перед глазами и посмотреть непонятные места:


Электроника и программирование
Я сделал целый шилд, на котором установил, помимо разъемов сервоприводов и питания, переменные резисторы. Для удобства отладки. На самом деле достаточно при помощи макетки подвести сигналы к двигателям. Но у меня в итоге получился вот такой шилд, который (так уж сложилось) я заказал на заводе:

Вообще я сделал три разные программы под Arduino. Одна для управления с компьютера, одна для работы в демо-режиме и одна для управления кнопками и переменными резисторами. Самая интересная из них, конечно, первая. Я не буду приводить здесь код целиком - он доступен в онлайн .
Для управления необходимо скачать программу для компьютера. После ее запуска мышь переходит в режим управления рукой. Движение отвечает за перемещение по XY, колесико изменяет высоту, ЛКМ/ПКМ - захват, ПКМ+колесико - поворот манипулятора. И это на самом деле удобно. Это было на видео в начале статьи.
Исходники проекта

Робот-манипулятор MeArm — карманная версия промышленного манипулятора. MeArm - простой в сборке и управлении робот, механическая рука. Манипулятор имеет четыре степени свободы, что позволяет легко захватывать и перемещать различные небольшие предметы.

Данный товар представлен в виде набора для сборки. Включает в себя следующие части:

  • набор деталей из прозрачного акрила для сборки механического манипулятора;
  • 4 сервопривода;
  • плата управления, на которой расположен микроконтроллер Arduino Pro micro и графический дисплей Nokia 5110;
  • плата джойстиков, содержащая два двухкоординатных аналоговых джойстика;
  • USB кабель питания.


Перед сборкой механического манипулятора необходимо произвести калибровку сервоприводов. Для калибровки будем использовать контроллер Arduino. Подсоединяем сервоприводы к плате Arduino (необходим внешний источник питания 5-6В 2А).

Servo middle, left, right, claw ; // создание 4 объектов Servo

Void setup()
{
Serial.begin(9600);
middle.attach(11); // присоединяет серво на контакт 11 на вращение платформы
left.attach(10); // присоединяет серво на контакт 10 на левое плечо
right.attach(9); // присоединяет серво на контакт 11 на правое плечо
claw.attach(6); // присоединяет серво на контакт 6 claw (захват)
}

Void loop()
{
// устанавливает позицию сервопривода по величине(в градусах)
middle.write(90);
left.write(90);
right.write(90);
claw.write(25);
delay(300);
}
Используя маркер, сделайте линию через корпус серводвигателя и шпиндель. Подключите пластмассовую качалку из комплекта к сервоприводу, как показано ниже с помощью небольшого винта из комплекта креплений к сервоприводу. Мы будем использовать их в этом положении при сборке механической части MeArm. Будьте осторожны, чтобы не переместить положение шпинделя.


Теперь можно производить сборку механического манипулятора.
Возьмём основание и прикрепим ножки к её углам. Затем установим четыре 20 мм болта и накрутим на них гайки (половину от общей длины).

Теперь крепим центральный сервопривод двумя 8-мм болтами к маленькой пластине, и получившуюся конструкцию крепим к основанию с помощью 20 мм болтов.

Собираем левую секцию конструкции.

Собираем правую секцию конструкции.

Теперь необходимо соединить левую и правую секции. Сначала леую к переходной пластине

Потом правую, и получаем

Подсоединяем конструкцию к платформе

И собираем "клешню"

Крепим "клешню"

Для сборки можно использовать следующее руководство (на англ. языке) или руководство по сборке подобного манипулятора (на русском).

Схема расположения выводов

Теперь можно приступать к написанию Arduino кода. Для управления манипуляторм, наряду с возможностью управления управления с помощью джойстика, было бы неплохо направлять манипулятор в какую-то определенную точку декартовых координат (x, y, z). Есть соответствующая библиотека, которую можно скачать с github - https://github.com/mimeindustries/MeArm/tree/master/Code/Arduino/BobStonesArduinoCode .
Координаты измеряются в мм от центра вращения. Исходное положение находится в точке (0, 100, 50), то есть 100 мм вперед от основания и 50 мм от земли.
Пример использования библиотеки для установки манипулятора в определенной точке декартовых координат:

#include "meArm.h"
#include

Void setup() {
arm.begin(11, 10, 9, 6);
arm.openGripper();
}

Void loop() {
// вверх и влево
arm.gotoPoint(-80,100,140);
// захватить
arm.closeGripper();
// вниз, вред и вправо
arm.gotoPoint(70,200,10);
// отпустить захват
arm.openGripper();
// вернуться вт начальную точку
arm.gotoPoint(0,100,50);
}

Методы класса meArm:

void begin (int pinBase , int pinShoulder , int pinElbow , int pinGripper ) - запуск meArm, указываются пины подключения для сервоприводов middle, left, right, claw. Необходимо вызвать в setup();
void openGripper () - открыть захват;
void closeGripper () - захватить;
void gotoPoint (float x , float y , float z ) - переместить манипулятор в позицию декартовых координат (x, y, z);
float getX () - текущая координата X;
float getY () - текущая координата Y;
float getZ () - текущая координата Z.

Руководство по сборке (англ.)

Из особенностей данного робота на платформе Arduino можно отметить сложность его конструкции. Роборука состоит из множества рычагов, которые позволяют ей двигаться по всем осям, хватать и перемещать различные вещи, используя всего 4 серво-мотора. Собрав собственными руками такого робота, Вы точно сможете удивить своих друзей и близких возможностями и приятным видом данного устройства! Помните, что для программирования Вы всегда сможете воспользоваться нашей графической средой RobotON Studio!

Если у Вас появятся вопросы или замечания, мы всегда на связи! Создавайте и выкладывайте свои результаты!

Особенности:

Чтобы собрать робота манипулятора своими руками, вам понадобится довольно много компонентов. Основную часть занимают 3D печатные детали, их около 18 штук (печатать горку необязательно).Если вы скачали и распечатали все необходимое, то вам потребуются болты, гайки и электроника:

  • 5 болтов М4 20мм, 1 на 40 мм и соответствующие гайки с защитой от раскрутки
  • 6 болтов М3 10мм, 1 на 20 мм и соответствующие гайки
  • Макетка с соединительными проводами или шилд
  • Arduino Nano
  • 4 серво мотора SG 90

После сборки корпуса ВАЖНО убедиться в его свободной подвижности. Если ключевые узлы Роборуки двигаются с трудом, серво-моторы могут не справиться с нагрузкой. Собирая электронику, необходимо помнить, что подключать цепь к питанию лучше после полной проверки соединений. Чтобы избежать поломки серво-приводов SG 90, не нужно крутить руками сам мотор, если нет необходимости. В случае, если нужно разработать SG 90, нужно плавно подвигать вал мотора в разные стороны.

Характеристики:
  • Простое программирование ввиду наличия малого количества моторов, причем одного типа
  • Наличие мертвых зон для некоторых серво-приводах
  • Широкая применимость робота в повседневной жизни
  • Интерсная инженерная работа
  • Необходимость использования 3D принтера