Водопоглощение керамического кирпича. Технические характеристики и свойства силикатного кирпича Разные по назначению

Это строительный материал, изготавливаемый на основе минерального сырья. По своей структуре кирпич представляет собой искусственный камень. Использование этого материала уходит своими корнями в глубокую древность. В Древнем Египте чаще использовался необожженный кирпич-сырец, который изготавливался из глины с добавлением соломы. Современные кирпичи имеют прямоугольную форму и проходят серьезную термическую обработку. Конструкции из кирпича отличаются прочностью, надежностью, морозостойкостью и хорошо сохраняют тепло внутри помещения.

В этой статье мы расскажем об основных разновидностях, технических характеристиках и других моментах, на которые стоит обратить внимание при выборе кирпича.

Размеры кирпича

В зависимости от размеров, кирпичи подразделяются на одинарные, полуторные и двойные

На фото наглядно видна разница в размерах между одинарным, полуторным и двойным кирпичом

  • (250х120х65 мм) - самая распространенная разновидность формовки - одинарный прямоугольный брусок. При работе с этим кирпичом каменщику удобно работать одной рукой.
  • (250х120х88 мм) кирпичи имеют меньший расход по площади и по количеству раствора - кладка продвигается быстрее.
  • (250х120х138 мм) - по ГОСТу называется камень керамический. По высоте он равняется двум одинарным. При использовании керамический камень позволяет сократить расходы на материалы и увеличивает скорость кладки.

может отличаться по формату от . Узкий лицевой кирпич имеет размеры 250х60х65 мм, лицевой кирпич европейского формата имеет габариты 250х85х65 мм.

Три поверхности кирпича имеют определенные названия.

Для понимания кладки полезно знать названия поверхностей кирпича

  • Постель - это верхняя рабочая часть, на которую кладется раствор.
  • Ложковая часть (ложок) - это боковая длинная поверхность, одна из которых выходит наружу.
  • Тычок - это боковая поверхность, которой один кирпич смыкается с другим.

Для улучшения сцепления поверхностей (адгезии) с отделочными материалами одна из поверхностей может иметь рифленое покрытие.

Прочность кирпича

Один из важнейших параметров при выборе кирпича - его прочность. Кирпич не должен разрушаться под воздействием внутренних напряжений и деформаций. Прочность зависит от марки изделия. Марка обозначается буквой «М». Цифра обозначает нагрузку (в килограммах), которую сможет выдержать материал на 1 квадратный сантиметр (М100, М125, М150, М175 и т.д.). М100 - M150 подходит для строительства домов с двумя или тремя этажами. М200 используется в многоэтажных домах, M300 - в цоколях высотных зданий.

Морозостойкость - испытание низкими температурами

В северном и центральном регионах России климат не отличается мягкостью. Дожди могут сменяться неожиданными заморозками. Морозостойкость - это характеристика, которая позволяет подобрать кирпич по климатическим особенностям. Марка устойчивости к холоду обозначается буквенным сочетанием «Мрз» или F. Определяют морозостойкость с помощью лабораторных испытаний. Кирпич погружают в воду и замораживают, этот цикл повторяют до тех пора, пока материал не начнет разрушаться, изменять вес и прочность. После тестов кирпичу присваивают марку F15, F25, F35 или F50. Цифра обозначает количество циклов. Для северных и центральных регионов России рекомендуется использовать марку не ниже F35.

Водопоглощение

Параметр водопоглощения связан с морозостойкостью. Под этой характеристикой понимают процентное соотношение количества воды к общему объему, которое кирпич может впитать при полном погружении. При понижении температур влага замерзает и расширяется, что приводит к разрушению внутренней структуры материала, поэтому от водопоглощения зависит и морозостойкость. Полное отсутствие поглощения воды тоже не допускается, минимальное значение по ГОСТу - 6%. Максимальное влагопоглощение для кирпича составляет 14%, для - 10%, для кирпича внутренней кладки - 16%.

Теплопроводность - как сохранить тепло

Теплопроводность - это способность материалов передавать тепловую энергию (теплообмен). Из-за присутствия в термине слова «тепло» некоторые относят это свойство материалов только к скорости остывания. При этом теплопроводность точно также влияет и на нагрев холодных объектов. Говоря простым языком, если на улице жара, то в доме со стенами из материала с низкой теплопроводностью будет дольше сохраняться прохлада, а зимой - тепло.

Передача тепла осуществляется за счет хаотического движения частиц в веществе - конвекции. В вакууме отсутствует вещество, а потому и тепловая энергия конвекцией не передается. При расчете коэффициента теплопроводности разных веществ за 0 принимается вакуумная среда.

Показателем, который отражает возможность вещества проводить тепло, является коэффициент теплопроводности (Вт/(м*K)). Теплопроводность кирпичей зависит от технологии изготовления и материала (от 0,3 до 1). Чем больше воздуха внутри тела кирпича, тем дольше он будет удерживать тепло.

Пустотелый или полнотелый

Кирпич различается в зависимости от количества воздуха внутри блока

  • - монолитный брусок без полостей, по стандарту пористость не может превышать 13%. Использование полнотелых кирпичей позволяет увеличить прочность конструкции, поэтому они используются для кладки цоколя, фундамента и несущих стен. При этом полнотелые изделия считаются «холодными»: их теплопроводность составляет 0,5 - 1 Вт/м*К.

Полнотелый одинарный рядовой кирпич для возведения несущих стен. Ложок имеет рифленое покрытие для улучшения адгезии

  • имеет полости, которые делают в виде отверстий в теле кирпича. Отверстия могут иметь форму щелей (щелевой, семищелевой), квадратов и цилиндров. Пустоты составляют от 45 до 55% от объема брикета. Запертый в полостях воздух является теплоизолирующим веществом, благодаря этому пустотелые кирпичи обладают низкой теплопроводностью (0,3 - 0,9). При этом такой кирпич не используют для постройки капитальных несущих конструкций, также не используются пустотелый кирпич для конструкций, где требуются высокие огнеупорные свойства (для печей, кирпичных грилей-барбекю и др.).

Керамический кирпич для облицовочных работ, пустоты выполнены в виде квадратов

Пустотность влияет на расход раствора при проведении работ. Часть раствора проваливается в отверстия. При правильной кладке такого следует избегать, так как из-за этого нарушаются теплоизоляция.

  • (теплая керамика) - разновидность пустотелого керамического кирпича. В качестве материала используется легкоплавкая глина, в которую добавляются опилки и торф. Выгорая, эти включения оставляют полости в блоке. Марки прочности и морозостойкости пористого кирпича достигают M-200 и F-200. Теплопроводность составляет 0,1 - 0,261 Вт/м*K.

Некоторые производители формуют поризованный кирпич для системы соединения, где чередуются пазы и выступы

Богатство красок - выбор цвета

Традиционно кирпичный дом представляется в оранжево-красных тонах (кирпичный цвет). Этот цвет характерен для керамических кирпичей. Оттенки при этом зависят от разных факторов. Влияет регион происхождения глины. Некоторые разновидности после обжига приобретают желтоватый или оранжевый цвет. Пигментные добавки также могут менять расцветку.

Изначально имеет белую окраску, но после внесения определенных добавок его цвет тоже можно изменить. При использовании полуторной кладки с облицовочным кирпичом цвет внутренней кладки фактически не играет роли. Лицевой кладке с помощью глазуровки или ангобирования можно придать любую окраску.

Глазурованный кирпич имеет глянцевое цветное покрытие

Необычную окраску может иметь радуцированный кирпич, внешне поверхность кирпича заполняют переливы и градиенты. Достигается такой эффект с помощью особой технологии обжига. В конце обжига ограничивается доступ кислорода, в результате кислород начинает выделяться из глины, образуя на поверхности материала неравномерную окраску.

Материал для кирпича

Кирпич подразделяется на виды в зависимости от материала.

  • - наиболее распространенная и самая древняя разновидность кирпича. Сырьем для него служит красная глина. После формовки бруски прямоугольной формы обжигаются в печах. Такие кирпичи могут использоваться в самых разнообразных сферах. Изначально материал обладает большим влагопоглощением, поэтому его обрабатывают влагоотталкивающими веществами.

Керамический кирпич имеет характерный красный цвет. Форма прямоугольного бруска впервые стала массово использоваться в Англии XVI веке

По прочности керамический кирпич соответствует маркам от М-50 до М-300. Материал может быть или . Керамические пустотелые кирпичи обладают одним из лучших показателей с точки зрения теплоизоляции.

Обжиг - важная технологическая процедура при производстве кирпича. Пережженный кирпич будет иметь черные пятна. Недожженный отличается светлым розовым цветом. Оба технологических брака сказываются на характеристиках материала

  • состоит из смеси извести и песка. Температурная обработка происходит не в печи, а в автоклаве - нагревательный аппарат, создающий давление выше атмосферного. Массовая доля извести и влаги не превышает 10 %. Применяется в дачном городском строительстве. Материал применятся для внутренних перегородок, так как обладает хорошей звукоизоляцией. Из-за хрупкости не используется для несущих конструкций и цоколя. Силикатный кирпич плохо удерживает тепло, поэтому нуждается в дополнительной теплоизоляции. Силикатный лицевой кирпич больше подходит для жаркого и сухого климата, керамический - для зон с повышенной влажностью.

Силикатный кирпич для облицовки фасадов европейского стандарта

  • изготавливается из глины высокой плотности. В материале не должно содержаться примесей мела и щелочных металлов. Материал применяется для уличного строительства: мощения дорожек, бордюров, подпорных стенок и облицовки цоколей. Клинкерный кирпич обладает высокой плотностью (до 2100 кг/м.куб) и низкой пористостью (до 5%), соответственно он практически не впитывает влагу.

Клинкерный кирпич в цвете шоколад подойдет для декоративной фасадной кладки

  • изготавливается из огнеупорной глины - шамота. Главное свойство - низкая теплопроводность, высокая цикличность и устойчивость к высоким температурам. Имеет свойство накапливать и медленно отдавать тепло. Огнеупорный материал используется при строительстве печей, дымоходов, грилей-барбекю и других сооружений, которым требуется устойчивость к высоким температурам.

Уличная печь из шамотного кирпича для приготовления барбекю

  • Гиперпрессованный кирпич - кирпичи этого типа используются для облицовочных работ, для придания фасаду окончательного внешнего вида. При производстве используются различные известняковые породы. К таким породам относятся ракушечник, мраморная крошка и др. Роль связующего вещества играет цемента. Формовка происходит с применением высокого давления (20 мПа). К недостаткам гиперпрессованного кирпича относится значительный вес, поэтому при строительстве из него потребуется усиленный монолитный фундамент.

Разные по назначению

В зависимости от способа применения кирпичи тоже разделяются на виды

  • применяется для несущих внутренних стен и перегородок, возведения фундаментов, цоколя и наружных стен. При этом внешний вид кирпича плохо подходит для отделочных работ. Поверхность иногда содержит сколы, что допускается стандартами.

Во вставки: Из-за непрезентабельного внешнего вида наружные стены из рядового кирпича облицовываются, а внутренние - отделываются.

  • - лицо любой постройки. Имеет минимальные отклонения по размеру. По стандартам облицовочный кирпич не должен содержать сколов. Кирпич для фасадов может быть силикатным, керамическим или гиперпрессованным. В зависимости от климата можно отдать предпочтение одному из видов.

Облицовочный пустотелый кирпич имеет фактуру под дерево

Облицовочный кирпич может быть двух видов: фактурный и фасонный. Поверхность фактурного кирпича отделывается под камень, дерево или бархат, края иногда завальцовывают для придания большей декоративности. Фасонный кирпич предназначен для конструкций сложных форм, к фасонным относятся угловые, закругленные и др. разновидности.

После формования на облицовочный кирпич могут наносится различные покрытия: ангобирование и глазуровка. Для ангобированного кирпича используется состав из жидкой глины (ангоб), измельченного стекла и минеральных красителей. Глиняная смесь наносится тонким слоем, после этого кирпич обжигается. После обжига материал приобретает матовый ровный цвет. Глазурованный кирпич имеет глянцевое покрытие. На брикет после обжига наносится слой глазури, цветной эмульсии из измельченного стекла, потом проводится повторный обжиг при меньшей температуре.

Формовка кирпича

Типы формования брусков могу различаться в зависимости от технологических особенностей.

  • Пластическое формование предполагает использование пластичных глиняных масс с содержанием воды до 21%. В производстве используются винтовые прессы. Установки различаются в зависимости от наличия воздуха. Вакуумный способ формования применяется для пустотелых кирпичей.
  • Полусухое формование строится на использовании высокого давления и доведения сырья до определенного уровня влажности (10 - 14%). Обжиг происходит в специальных тоннельных печах.

Как защитить себя от покупки некачественного кирпича

Чтобы застраховать себя от приобретения некачественного изделия, рекомендуется приобретать кирпич, выполненный по ГОСТу. Кирпич, изготовленный по ТУ, может серьезно отличаться по своим свойствам. При этом нельзя обойтись без визуальной оценки качества.

Осмотрите кирпич. Желательно, чтобы на теле отсутствовали трещины и сколы (по ГОСТу может быть сколото не больше двух углов (до 15 мм), отбитости (10 мм) тоже допускаются в количестве не больше двух, трещина допускается только одна, при этом она должна быть не больше 300 мм). На лицевом кирпиче трещины и сколы не допускаются. Осмотрите ложки на них не должно быть известняковых отложений в виде белых пятен или комков. Если на постели проступают черные пятна - это пережженный кирпич. Количество половняка (разбитых пополам брусков) должно быть меньше 5%.

Геометрия не должна нарушаться. Проверьте показатели прочности и звонкости. При ударе пустотелый кирпич должен издавать звонки звук, полнотелый звучит более приглушенно. Для проверки прочности уроните кирпич с метровой высоты на твердую поверхность. Кирпич должен либо не разбиваться, либо разбиваться на крупные куски, если материал разлетелся на мелкую крошку, то прочность изделия оставляется желать лучшего. Перед покупкой рекомендуется осмотреть сооружения, возведенные из конкретных видов кирпича.

Расход кирпича

При покупке кирпича очень важно правильно рассчитать расход. От этого будут зависеть основные затраты на строительство. Расчет производится по площади (1 м.кв) и по объему кладки (1 м.куб). Для правильного подсчета желательно иметь под рукой готовый проект сооружения или эскиз. На количество кирпича влияет этажность, высота потолков, наличие фронтонов, проемы для окон и дверей, толщина стен, а также толщина шва при кладке. Для начала необходимо определиться с толщиной стен.

Наглядный вид различных способов кладки для разной толщины стен

  • В полкирпича (12 см) - стена не является несущей, а играет роль перегородки для разграничения зон внутри дома. Такая кладка может укрепляться армированием.
  • В один кирпич (25 см) - несущая стена внутри помещения.
  • В полтора кирпича (38 см) - кирпичи укладываются в два ряда. Наружный ряд выкладывается вдоль (тычками друг к другу), а во внутреннем ряду кирпичи соприкасаются ложковыми частями. Кладка допускается в небольших одноэтажных домах.
  • В два кирпича и в два с половиной (51 см и 64 см) - используется для несущих стен домов в местностях с умеренным климатом. В многоэтажных домах допускается уменьшение толщины стен в зависимости от высоты (первый этаж - 64 см, второй - 51 см).

При расчете расхода кирпича объем и площадь оконных проемов исключаются. При этом рекомендуется брать запас 10%, так как при строительстве часть кирпичей может уйти в брак.

Вывод

Все разновидности кирпичей обладают своими достоинствами и недостатками. Для капитальных построек подойдет полнотелый керамический кирпич, лицевой поможет придать постройке неповторимый облик. Силикатный кирпич подойдет для строительства стен и перегородок. Огнеупорный кирпич найдет применение при кладке печи или камина.

Строительный двор

Выбираем кирпич: обзор

/articles/vybiraem-kirpich-obzor/

Любой строительный материал обладает определенными свойствами, делающими его пригодным или непригодным для использования в той или иной области. Например, кирпич делится на строительный и облицовочный не только по внешнему виду, но и по характеристикам. Главными из них являются прочность, морозостойкость и водопоглощение кирпича.

Из рядового полнотелого камня возводятся несущие конструкции, способные выдержать нагрузку от собственного веса, веса кровли и перекрытий. А облицовочный не только украшает, но и утепляет здание. Оба вида обладают разными функциями и по-разному подвергаются воздействию окружающей среды, поэтому от них требуются разные физические свойства.

Основные понятия и определения

Взаимосвязь основных параметров

Упомянутые выше характеристики тесно связаны между собой и зависят друг от друга. Чтобы понять это, необходимо дать определение водопоглощению.

Определение. Водопоглощением называют способность материала впитывать в себя воду и удерживать её. Оно выражается в процентном отношении к собственному объему материала. Если говорить о кирпиче, то его водопоглощение показывает, какое количество воды он может вобрать в себя при полном погружении.

Понятно, что чем больше объем пустот в кирпиче (т.е. чем выше его пористость), тем больше воды он впитает. В то же время пористость влияет на прочность материала, его способность выдерживать определенную нагрузку. А также и на морозостойкость, показывающую, сколько циклов замерзания и оттаивания он способен выдержать без снижения своих эксплуатационных свойств.

Нормы и требования

Казалось бы, что для улучшения этих показателей достаточно максимально увеличить плотность изделия, чтобы ограничить впитывание в него влаги.

Однако этого не делают по двум причинам:

  1. Если водопоглощение керамического кирпича будет очень низким, кладка из него окажется непрочной, так как не будет обеспечена нормальная связь с раствором.

  1. Отсутствие пор снижает теплоизоляционные свойства материала, делает его непригодным для тех условий эксплуатации, которые существуют в нашем холодном климате.

Поэтому существуют установленные ГОСТом нормы, согласно которым этот показатель должен быть не ниже 6%. Верхний же его предел зависит от и тех условий, в которых он будет работать.

  • Рядовой – 12-14%;
  • Лицевой – 8-10%;
  • Кирпич, используемый во внутренних рядах кладки и для строительства перегородок, может обладать водопоглощением до 16%.

Такой разброс объясняется тем, что внутренние ряды кладки не испытывают непосредственного воздействия осадков и низких температур, в то время как наружные полностью принимают их на себя. Поэтому водопоглощение лицевого кирпича должно быть как можно ниже. А для снижения теплопроводности в нем делаются специальные технологические пустоты.

Для справки. Наилучшими показателями отличается клинкерный лицевой кирпич. В нем практически отсутствуют посторонние включения и поры, благодаря чему его влагостойкость, морозостойкость, прочность и долговечность очень высоки. Но и цена его выше, чем у обычного.

Определение влагопоглощения

Для определения этого показателя используется методика, регламентированная ГОСТ 7025-91 «Кирпич и камни керамические и силикатные. Методы определения водопоглощения, плотности и контроля морозостойкости».

Общие требования методики

Исследование проводится в лаборатории с соблюдением следующих требований:

  1. Температура воздуха в помещении должна быть в пределах 15-25 градусов;
  2. Испытаниям подвергаются целые изделия или половинки;
  3. Образцы должны быть высушены до постоянной массы с установленной погрешностью взвешивания. Сушка проводится при температуре 1055 градусов в электрошкафу;

  1. Силикатные изделия подвергаются испытаниям не раньше, чем через 24 часа после автоклавной обработки.

Проведение испытания

Для исследования берется не менее трех образцов из одной партии. Этого требует инструкция для определения среднего арифметического значения влагопоглощения.

После высушивания их взвешивают и погружают в сосуд с водой с температурой 15-25 градусов, поместив на решетки с зазорами не менее 2 см. Уровень воды должен быть выше верхнего образца на 2-10 см.

Обратите внимание. Силикатный кирпич перед испытанием не высушивается.

По истечении 48 часов изделия вынимают из воды и сразу же снова взвешивают, включая в массу кирпича и массу вытекшей на чашку весов воды.

Полученные результаты обрабатывают, вычисляя водопоглощение по следующей формуле:

m1 – масса насыщенного водой изделия;

m – масса высушенного изделия.

То есть, относят массу впитавшейся воды к массе самого образца и выражают получившееся значение в процентах.

Пример. Если высушенный кирпич весил 4000 г, а после проведенного испытания стал весить 4360 г, то его водопоглощение равно (4360 – 4000)/4000 * 100 = 9%.

Несмотря на то, что для испытаний требуется специальное оборудование, его можно провести и своими руками, но результаты будут весьма приближенными к действительным. Однако в случае применения кирпича, характеристики которого вам неизвестны, они будут очень информативны.

Заключение

Степень водопоглощения материала – важнейшая характеристика, позволяющая определить сферу его применения. Например, силикатный кирпич обладает высокой способностью впитывать в себя воду, и именно поэтому он не используется при возведении фундаментов, цокольных этажей и стен влажных помещений (читайте также статью ). В представленном видео в этой статье вы найдете дополнительную информацию по данной теме.


Размеры кирпича , производимого в других странах, существенно отличаются от размеров, принятых на основной части пространства бывшего СССР.
в Германии 240х115х71 в США 203х102х57
в Англии 215х102,5х65 в Австралии 230х110х76
в Швеции 250х120х62 в ЮАР 222х106х73
в Румынии 240х115х63 в Индии 228х107х69

Марка прочности кирпича

Прочность кирпича - одна из основных характеристик, обозначается буквой М и следующей за ней цифрой: М50, М75, М100, М125, М150, М175, М200, М250, М300. Кирпич испытывают на сжатие, изгиб и растяжение. Цифра после буквы М указывает - сколько килограммов на 1 см² может выдержать изделие, сохранив свою форму, т.е. не разрушаясь. Для пустотелого и полнотелого эта цифра остаётся одинаковой; так как в пустотелом кирпиче площадь пустот не вычитается из общей площади поверхности изделия. Для возведения строительных объектов небольшой этажности (2-3 этажа) допустимо использование кирпича относительно невысокой марки прочности: М100, М125. А при строительстве более высотных сооружений следует использовать кирпич с маркой прочности не ниже М150.

● Немаловажной характеристикой кирпича является способность его к передаче тепла при различных температурах снаружи и внутри сооружения. Существует такое понятие - коэффициент теплопроводности. В числовом выражении это выглядит как соотношение количества тепловой энергии, теряемого за 1 метр толщины конструкции при разнице температур в 1 градус между наружной и внутренней поверхностью. Например полнотелый кирпич имеет теплопроводность 0,5-0,6 Вт/м °С. Полнотелый кирпич обладает довольно высокой теплопроводностью и поэтому гораздо более выгодно применять пустотелый кирпич - его коэффициент 0,32-0,39 Вт/м °С. Воздух в пустотах имеет более низкую теплопроводность и стены можно строить не такими толстыми. Хотя в связи с применением в современном строительстве всё новых и новых теплоизоляционных материалов актуальность теплопроводности несколько упала, не стоит принижать значение этого качества у кирпича, как и не стоит переплачивать лишние деньги и пренебрегать таким показателем, как снижение трудоёмкости при выполнении строительных работ.

Морозостойкость кирпича
При определении морозостойкости кирпича используется число циклов заморозки и оттаивания кирпича в насыщенном водой состоянии до появления существенных изменений в структуре материала. Морозостойкость кирпича обозначается F и следующим за ней числом - т.е. количеством циклов заморозки и оттаивания данного вида изделия. Согласно ГОСТ 530-2012 устанавливаются марки керамического кирпича по морозостойкости: F15 (кроме лицевого кирпича, F25, F35, F50. Для силикатного кирпич существует ГОСТ 379-95 . Чем больше число, тем более устойчив данный вида изделия к перепадам температур. Этот показатель присваивается кирпичу при экстремальных условиях испытаний - какие в природе случаются весьма редко, однако в Центральной полосе России рекомендуется применять кирпич с маркой по морозостойкости не ниже F35.

Водопоглощение кирпича - величина в процентах, которая показывает сколько влаги данный вид кирпича способен впитать и удержать. Чтобы узнать водопоглощение, кирпич выдерживают в печи при температуре 105-110 °С определённое время, остужают и производят его взвешивание. После этого кирпич помещают в воду на определённый промежуток времени и вновь подвергают взвешиванию. Разница между этими двумя взвешиваниями в процентном соотношении и есть водопоглощение кирпича.

Водопоглощение очень сильно сказывается на морозостойкость кирпича - к примеру изделие с водопоглощением выше 9% имеет низкую морозостойкость.

У силикатного кирпича водопоглощение может достигать и 15%, поэтому его не рекомендовано использовать в местах с повышенной влажностью (цокольные помещения, фундаменты), так же как и керамический кирпич, произведённый методом полусухого прессования.

Качество кирпича - определяющий параметр при выборе этого материала. От качества выбранного кирпича напрямую зависит долговечность, тепло, экологичность, внешний вид будущего дома. Документом, подтверждающим качество изделия является сертификат соответствия. Для подтверждения соответствия партии кирпича стандартам качества, прописанным в ГОСТ 530-2012, на каждом заводе-изготовителе проводятся испытания качества готовой продукции.
Методы испытаний при входном контроле качества сырья и материалов указывают в технологической документации на изготовление изделий с учетом требований нормативных документов на это сырье и материалы.
Методы испытаний при проведении производственного операционного контроля устанавливают в технологической документации на изготовление изделий.

Определение геометрических размеров

Размеры изделий, толщину наружных стенок, диаметр цилиндрических пустот, размеры квадратных и ширину щелевидных пустот, длину посечек, длину отбитостей ребер, радиус закругления смежных граней и глубину фаски на ребрах измеряют металлической линейкой по ГОСТ 427 или штангенциркулем по ГОСТ 166. Погрешность измерения - ±1 мм:

  • Длину, ширину и толщину каждого изделия измеряют по краям (на расстоянии 15 мм от угла) и в середине ребер противоположных граней. За результат измерения принимают среднеарифметическое значение трех измерений.
  • Толщину наружных стенок измеряют минимум в трех местах - посередине каждой грани изделия. За результат измерения принимают наименьшее значение.
  • Размеры пустот измеряют внутри пустот не менее чем на трех пустотах. За результат измерения принимают наибольшее значение.
  • Ширину раскрытия трещин измеряют при помощи измерительной лупы по ГОСТ 25706, после чего изделие проверяют на соответствие требованиям. Точность измерения 0,1 мм.
  • Глубину отбитости углов и ребер измеряют при помощи угольника по ГОСТ 3749 и линейки по ГОСТ 427 по перпендикуляру от вершины угла или ребра, образованного угольником, до поврежденной поверхности. Погрешность измерения - ±1 мм.

Определение правильности формы

  • Отклонение от перпендикулярности граней определяют, прикладывая угольник к смежным граням изделия и измеряя металлической линейкой по ГОСТ 427 наибольший зазор между угольником и гранью. Погрешность измерения - ±1 мм.
    За результат измерений принимают наибольший из всех полученных результатов измерений.
  • Отклонение от плоскостности изделия определяют, прикладывая одну сторону металлического угольника к ребру изделия, а другую - вдоль каждой диагонали грани и измеряя щупом, калиброванным в установленном порядке, или металлической линейкой по ГОСТ 427 наибольший зазор между поверхностью и ребром угольника. Погрешность измерения - ±1 мм.
    За результат измерения принимают наибольший из всех полученных результатов измерений.

Определение наличия известковых включений

Наличие известковых включений определяют после пропаривания изделий в сосуде.

Образцы, не подвергавшиеся ранее воздействию влаги, укладывают на решетку, помещенную в сосуд с крышкой. Налитую под решетку воду нагревают до кипения. Пропаривание продолжают в течение 1 ч. Затем образцы охлаждают в закрытом сосуде в течение 4 ч, после чего их проверяют на соответствие требованиям.

Определение пустотности изделий

Пустотность изделий определяют как отношение объема песка, заполняющего пустоты изделия, к объему изделия.

Пустоты изделия, лежащего на листе бумаги на ровной поверхности отверстиями вверх, заполняют сухим кварцевым песком фракции 0,5-1,0 мм. Изделие убирают, песок пересыпают в стеклянный мерный цилиндр и фиксируют его объем. Пустотность изделия Р, %, вычисляют по формуле:

где V пес - объем песка, мм 3 ;

l - длина изделия, мм;

d - ширина изделия, мм;

h - толщина изделия, мм.

За результат измерения принимают среднеарифметическое значение трех параллельных определений и округляют до 1 %.

Определение скорости начальной абсорбции воды

Подготовка образцов

Образцом является целое изделие, с поверхности которого удалены пыль и излишки материала. Образцы высушивают до постоянной массы при температуре (105±5)°С и охлаждают до комнатной температуры.

Оборудование

  • Емкость для воды площадью основания большей, чем постель изделия, и высотой не менее 20 мм, с решеткой или ребрами на дне для создания расстояния между дном и поверхностью изделия. Уровень воды в емкости должен поддерживаться постоянным.
  • Секундомер с ценой деления 1 сек.
  • Сушильный шкаф с автоматическим поддержанием температуры (105±5)°С.
  • Весы, обеспечивающие точность измерения не менее 0,1% массы сухого образца.

Проведение испытания

Образец взвешивают, измеряют длину и ширину погружаемой в емкость с водой опорной поверхности образца и вычисляют ее площадь. Изделие погружают опорной поверхностью в емкость с водой с температурой (20±5) °С на глубину (5±1) мм и выдерживают в течение (60±2) с. Затем испытуемый образец извлекают из воды, удаляют лишнюю воду и взвешивают.

Обработка результатов

Скорость начальной абсорбции рассчитывают для каждого образца с точностью до 0,1 кг/(м 2 ·мин) по формуле:

где С абс - скорость начальной абсорбции воды, кг/(м 2 ·мин.);

m 1 - масса сухого образца, г;

m 2 - масса образца после погружения, г;

S - площадь погружаемой поверхности, мм 2 ;

t - время выдерживания образца в воде (постоянная величина t = 1 мин).

Скорость начальной абсорбции воды вычисляют как среднеарифметическое результатов пяти параллельных определений.

Определение наличия высолов

Для определения наличия высолов половинку изделия погружают отбитым торцом в емкость, заполненную дистиллированной водой, на глубину 1 - 2 см и выдерживают в течение 7 сут (уровень воды в сосуде должен поддерживаться постоянным). По истечении 7 сут образцы высушивают в сушильном шкафу при температуре (105±5) ºС до постоянной массы, а затем сравнивают со второй частью образца, не подвергавшейся испытанию, и проверяют на соответствие.

Предел прочности при изгибе и сжатии

  • Предел прочности при изгибе кирпича определяют в соответствии с ГОСТ 8462.
  • Предел прочности при сжатии изделий определяют по ГОСТ 8462 со следующими дополнениями.

Подготовка образцов

Образцы испытывают в воздушно-сухом состоянии. Испытываемый образец состоит: из двух целых кирпичей , уложенных постелями друг на друга, или из одного камня.

Подготовку опорных поверхностей изделий для приемосдаточных испытаний производят шлифованием, для образцов из клинкерного кирпича - применяют выравнивание цементным раствором; при арбитражных испытаниях кирпича и камня применяют шлифование, клинкерного кирпича - выравнивание цементным раствором, приготовленным по 2.6 ГОСТ 8462. Допускается при проведении приемосдаточных испытаний применять иные способы выравнивания опорных поверхностей образцов при условии наличия корреляционной связи между результатами, полученными разными способами, а также доступности проверки информации, являющейся основанием для такой связи.

Отклонение от плоскостности опорных поверхностей испытываемых образцов не должно превышать 0,1 мм на каждые 100 мм длины. Непараллельность опорных поверхностей испытуемых образцов (разность значений высоты, измеренная по четырем вертикальным ребрам) должна быть не более 2 мм.

Испытуемый образец измеряют по средним линиям опорных поверхностей с погрешностью до ±1 мм.

На боковые поверхности образца наносят осевые линии.

Проведение испытания

Образец устанавливают в центре машины для испытаний на сжатие, совмещая геометрические оси образца и плиты, и прижимают верхней плитой машины. При испытаниях нагрузка на образец должна возрастать следующим образом: до достижения примерно половины ожидаемого значения разрушающей нагрузки - произвольно, затем поддерживают такую скорость нагружения, чтобы разрушение образца произошло не ранее чем через 1 мин. Значение разрушающей нагрузки регистрируют.

Значение предела прочности при сжатии изделий R сж, МПа (кгс/см 2) вычисляют по формуле:

R сж = P / F , (3)

где Р - наибольшая нагрузка, установленная при испытании образца, Н (кгс);

F - площадь поперечного сечения образца (без вычета площади пустот); вычисляют как среднеарифметическое значение площадей верхней и нижней поверхностей, мм 2 (см 2).

Значение предела прочности при сжатии образцов вычисляют с точностью до 0,1 МПа (1 кгс) как среднеарифметическое значение результатов испытаний установленного числа образцов.

Плотность, водопоглощение, морозо- и кислотостойкость кирпича

Среднюю плотность, водопоглощение и морозостойкость (метод объемного замораживания) изделий определяют в соответствии с ГОСТ 7025.

Результат определения средней плотности изделий округляют до 10 кг/м 3 .

  • Водопоглощение определяют при насыщении образцов водой температурой (20±5) ºС при атмосферном давлении.
  • Морозостойкость определяют методом объемного замораживания. Оценку степени повреждений всех образцов проводят через каждые пять циклов замораживания и оттаивания.
  • Кислотостойкость клинкерного кирпича определяют в соответствии с ГОСТ 473.1.
  • Удельную эффективную активность естественных радионуклидов Аэфф определяют по ГОСТ 30108.

Коэффициент теплопроводности кладок

Коэффициент теплопроводности кладок определяют по ГОСТ 26254 со следующими дополнениями.

Коэффициент теплопроводности определяют экспериментально на фрагменте кладки, который с учетом растворных швов выполняют толщиной из одного тычкового и одного ложкового рядов кирпичей или камней. Кладку из укрупненных камней выполняют толщиной в один камень. Длина и высота кладки должны быть не менее 1,5 м (см. рисунок 2). Кладку выполняют на сложном растворе марки 50, средней плотностью 1800 кг/м 3 , состава 1,0:0,9:8,0 (цемент:известь:песок) по объему, на портландцементе марки 400 с осадкой конуса для полнотелых изделий 12-13 см, для пустотелых - 9 см. Допускается выполнение фрагмента кладки, отличной от указанной выше, с применением других растворов, состав которых указывают в протоколе испытаний.

δ - толщина кладки; 1 - кладка из одинарного кирпича; 2 -; кладка из утолщенного кирпича; 3 - кладка из камня

Рисунок 2 - Фрагмент кладки для определения коэффициента теплопроводности

Фрагмент кладки из изделий со сквозными пустотами следует выполнять по технологии, исключающей заполнение пустот кладочным раствором или с заполнением пустот раствором, о чем делается запись в протоколе испытаний. Кладку выполняют в проеме климатической камеры с устройством по контуру теплоизоляции из плитного утеплителя; термическое сопротивление теплоизоляции должно быть не менее 1,0 м 2 ·°С/Вт. После изготовления фрагмента кладки его наружную и внутреннюю поверхности затирают штукатурным раствором толщиной не более 5 мм и плотностью, соответствующей плотности испытуемых изделий, но не более 1400 кг/м 3 и не менее 800 кг/м 3 .

Фрагмент кладки испытывают в два этапа:

  • этап 1 - кладку выдерживают и подсушивают в течение не менее двух недель до влажности не более 6 %;
  • этап 2 - проводят дополнительную сушку кладки до влажности 1 % - 3 %.

Влажность изделий в кладке определяют приборами неразрушающего контроля. Испытания в камере проводят при перепаде температур между внутренней и наружной поверхностями кладки Δt = (tв - tн)≥ 40 °С, температуре в теплой зоне камеры tв = 18 °С - 20 °С, относительной влажности воздуха (40±5) %. Допускается сокращение времени выдержки кладки при условии обдува наружной поверхности и обогрева внутренней поверхности фрагмента трубчатыми электронагревателями (ТЭНами), софитами и др. до температуры 35 °С - 40 °С.

Перед испытанием на наружной и внутренней поверхностях кладки в центральной зоне устанавливают не менее пяти термопар по действующему нормативному документу. Дополнительно на внутренней поверхности кладки устанавливают тепломеры по действующему нормативному документу. Термопары и тепломеры устанавливают так, чтобы они охватывали зоны поверхности ложкового и тычкового рядов кладки, а также горизонтального и вертикального растворных швов. Теплотехнические параметры фиксируют после наступления стационарного теплового состояния кладки не ранее чем через 72 ч после включения климатической камеры. Измерение параметров проводят не менее трех раз с интервалом 2-3 ч.

Для каждого тепломера и термопары определяют среднеарифметическое значение показаний за период наблюдений q i и t i . По результатам испытаний вычисляют средневзвешенные значения температуры наружной и внутренней поверхностей кладки t н ср, t в ср, с учетом площади ложкового и тычкового измеряемых участков, а также вертикального и горизонтального участков растворных швов по формуле

t н(в) ср = (Σt i F i)/(Σt i F i), (4)

где t i - температура поверхности в точке i , °С;

F i - площадь i -го участка, м 2 .

По результатам испытаний определяют термическое сопротивление кладки R к пр, м 2 ·°С/Вт, с учетом фактической влажности во время испытаний по формуле

R к пр = Δt /q ср, (5)

где Δt = t в ср - t н ср, °С;

q ср - среднее значение плотности теплового потока через испытываемый фрагмент кладки, Вт/м 2 .

По значению R к пр вычисляют эквивалентный коэффициент теплопроводности кладки λ экв (ω), Вт/(м·°С), по формуле

λ экв (ω) = δ/R к пр, (6)

где δ - толщина кладки, м.

Строят график зависимости эквивалентного коэффициента теплопроводности от влажности кладки (см. рисунок 3) и определяют изменение значения λ экв на один процент влажности Δλ экв, Вт/(м·°С), по формуле

Δλ экв = (λ экв1 - λ экв2)/(ω 1 - ω 2). (7)

Рисунок 3 - График зависимости эквивалентного коэффициента теплопроводности от влажности кладки

Коэффициент теплопроводности кладки в сухом состоянии λ 0 , Вт/(м·°С), вычисляют по формулам:

λ 0 II = λ экв2 - ω 2 · Δλ экв (8)

или λ 0 I = λ экв1 - ω 1 · Δλ экв. (9)

За результат испытания принимают среднеарифметическое значение коэффициента теплопроводности кладки в сухом состоянии λ 0 , Вт/(м·°С), вычисленное по формуле

λ 0 = (λ 0 I + λ 0 II)/2. (10)

Водопоглощением называют склонность к впитыванию и хранению влаги. Для его обозначения используются соотношение объема впитанной влаги и материала.

Данная величина возрастает по мере увеличения пор или пустот в структуре кирпича. Также важно понимать, что наличие внутренних пор негативно сказывается на прочности изделия и его стойкости к перенесению нагрузок.

При снижении температуры ниже нуля находящаяся внутри вода может вызывать его разрушение, так как при замерзании жидкость увеличивается в объеме. Это ставит прочность и морозостойкость в прямую зависимость от степени поглощения воды: чем она выше, тем срок службы построенной стены меньше.

Полезная информация:

Немного о нормах водопоглощения

Для повышения прочности и долговечности важно свести уровень водопоглощения материала до минимума. На практике сделать это не так просто, чему виной объективные причины:

Если уменьшить объем впитываемой воды, это может сказаться на прочности кирпичной кладки, из-за снижения адгезии с кладочным раствором.
Внутренние пустоты дают изделиям дополнительные утепляющие и звукоизоляционные свойства, что очень ценится в местностях с суровыми климатическими условиями или повышенным шумом. Соответственно, при снижении пористости происходит утеря указанных качеств. По этой причине специальные нормы устанавливают нижнюю границу для водопоглощения керамического кирпича на уровне 6% . Верхняя черта определяется предназначением каждой конкретной разновидности материала.

Виды кирпича по водопоглащению

ГОСТ определяет для разных типов кирпича различные пределы максимального водопоглощения. Также этот показатель зависит от условий эксплуатации.

  • Для рядового кирпича данный показатель устанавливается на уровне 12-14%
  • Водопоглощение керамического кирпича для лицевой кладки – от 8 до 10% .
  • Для внутренних работ (отделка, перегородки) кирпич имеет граничную норму водопоглащения 16% .

Такая существенная разница для разных видов объясняется различными условиями, в которых они используются. К примеру, на внутреннюю кладку не воздействуют атмосферные осадки, а температура обычно находится в комфортных пределах.

Материал, применяемый в условиях улицы, ощущает на себе все разрушительные погодные воздействия. Особенно это касается регионов с суровыми климатическими условиями, для которых разрабатывается лицевой керамический кирпич с максимально низким коэффициентом поглощения влаги. Для того, чтобы при этом не пострадали его теплоизоляционные характеристики, внутри предусматриваются специальные технологические пустоты.