Китайскими учеными создан самый легкий в мире твердый материал. Самые прочные материалы в мире Крепкий и легкий материал

Осмий на сегодня определён как самое тяжёлое вещество на планете. Всего один кубический сантиметр этого вещества весит 22.6 грамма. Он был открыт в 1804 году английским химиком Смитсоном Теннантом, при растворении золота в После в пробирке остался осадок. Это произошло из-за особенности осмия, он нерастворим в щелочах и кислотах.

Самый тяжёлый элемент на планете

Представляет собой голубовато-белый металлический порошок. В природе встречается в виде семи изотопов, шесть из них стабильны и один неустойчив. По плотности немного превосходит иридий, который имеет плотность 22,4 грамма на кубический сантиметр. Из обнаруженных на сегодня материалов, самое тяжёлое вещество в мире - это осмий.

Он относится к группе таких как лантан, иттрий, скандий и других лантаноидов.

Дороже золота и алмазов

Добывается его очень мало, порядка десяти тысяч килограмм в год. Даже в наиболее большом источнике осмия, Джезказганском месторождении, содержится порядка трёх десятимиллионных долей. Биржевая стоимость редкого металла в мире достигает порядка 200 тысяч долларов за один грамм. При этом максимальная чистота элемента в процессе очистки около семидесяти процентов.

Хотя в российских лабораториях удалось получить чистоту 90,4 процента, но количество металла не превышало нескольких миллиграмм.

Плотность материи за пределами планеты Земля

Осмий, бесспорно, является лидером самых тяжёлых элементов нашей планеты. Но если мы обратим свой взор в космос, то нашему вниманию откроется множество веществ более тяжёлых, чем наш «король» тяжёлых элементов.

Дело в том, что во Вселенной существуют условия несколько другие, чем на Земле. Гравитация ряда настолько велика, что вещество неимоверно уплотняется.

Если рассмотреть структуру атома, то обнаружится, что расстояния в межатомном мире чем-то напоминают видимый нами космос. Где планеты, звезды и прочие находятся на достаточно большой дистанции. Остальное же занимает пустота. Именно такую структуру имеют атомы, и при сильной гравитации эта дистанция достаточно сильно уменьшается. Вплоть до «вдавливания» одних элементарных частиц в другие.

Нейтронные звезды - сверхплотные объекты космоса

В поисках за пределами нашей Земли мы сможем обнаружить самое тяжёлое вещество в космосе на нейтронных звёздах.

Это достаточно уникальные космические обитатели, один из возможных типов эволюции звёзд. Диаметр таких объектов составляет от 10 до 200 километров, при массе равной нашему Солнцу или в 2-3 раза больше.

Это космическое тело в основном состоит из нейтронной сердцевины, которая состоит из текучих нейтронов. Хотя по некоторым предположениям учёных она должна находиться в твёрдом состоянии, достоверной информации на сегодня не существует. Однако известно, что именно нейтронные звезды, достигая своего передела сжатия, впоследствии превращаются в с колоссальным выбросом энергии, порядка 10 43 -10 45 джоулей.

Плотность такой звезды сравнима, к примеру, с весом горы Эверест, помещённой в спичечный коробок. Это сотни миллиардов тонн в одном кубическом миллиметре. К примеру, чтобы стало более понятно, насколько велика плотность вещества, возьмём нашу планету с её массой 5,9×1024 кг и «превратим» в нейтронную звезду.

В результате, чтобы сравнялась с плотностью нейтронной звезды, её нужно уменьшить до размеров обычного яблока, диаметром 7-10 сантиметров. Плотность уникальных звёздных объектов увеличивается с перемещением к центру.

Слои и плотность вещества

Наружный слой звезды представлен собой в виде магнитосферы. Непосредственно под ней плотность вещества уже достигает порядка одной тонны на сантиметр кубический. Учитывая наши знания о Земле, на данный момент, это самое тяжёлое вещество из обнаруженных элементов. Но не спешите с выводами.

Продолжим наши исследования уникальных звёзд. Их называют также пульсарами, из-за высокой скорости вращения вокруг своей оси. Этот показатель у различных объектов колеблется от нескольких десятков до сотен оборотов в секунду.

Проследуем далее в изучении сверхплотных космических тел. Затем следует слой, который имеет характеристики металла, но, скорее всего, он похож по поведению и структуре. Кристаллы намного меньше, чем мы видим в кристаллической решётке Земных веществ. Чтобы выстроить линию из кристаллов в 1 сантиметр, понадобится выложить более 10 миллиардов элементов. Плотность в этом слое в один миллион раз выше, чем в наружном. Это не самое тяжёлое вещество звезды. Далее следует слой, богатый нейтронами, плотность которого в тысячу раз превышает предыдущий.

Ядро нейтронной звезды и его плотность

Ниже находится ядро, именно здесь плотность достигает своего максимума - в два раза выше, чем вышележащий слой. Вещество ядра небесного тела состоит из всех известных физике элементарных частиц. На этом мы достигли конца путешествия к ядру звезды в поисках самого тяжёлого вещества в космосе.

Миссия в поисках уникальных по плотности веществ во Вселенной, казалось бы, завершена. Но космос полон загадок и неоткрытых явлений, звёзд, фактов и закономерностей.

Чёрные дыры во Вселенной

Следует обратить внимание, на то, что сегодня уже открыто. Это чёрные дыры. Возможно, именно эти загадочные объекты могут быть претендентами на то, что самое тяжёлое вещество во Вселенной - их составляющая. Обратите внимание, что гравитация чёрных дыр настолько велика, что свет не может её покинуть.

По предположениям учёных, вещество, затянутое в область пространства времени, уплотняется настолько, что пространства между элементарными частицами не остаётся.

К сожалению, за горизонтом событий (так называется граница, где свет и любой объект, под действием сил гравитации, не может покинуть чёрную дыру) следуют наши догадки и косвенные предположения, основанные на выбросах потоков частиц.

Ряд учёных предполагают, что за горизонтом событий смешиваются пространство и время. Существует мнение, что они могут являться «проходом» в другую Вселенную. Возможно, это соответствует истине, хотя вполне возможно, что за этими пределами открывается другое пространство с совершенно новыми законами. Область, где время поменяется «местом» с пространством. Местонахождение будущего и прошлого определяется всего лишь выбором следования. Подобно нашему выбору идти направо или налево.

Потенциально допустимо, что во Вселенной существуют цивилизации, которые освоили путешествия во времени через чёрные дыры. Возможно, в будущем люди с планеты Земля откроют тайну путешествий сквозь время.

Самые лёгкие и необычайно прочные материалы называют будущим строительства. Эти материалы помогут создавать более энергоэффективные и экологически чистые объекты во всех сферах жизни людей - от медицинских технологий до транспорта.

Среди множества инновационных материалов, которые не так давно казались просто фантастикой, особо передовыми и перспективными являются:

3D-графен

Созданный из чистого углерода этот ультратонкий графен считается одним из самых прочных материалов на Земле. Но недавно исследователи из Массачусетского технологического института смогли превратить двухмерный графен в трёхмерную структуру. Они создали новый материал с губчатой структурой. Плотность 3D-графена равна всего 5 процентам от плотности стали, но благодаря особой структуре он в 10 раз прочнее стали.

По словам создателей, 3D-графен имеет большой потенциал применения во многих областях.

Что касается его технологии создания, то её можно применить и для других материалов, от полимеров до конструкционного бетона. Это позволит не только производить структуры, которые прочнее и легче, но и имеющие повышенные изоляционные свойства. Кроме того, пористые структуры могут быть использованы в системах фильтрации воды или отходов химических заводов.

Карбин

Весной прошлого года группа австрийских исследователей успешно синтезировала карбин (Carbyne) - форму углерода, которая является самой прочной из всех известных материалов и даже превосходит графен.

Карбин состоит из одномерной цепочки атомов углерода, которая химически активна, что делает её очень сложной для синтеза. Считается, что негибкий материал в два раза прочнее углеродных нанотрубок. Карбин может применяться в наномеханике, нано- и микроэлектронике.

Аэрографит

Созданный из сети пористых углеродных трубок, аэрографит представляет собой синтетическую пену. Это один из самых лёгких конструкционных материалов, созданных когда-либо. Аэрографит разработали исследователи из Университета Киля и Технического университета Гамбурга. Аэрографит может быть изготовлен в различных формах, его плотность всего 180 г/м 3 , что в 75 раз легче, чем пенополистирол. Этот материал можно использовать в электродах литий-ионных батарей, чтобы уменьшить их вес.

Аэрографен

Известный также как графен-аэрогель, это лёгкий материал с плотностью всего 0,16 млг/см 3 , что в 7,5 раза меньше плотности воздуха. К тому же это очень эластичный материал, и он способен поглотить до 900 раз больше масел и воды, чем весит сам. Это свойство аэрографена очень важно: он сможет поглощать разливы нефти в океанах.

Подобными свойствами обладает , которая уже тестируется исследователями из Аргонны.

Окружающий нас мир таит в себе еще множество загадок, но даже давно известные ученым явления и вещества не перестают удивлять и восторгать. Мы любуемся яркими красками, наслаждаемся вкусами и используем свойства всевозможных веществ, делающих нашу жизнь комфортнее, безопаснее и приятнее. В поисках самых надежных и крепких материалов человек совершил немало восторгающих открытий, и перед вами подборка как раз из 25 таких уникальных соединений!

25. Алмазы

Об этом точно знают если не все, то почти все. Алмазы – это не только одни из самых почитаемых драгоценных камней, но и один из самых твердых минералов на Земле. По шкале Мооса (шкала твёрдости, в которой оценка дается по реакции минерала на царапание) алмаз числится на 10 строчке. Всего в шкале 10 позиций, и 10-ая – последняя и самая твердая степень. Алмазы такие твердые, что поцарапать их можно разве что другими алмазами.

24. Ловчие сети паука вида Caerostris darwini


Фото: pixabay

В это сложно поверить, но сеть паука Caerostris darwini (или паук Дарвина) крепче стали и тверже кевлара. Эту паутину признали самым твердым биологическим материалом в мире, хотя сейчас у нее уже появился потенциальный конкурент, но данные еще не подтверждены. Паучье волокно проверили на такие характеристики, как разрушающая деформация, ударная вязкость, предел прочности и модуль Юнга (свойство материала сопротивляться растяжению, сжатию при упругой деформации), и по всем этим показателям паутина проявила себя удивительнейшим образом. Вдобавок ловчая сеть паука Дарвина невероятно легкая. Например, если волокном Caerostris darwini обернуть нашу планету, вес такой длинной нити составит всего 500 граммов. Таких длинных сетей не существует, но теоретические подсчеты просто поражают!

23. Аэрографит


Фото: BrokenSphere

Эта синтетическая пена – один из самых легких волокнистых материалов в мире, и она представляет собой сеть углеродных трубочек диаметром всего в несколько микронов. Аэрографит в 75 раз легче пенопласта, но при этом намного прочнее и пластичнее. Его можно сжать до размеров, в 30 раз меньших первоначального вида, без какого-либо вреда для его чрезвычайно эластичной структуры. Благодаря этому свойству аэрографитная пена может выдержать нагрузку, в 40 000 раз превышающую ее собственный вес.

22. Палладиевое металлическое стекло


Фото: pixabay

Команда ученых их Калифорнийского технического института и Лаборатории Беркли (California Institute of Technology, Berkeley Lab) разработала новый вид металлического стекла, совместивший в себе практически идеальную комбинацию прочности и пластичности. Причина уникальности нового материала кроется в том, что его химическая структура успешно скрадывает хрупкость существующих стеклообразных материалов и при этом сохраняет высокий порог выносливости, что в итоге значительно увеличивает усталостную прочность этой синтетической структуры.

21. Карбид вольфрама


Фото: pixabay

Карбид вольфрама – это невероятно твердый материал, обладающий высокой износостойкостью. В определенных условиях это соединение считается очень хрупким, но под большой нагрузкой оно показывает уникальные пластические свойства, проявляющиеся в виде полос скольжения. Благодаря всем этим качествам карбид вольфрама используется в изготовлении бронебойных наконечников и различного оборудования, включая всевозможные резцы, абразивные диски, свёрла, фрезы, долота для бурения и другие режущие инструменты.

20. Карбид кремния


Фото: Tiia Monto

Карбид кремния – один из основных материалов, используемых для производства боевых танков. Это соединение известно своей низкой стоимостью, выдающейся тугоплавкостью и высокой твердостью, и поэтому оно часто используется в изготовлении оборудования или снаряжения, которое должно отражать пули, разрезать или шлифовать другие прочные материалы. Из карбида кремния получаются отличные абразивы, полупроводники и даже вставки в ювелирные украшения, имитирующие алмазы.

19. Кубический нитрид бора


Фото: wikimedia commons

Кубический нитрид бора – это сверхтвердый материал, по своей твердости схожий с алмазом, но обладающий и рядом отличительных преимуществ – высокой температурной устойчивости и химической стойкости. Кубический нитрид бора не растворяется в железе и никеле даже под воздействием высоких температур, в то время как алмаз в таких же условиях вступает в химические реакции достаточно быстро. На деле это выгодно для его использования в промышленных шлифовальных инструментах.

18. Сверхвысокомолекулярный полиэтилен высокой плотности (СВМПЭ), марка волокон «Дайнима» (Dyneema)


Фото: Justsail

Полиэтилен с высоким модулем упругости обладает чрезвычайно высокой износостойкостью, низким коэффициентом трения и высокой вязкостью разрушения (низкотемпературная надёжность). Сегодня его считают самым прочным волокнистым веществом в мире. Самое удивительное в этом полиэтилене то, что он легче воды и одновременно может останавливать пули! Тросы и канаты из волокон Дайнима не тонут в воде, не нуждаются в смазке и не меняют свои свойства при намокании, что очень актуально для судостроения.

17. Титановые сплавы


Фото: Alchemist-hp (pse-mendelejew.de)

Титановые сплавы невероятно пластичные и демонстрируют удивительную прочность во время растяжения. Вдобавок они обладают высокой жаропрочностью и коррозионной стойкостью, что делает их крайне полезными в таких областях, как авиастроение, ракетостроение, судостроение, химическое, пищевое и транспортное машиностроение.

16. Сплав Liquidmetal


Фото: pixabay

Разработанный в 2003 году в Калифорнийском техническом институте (California Institute of Technology), этот материал славится своей силой и прочностью. Название соединения ассоциируется с чем-то хрупким и жидким, но при комнатной температуре оно на самом деле необычайно твердое, износостойкое, не боится коррозии и при нагревании трансформируется, как термопласты. Основными сферами применения пока что являются изготовление часов, клюшек для гольфа и покрытий для мобильных телефонов (Vertu, iPhone).

15. Наноцеллюлоза


Фото: pixabay

Наноцеллюлозу выделяют из древесного волокна, и она представляет собой новый вид деревянного материала, который прочнее даже стали! Вдобавок наноцеллюлоза еще и дешевле. Инновация имеет большой потенциал и в будущем может составить серьезную конкуренцию стеклу и углеволокну. Разработчики считают, что этот материал вскоре будет пользоваться большим спросом в производстве армейской брони, супергибких экранов, фильтров, гибких батареек, абсорбирующих аэрогелей и биотоплива.

14. Зубы улиток вида «морское блюдечко»


Фото: pixabay

Ранее мы уже рассказали вам о ловчей сети паука Дарвина, которую некогда признали самым прочным биологическим материалом на планете. Однако недавнее исследование показало, что именно морского блюдечка – наиболее прочная из известных науке биологических субстанций. Да-да, эти зубки прочнее паутины Caerostris darwini. И это неудивительно, ведь крошечные морские создания питаются водорослями, растущими на поверхности суровых скал, и чтобы отделить пищу от горной породы, этим зверькам приходится потрудиться. Ученые полагают, что в будущем мы сможем использовать пример волокнистой структуры зубов морских блюдечек в машиностроительной промышленности и начнем строить автомобили, лодки и даже воздушные суда повышенной прочности, вдохновившись примером простых улиток.

13. Мартенситно-стареющая сталь


Фото: pixabay

Мартенситно-стареющая сталь – это высокопрочный и высоколегированный сплав, обладающий превосходной пластичностью и вязкостью. Материал широко распространен в ракетостроении и используется для изготовления всевозможных инструментов.

12. Осмий


Фото: Periodictableru / www.periodictable.ru

Осмий – невероятно плотный элемент, и благодаря своей твердости и высокой температуре плавления он с трудом поддается механической обработке. Именно поэтому осмий используют там, где долговечность и прочность ценятся больше всего. Сплавы с осмием встречаются в электрических контактах, ракетостроении, военных снарядах, хирургических имплантатах и применяются еще во многих других областях.

11. Кевлар


Фото: wikimedia commons

Кевлар – это высокопрочное волокно, которое можно встретить в автомобильных шинах, тормозных колодках, кабелях, протезно-ортопедических изделиях, бронежилетах, тканях защитной одежды, судостроении и в деталях беспилотных летательных аппаратов. Материал стал практически синонимом прочности и представляет собой вид пластика с невероятно высокой прочностью и эластичностью. Предел прочности кевлара в 8 раз выше, чем у стального провода, а плавиться он начинает при температуре в 450℃.

10. Сверхвысокомолекулярный полиэтилен высокой плотности, марка волокон «Спектра» (Spectra)


Фото: Tomas Castelazo, www.tomascastelazo.com / Wikimedia Commons

СВМПЭ – это по сути очень прочный пластик. Спектра, марка СВМПЭ, – это в свою очередь легкое волокно высочайшей износостойкости, в 10 раз превосходящее по этому показателю сталь. Как и кевлар, спектра используется в изготовлении бронежилетов и защитных шлемов. Наряду с СВМПЭ марки дайнимо спектра популярна в судостроении и транспортной промышленности.

9. Графен


Фото: pixabay

Графен – это аллотропная модификация углерода, и его кристаллическая решетка толщиной всего в один атом настолько прочная, что она в 200 раз тверже стали. Графен с виду похож на пищевую пленку, но порвать его – практически непосильная задача. Чтобы пробить графеновый лист насквозь, вам придется воткнуть в него карандаш, на котором должен будет балансировать груз весом с целый школьный автобус. Удачи!

8. Бумага из углеродных нанотрубок


Фото: pixabay

Благодаря нанотехнологиям ученым удалось сделать бумагу, которая в 50 тысяч раз тоньше человеческого волоса. Листы из углеродных нанотрубок в 10 раз легче стали, но удивительнее всего то, что по прочности они превосходят в целых 500 раз! Макроскопические пластины из нанотрубок наиболее перспективны для изготовления электродов суперконденсаторов.

7. Металлическая микрорешетка


Фото: pixabay

Перед вами самый легкий в мире металл! Металлическая микрорешетка – это синтетический пористый материал, который в 100 раз легче пенопласта. Но пусть его внешний вид не вводит вас в заблуждение, ведь эти микрорешетки заодно и невероятно прочные, благодаря чему они обладают большим потенциалом для использования во всевозможных инженерных областях. Из них можно изготавливать превосходные амортизаторы и тепловые изоляторы, а удивительная способность этого металла сжиматься и возвращаться в своё первоначальное состояние позволяет использовать его для накопления энергии. Металлические микрорешетки также активно применяются в производстве различных деталей для летательных аппаратов американской компании Boeing.

6. Углеродные нанотрубки


Фото: User Mstroeck / en.wikipedia

Выше мы уже рассказывали про сверхпрочные макроскопические пластины из углеродных нанотрубок. Но что же это за материал такой? По сути это свернутые в трубку графеновые плоскости (9-ый пункт). В результате получается невероятно легкий, упругий и прочный материал широкого спектра применения.

5. Аэрографен


Фото: wikimedia commons

Известный также как графеновый аэрогель, этот материал чрезвычайно легкий и прочный одновременно. В новом виде геля жидкая фаза полностью заменена на газообразную, и он отличается сенсационной твердостью, жаропрочностью, низкой плотностью и низкой теплопроводностью. Невероятно, но графеновый аэрогель в 7 раз легче воздуха! Уникальное соединение способно восстанавливать свою изначальную форму даже после 90% сжатия и может впитывать такое количество масла, которое в 900 раз превышает вес используемого для абсорбции аэрографена. Возможно, в будущем этот класс материалов поможет в борьбе с такими экологическими катастрофами, как разливы нефти.

4. Материал без названия, разработка Массачусетского технологического института (MIT)


Фото: pixabay

Пока вы читаете эти строки, команда ученых из MIT работает над усовершенствованием свойств графена. Исследователи заявили, что им уже удалось преобразовать двумерную структуру этого материала в трехмерную. Новая графеновая субстанция еще не получила своего названия, но уже известно, что ее плотность в 20 раз меньше, чем у стали, а ее прочность в 10 раз выше аналогичной характеристики стали.

3. Карбин


Фото: Smokefoot

Хоть это и всего лишь линейные цепочки атомов углерода, карбин обладает в 2 раза более высоким пределом прочности, чем графен, и он в 3 раза жестче алмаза!

2. Нитрид бора вюрцитной модификации


Фото: pixabay

Это недавно открытое природное вещество формируется во время вулканических извержений, и оно на 18% тверже алмазов. Впрочем, алмазы оно превосходит еще по целому ряду других параметров. Вюрцитный нитрид бора – одна из всего 2 натуральных субстанций, обнаруженных на Земле, которая тверже алмаза. Проблема в том, что таких нитридов в природе очень мало, и поэтому их непросто изучать или применять на практике.

1. Лонсдейлит


Фото: pixabay

Известный также как алмаз гексагональный, лонсдейлит состоит из атомов углерода, но в случае данной модификации атомы располагаются несколько иначе. Как и вюрцитный нитрид бора, лонсдейлит – превосходящая по твердости алмаз природная субстанция. Причем этот удивительный минерал тверже алмаза на целых 58%! Подобно нитриду бора вюрцитной модификации, это соединение встречается крайне редко. Иногда лонсдейлит образуется во время столкновения с Землей метеоритов, в состав которых входит графит.

Подписаться на сайт

Ребята, мы вкладываем душу в сайт. Cпасибо за то,
что открываете эту красоту. Спасибо за вдохновение и мурашки.
Присоединяйтесь к нам в Facebook и ВКонтакте

Под определением прочность подразумевается способность материалов не поддаваться разрушению в результате воздействия внешних сил и факторов, приводящих к внутреннему напряжению. У материалов, обладающих высокой прочностью, широкая область применения. В природе существую не только твердые металлы и прочные породы древесины, но и искусственно созданные высокопрочные материалы. Многие люди уверены в том, что самый прочный материал в мире – это алмаз, но так ли это в действительности?

Общая информация:

    Дата открытия – начало 60-х годов;

    Первооткрыватели – Сладков, Кудрявцев, Коршак, Касаткин;

    Плотность – 1,9-2 г/см3.

В недавнем времени научные сотрудники из Австрии завершили работу по налаживанию устойчивого изготовления карбина, являющегося аллотропной формой углерода на основе sp-гибридизации углеродных атомов. Показатели его прочности в 40 раз превзошли показатели алмаза. Информация об этом была размещена в одном из номеров научного печатного периодического издания “Nature Materials”.

После тщательного изучения его свойств, ученые пояснили, что по прочности он не сравнится ни с одним ранее открытым и изученным материалом. Тем не менее в процессе производства возникли значительные трудности: структура карбина образована из атомов углерода, собранных в длинные цепочки, в результате чего он начинает разрушаться в процессе изготовления.

Для устранения выявленной загвоздки, физики из общественного университета в Вене создали специальное защитное покрытие, в котором и синтезировался карбин. В качестве защитного покрытия использовались слои графена, положенные друг на друга и свернутые в «термос». Пока физики прилагали все усилия для достижения стабильных форм, они выяснили, на электрические свойства материала влияет протяженность атомной цепочки.

Извлекать карбин из защитного покрытия без повреждений исследователи так и не научились, поэтому изучение нового материала продолжается, руководствуются ученые только лишь относительной устойчивостью атомных цепочек.

Карбин – малоизученная аллотропная модификация углерода, первооткрывателями которой стали советские ученые-химики: А.М.Сладков, Ю.П.Кудрявцев, В.В.Коршак и В.И.Касаточкин. Информация о результате проведения опыта с подробным описанием открытия материала в 1967 году появилась на страницах одного из крупнейших научных журналов – «Доклады академии наук СССР». Спустя 15 лет в американском научном журнале «Science» появилась статья, поставившая под сомнение результаты, которые получили советские химики. Выяснилось, что присвоенные малоизученной аллотропной модификации углерода сигналы могли быть связаны с присутствием примесей силикатов. С годами подобные сигналы обнаружили в межзвездном пространстве.

Общая информация:

    Первооткрыватели – Гейм, Новоселов;

    Теплопроводность – 1 ТПа.

Графен представляет собой двумерную аллотропную модификацию углерода, в которой атомы объединены в гексагональную решетку. Несмотря на высокую прочность графена, толщина его слоя составляет 1 атом.

Первооткрывателями материала стали русские физики, Андрей Гейм и Константин Новоселов. В своей стране ученые не заручились финансовой поддержкой и приняли решение о переезде в Нидерланды и Соединенное Королевство Великобритании и Северной Ирландии. В 2010 году ученым присудили Нобелевскую премию.

На листе графена, площадь которого равняется одному квадратному метру, а толщина – одному атому, свободно держатся предметы массой до четырех килограмм. Помимо того, что графен высокопрочный материал, он еще и очень гибкий. Из материала с такими характеристиками в будущем можно будет плести нити и другие веревочные структуры, не уступающие в прочности толстому стальному канату. При определенных условиях материал, открытый русскими физиками, может справляться с повреждениями в кристаллической структуре.

Общая информация:

    Год открытия – 1967;

    Цвет – коричнево-желтый;

    Измеренная плотность – 3,2 г/см3;

    Твердость – 7-8 единиц по шкале Мооса.

Структура лонсдейлита, обнаруженного в воронке метеорита, схожа с алмазом, оба материала – это аллотропные модификации углерода. Вероятнее всего, в результате взрыва графит, являющийся одним из компонентов метеорита, и превратился в лонсдейлит. На момент обнаружения материала ученые не отметили высоких показателей твердости, тем не менее, было доказано, если в нем не будет примесей, то он ничем не будет уступать высокой твердости алмаза.

Общая информация о нитриде бора:

    Плотность – 2,18 г/см3;

    Температура плавления – 2973 градуса по Цельсию;

    Кристаллическая структура – гексагональная решетка;

    Теплопроводность – 400 Вт/(м×К);

    Твердость – меньше 10 единиц по шкале Мооса.

Основные отличия вюрцитного нитрида бора, представляющего собой соединение бора с азотом, заключаются в термической и химической стойкости и огнеупорности. Материал может быть разной кристаллической формы. К примеру, графитная самая мягкая, но при этом стабильная, именно она используется в косметологии. Сфалеритная структура в кристаллической решетке подобна алмазам, но уступает по показателям мягкости, обладая при этом лучшей химической и термической стойкостью. Такие свойства вюрцитного нитрида бора позволяют использовать его в оборудовании для высокотемпературных процессов.

Общая информация:

    Твердость – 1000 Гн/м2;

    Прочность – 4 Гн/м2;

    Год открытия металлического стекла – 1960.

Металлическое стекло – материал с высоким показателем твердости, неупорядоченной структурой на атомарном уровне. Основное отличие структуры металлического стекла от обычного – высокая электропроводность. Получают такие материалы в результате твердотельной реакции, быстрого охлаждения или ионного облучения. Ученые научились изобретать аморфные металлы, показатели прочности которых в 3 раза больше, чем у стальных сплавов.

Общая информация:

    Предел упругости – 1500 Мпа;

    KCU – 0,4-0,6 МДж/м2.

Общая информация:

    Ударная вязкость КСТ – 0,25-0,3 МДж/м2;

    Предел упругости – 1500 Мпа;

    KCU – 0,4-0,6 МДж/м2.

Мартенситно-стареющие стали – сплавы железа, обладающие высокой прочностью при ударах, при этом не теряющие тягучести. Несмотря на такие характеристики, материал не держит режущую кромку. Полученные путем термообработки сплавы – это низкоуглеродистые вещества, берущие прочность от интерметаллидов. В состав сплава входит никель, кобальт и другие карбидообразующие элементы. Данная разновидность высокопрочной, высоколегированной стали легко поддается обработке, связано это с небольшим содержанием в ее составе углерода. Материал с такими характеристиками нашел применение в аэрокосмической области, его используют в качестве покрытия ракетных корпусов.

Осмий

Общая информация:

    Год открытия – 1803;

    Структура решетки – гексагональная;

    Теплопроводность – (300 К) (87,6) Вт/(м×К);

    Температура плавления – 3306 К.

Блестящий металл голубовато-белого цвета, обладающий высокой прочностью, принадлежит к платиноидам. Осмий, обладая высокой атомной плотностью, исключительной тугоплавкостью, хрупкостью, высокой прочностью, твердостью и стойкостью к механическим воздействиям и агрессивному влиянию окружающей среды, широко применяется в хирургии, измерительной технике, химической отрасли, электронной микроскопии, ракетной технике и электронной аппаратуре.

Общая информация:

    Плотность – 1,3-2,1 т/м3;

    Прочность углеродного волокна – 0,5-1 ГПа;

    Модуль упругости углеродного высокопрочного волокна – 215 Гпа.

Углерод-углеродные композиты – материалы, которые состоят из углеродной матрицы, а она в свою очередь армирована углеродными волокнами. Основные характеристики композитов – высокая прочность, гибкость и ударная вязкость. Структура композиционных материалов может быть как однонаправленной, так и трехмерной. Благодаря таким качествам композиты широко используются в различных областях, включая и аэрокосмическую отрасль.

Общая информация:

    Официальный год открытия паука – 2010;

>Ударная вязкость паутины – 350 МДж/м3.

Впервые паука, плетущего сети огромных размеров, обнаружили неподалеку от Африки, на островном государстве Мадагаскар. Официально этот вид пауков открыли в 2010 году. Ученых, прежде всего, заинтересовали паутины, сплетенные членистоногим. Диаметр кругов на несущей нити может доходить до двух метров. Показатели прочности паутины Дарвина превышают показатели прочности синтетического кевлара, используемого в авиационной и автомобильной промышленности.

Общая информация:

    Теплопроводность – 900-2300 Вт/(м×К);

    Температура плавления при давлении 11 Гпа – 3700-4000 градусов по Цельсию;

    Плотность – 3,47-3,55 г/см3;

    Показатель преломления – 2,417-2,419.

Алмаз в переводе с древнегреческого означает «несокрушимый», однако ученые открыли еще 9 элементов, превосходящих его по показателям прочности. Несмотря на бесконечное существование алмаза в обычной среде, при высокой температуре и инертном газе он может превратиться в графит. Алмаз – эталонный элемент (по шкале Мооса), обладающий одним из самых высоких показателей твердости. Для него, как и для многих драгоценных камней, характерна люминесценция, позволяющая блестеть при попадании на него солнечных лучей.

Просто гениальное открытие было сделано китайскими учеными. Именно они открыли миру самый легкий материал на земле. Масса его настолько маленькая, что он легко удерживается на лепестках цветка. В состав удивительного материала входит оксид графена и лиоф

Просто гениальное открытие было сделано китайскими учеными. Именно они открыли миру самый легкий материал на земле. Масса его настолько маленькая, что он легко удерживается на лепестках цветка. В состав удивительного материала входит оксид графена и лиофелизированый углерод. Материя графена имеет интересную губчатую структуру, и весить всего-навсего 0,16 мг/см3. Именно благодаря такой структуре аэрогеля материал и есть самым легким из твердых материалов в мире. Уникальному открытию уже предсказывают множество практичных и невероятных открытий. Графен в своем родном истом виде, является двухмерным кристаллом. Кроме того, он есть самым тонким материалом на земле, сделанным руками. Только представьте себе, что для того, дабы достичь высоты столбца 1 миллиметра, необходимо сложить один к одному 3 миллиона пластин чудо-материала. Но такая, на первый взгляд, хрупкая структура, вовсе таковой не является.
Графен еще и необыкновенно прочный и крепкий. Лист такого материала, толщиною в один полиэтиленовый пакет, с легкостью выдерживает массу одного слона. Но и это еще не все заслуги графена. Кроме своей удивительной прочности и крепости, он еще и на диво гибкий. Без какого-либо убытка или нарушения структуры, материал можно растянуть на 20% от общего размера. Мало того, недавно ученым удалось открыть еще одно уникальное свойство графена. С помощью его можно фильтровать воду, задерживая внутри материала разные вредные газы и жидкости.