Виды и свойства пластмасс. Определение типа пластика

Прочные материалы имеют широкий спектр использования. Есть не только самый твёрдый металл, но и самая твердая и прочная древесина, а так же самые прочные искусственно созданные материалы.

Где используют самые прочные материалы?

Сверхпрочные материалы применяют во многих сферах жизни. Так, химики Ирландии и Америки разработали технологию, посредством которой производится прочное текстильное волокно. Нить этого материала в диаметре – пятьдесят микрометров. Она создана из десятков миллионов нанотрубок, которые с помощью полимера скреплены между собой.

Прочность этого электропроводящего волокна на разрыв выше прочности паутины паука-кругопряда в три раза. Полученный материал используется для изготовления сверхлегких бронежилетов и спортивного инвентаря. Название еще одного прочного материала – ONNEX, созданного по заказу Министерства обороны США. Кроме применения его при производстве бронежилетов, новый материал можно так же использовать в системах летного контроля, сенсорах, двигателях.


Существует разработанная учеными технология, благодаря которой прочные, твердые, прозрачные и легкие материалы получают посредством преобразования аэрогелей. На их основе можно производить облегченные бронежилеты, броню для танков и прочные строительные материалы.

Новосибирские ученые изобрели плазменный реактор нового принципа, благодаря которому можно производить нанотубулен – сверхпрочный искусственный материал. Этот материал открыли еще двадцать лет назад. Он представляет собой массу эластичной консистенции. Она состоит из сплетений, которые невозможно увидеть невооруженным глазом. Толщина стенок данных сплетений – один атом.


То что атомы как бы вложены друг в друга по принципу «русской матрешки», делает нанотубулен наиболее прочным материалом из всех известных. При добавлении этого материала в бетон, металл, пластик, значительно усиливаются их прочность и электропроводность. Нанотубулен поможет сделать машины и самолеты более прочными. Если же новый материал придет в широкое производство, то очень прочными могут стать дороги, дома, техника. Разрушить их будет очень сложно. Нанотубулен до сих пор не был внедрен в широкое производство из-за очень высокой себестоимости. Однако новосибирским ученым удалось значительно снизить себестоимость этого материала. Теперь нанотубулен можно производить не килограммами, а тоннами.


Самый твердый металл

Среди всех известных металлов самым твердым является хром, однако его твердость во многом зависит от чистоты. Его свойства – коррозионностойкость, жаропрочность и тугоплавкость. Хром – металл беловато-голубого оттенка. Его твердость по Бринеллю равна 70-90 кгc/см2. Температура плавления самого твердого металла – тысяча девятьсот семь градусов по Цельсию при плотности семь тысяч двести кг/м3. Этот металл находится в земной коре в размере 0,02 процента, что немало. Обычно он встречается в виде хромистого железняка. Хром добывают из силикатных горных пород.


Этот металл используют в промышленности, выплавляя хромистую сталь, нихром и так далее. Его применяют для антикоррозийных и декоративных покрытий. Хромом очень богаты падающие на Землю каменные метеориты.

Самое прочное дерево

Есть древесина, которая превосходит по прочности чугун и может сравниться с прочностью железа. Речь идет о «Березе Шмидта». Ее так же называют Железной березой. Человек не знает более прочного дерева, чем это. Открыл ее русский ученый-ботаник по фамилии Шмидт, находясь на Дальнем Востоке.


Древесина превышает по прочности чугун в полтора раза, прочность на изгиб примерно равна прочности железа. Из-за таких свойств, железная береза вполне могла бы иногда заменять металл, ведь эта древесина не подвержена коррозии и гниению. Корпус судна, сделанный из Железной березы можно даже не красить, судно не разрушит коррозия, действие кислот ему тоже не страшно.


Березу Шмидта невозможно пробить пулей, топором ее не срубишь. Из всех берез нашей планеты долгожителем является именно Железная береза – она живет четыреста лет. Ее место произрастания – заповедник Кедровая Падь. Это редкий охраняемый вид, который занесен в Красную Книгу. Если бы не такая редкость, сверхпрочную древесину этого дерева можно было бы повсеместно использовать.

А вот самые высокие деревья в мире секвойи не являются очень прочным материалом..

Самый прочный материал во Вселенной

Наиболее прочным и одновременно легким материалом нашей Вселенной является графен. Это углеродная пластина, толщина которой всего один атом, но она прочнее алмаза, а электропроводность в сто раз выше кремния компьютерных чипов.


В скором времени графен покинет научные лаборатории. Все ученые мира говорят сегодня о его уникальных свойствах. Так, несколько грамм материала будет достаточно для покрытия целого футбольного поля. Графен очень гибкий, его можно складывать, изгибать, сворачивать рулоном.

Возможные сферы его использования – солнечные батареи, сотовые телефоны, сенсорные экраны, супербыстрые компьютерные чипы.
Подпишитесь на наш канал в Яндекс.Дзен

Пластик, или пластмасса, - это органический материал, основой которого являются высокомолекулярные соединения - полимеры. Мнение, что пластик более прочный и качественный материал, нежели пластмасса, ошибочно. Различие этих понятий - только в их названии. Виды пластика, его типы, классификация, маркировка, области использования огромны.

Что это такое

Изделия из пластика прочно вошли в нашу жизнь. Особенно широко используются пластмассы на основе Процесс изготовления представляет собой переход материала под влиянием нагревания и давления из текучего состояния в твердое. Развитие пластмассы начиналось с использования природных составляющих. Позже их заменили химически модифицированными материалами. Сейчас для изготовления пластмасс используют полностью синтетические молекулы - полиэтилен, поливинилхлорид, эпоксидную смолу. А секрет популярности в следующем: простота производства, практичность, доступная цена.

Основные характеристики

Виды и свойства пластика, его свариваемостьв первую очередь зависят от полимера, из которого он сделан. На физические и механические характеристики пластмасс также влияют всевозможные добавки, присадки, стабилизаторы, пигменты, органические и неорганические волокна. Некоторые, например, защищают пластик от воздействия ультрафиолета.

В основном материал белый или прозрачный. При добавлении красителей пластмасса способна приобрести любой цвет. Таким образом может быть изготовлен зеркальный пластик. В большинстве своем пластмассы - это многокомпонентные и композиционные материалы. Пластмасса имеет малую плотность. Устойчива к кислотам и щелочам. Обладает низкой тепло- и электропроводимостью. Большая часть видов легко поддается обработке. Это позволяет изготавливать прессованные изделия из сырья, а также использовать листовой пластик, комбинируя термоформовку с механической обработкой.

Области использования пластмасс

Сфера применения пластмасс огромна. Начиная с использования в судостроении, самолетостроении, заканчивая сельским хозяйством, медициной и бытом. Поражают воображение виды пластика. Фото отображают лишь малую толику изделий:

Прозрачный пластик

Виды пластика включают в себя термопластичный ПВХ, который используется в основном для листовых материалов. Его применяют в строительстве, наружной рекламе и других областях. Разновидностью листового материала является прозрачный пластик. В зависимости от светопропускной способности материал может как задерживать, так и пропускать некоторую часть ультрафиолетовых лучей. Это могут быть прозрачные и полупрозрачные цветные листовые материалы.

Виды прозрачного пластика представлены оргстеклом, поликарбонатом, полистиролом, полиэфирным стеклом, прозрачными ПВХ-листами. Прежде всего они отличаются удароустойчивостью. Более прочным является поликарбонат. Самым эластичным считается полиэфирное стекло. Светопропускная способность выше у оргстекла, оно наиболее прозрачное и незамутненное, хорошо обрабатывается. Прозрачный пластик используется для остекления окон, защитных очков и полицейских щитов, изготовления пластиковых бутылок. Прозрачный пластик может иметь разные оттенки.

Пластиковые фасады

Виды пластика для фасадов делятся на листовые и рулонные. Жесткий и твердый лист материала - это пластик высокого давления. Рулонный пластик холодного или среднего давления более низкого качества и дешевле листового. Этот материал в рулонах напоминает Он используется в том числе при изготовлении мебельных фасадов.

Виды пластика для кухни имеют разную основу. Одни делают на основе ДСП, и это дешевле, чем основа из МДФ. Листовой пластик термически устойчив, он не подвержен царапинам, сколам, ударам, не деформируется, не тускнеет и не выгорает. Материал не отклеивается от основы, не боится влаги, легко моется. Недостаток фасадных деталей в том, что они могут быть только ровными, без фрезеровки, и гладкими по фактуре.

Отделка

И сегодня пластик остается популярным строительным материалом. В основном используются разные виды пластика для отделки офисов. Но при наличии фантазии и при грамотном дизайне подобный материал будет отлично смотреться в отделке квартиры. Пластиком можно обшить любую поверхность, будь то потолок или стены. Основной вид материала для потолочных поверхностей - это широко варьируются. Отдельные элементы соединяются между собой с помощью ребер жесткости (с одной стороны панель имеет паз, а с другой - шип). Материал легкий и безопасный. Удобен для транспортировки и легко монтируется.

Пластик, обладая влагостойкостью, используется в ванных комнатах и при облицовке балконов. Применяется для обустройства откосов и отделки потолков. При удачном и грамотном выборе пластика получится отличная прихожая. Пластиковые панели могут быть матовыми или глянцевыми, имитировать дерево или камень.

Преимущества и недостатки

В некоторых областях жизнедеятельности человека многие виды пластика одобрены для применения Минздравом:

  • Материал, стойкий к погодным условиям. Имеет хорошую электроизоляцию и
  • Прост в обработке. Легко сваривается и склеивается. Можно резать и формировать необходимые конструкции.
  • Материал недорогой. Длительное время сохраняет свой первоначальный вид. Не боится влаги.
  • Имеет богатую цветовую гамму. Листовой прозрачный пластик обладает ударопрочными и огнестойкими свойствами. Из него можно получить изделия разнообразной формы.
  • устойчив к перепадам температуры. При отделке помещения играет роль звуко- и теплоизолятора. Подходит для обустройства навесов, уличных знаков, вывесок, объектов рекламы.

Как и любой материал, пластик имеет некоторые недостатки:

  • Подвержен действию многих органических растворителей.
  • Элементы из пластмассы могут деформироваться при сильных нагрузках или высокой температуре.

Что за материал используется при производстве пластиковых тар. Чем пластики отличаются друг от друга? Пластмасса

Определить вид пластмассы, если имеется маркировка, достаточно легко - а как быть, если никакой маркировки нет, а узнать, из чего сделана вещь - необходимо?! Для быстрого и качественного распознавания различных видов пластмасс достаточно немного желания и практического опыта. Методика достаточно проста: анализируются физико-механические особенности пластмасс (твердость, гладкость, эластичность и т. д.) и их поведение в пламени спички (зажигалки).Может показаться странным, но различные виды пластмасс и горят по-разному! Например, одни ярко вспыхивают и интенсивно сгорают (почти без копоти), другие, наоборот, сильно коптят. Пластмасса даже издаёт разные звуки при своем горении! Поэтому так важно по набору косвенных признаков точно идентифицировать вид пластмассы, ее марку.

Как определить ПЭВД (полиэтилен высокого давления, низкой плотности) . Горит синеватым, светящимся пламенем с оплавлением и горящими потеками полимера. При горении становится прозрачным, это свойство сохраняется длительное время после гашения пламени. Горит без копоти. Горящие капли, при падении с достаточной высоты (около полутора метров), издают характерный звук. При остывании, капли полимера похожи на застывший парафин, очень мягкие, при растирании между пальцами- жирны на ощупь. Дым потухшего полиэтилена имеет запах парафина. Плотность ПЭВД: 0,91-0,92 г/см. куб.

Как определить ПЭНД (полиэтилен низкого давления, высокой плотности) . Более жесткий и плотный чем ПЭВД, хрупок. Проба на горение - аналогична ПЭВД. Плотность: 0,94-0,95 г/см. куб.

Как определить Полипропилен. При внесении в пламя, полипропилен горит ярко светящимся пламенем. Горение аналогично горению ПЭВД, но запах более острый и сладковатый. При горении образуются потеки полимера. В расплавленном виде - прозрачен, при остывании - мутнеет. Если коснуться расплава спичкой, то можно вытянуть длинную, достаточно прочную нить. Капли остывшего расплава жестче, чем у ПЭВД, твердым предметом давятся с хрустом. Дым с острым запахом жженой резины, сургуча.

Как определить Полиэтилентерафталат (ПЭТ) . Прочный, жёсткий и лёгкий материал. Плотность ПЭТФ составляет 1, 36 г/см.куб. Обладает хорошей термостойкостью (сопротивление термодеструкции) в диапазоне температур от - 40° до + 200°. ПЭТФ устойчив к действию разбавленных кислот, масел, спиртов, минеральных солей и большинству органических соединений, за исключением сильных щелочей и некоторых растворителей. При горении сильно коптящее пламя. При удалении из пламени самозатухает.

Полистирол . При сгибании полоски полистирола, легко гнется, потом резко ломается с характерным треском. На изломе наблюдается мелкозернистая структура.Горит ярким, сильно коптящим пламенем (хлопья копоти тонкими паутинками взмывают вверх!). Запах сладковатый, цветочный.Полистирол хорошо растворяется в органических растворителях (стирол, ацетон, бензол).

Как определить Поливинилхлорид (ПВХ). Эластичен. Трудногорюч (при удалении из пламени самозатухает). При горении сильно коптит, в основании пламени можно наблюдать яркое голубовато-зеленое свечение. Очень резкий, острый запах дыма. При сгорании образуется черное, углеподобное вещество (легко растирается между пальцами в сажу).Растворим в четыреххлористом углероде, дихлорэтане. Плотность: 1,38-1,45 г/см. куб.

Как определить Полиакрилат (органическое стекло). Прозрачный, хрупкий материал. Горит синевато-светящимся пламенем с легким потрескиванием. У дыма острый фруктовый запах (эфира). Легко растворяется в дихлорэтане.

Как определить Полиамид (ПА). Материал имеет отличную масло-бензостойкость и стойкость к углеводородным продуктам, которые обеспечивают широкое применение ПА в автомобильной и нефтедобывающей промышленности (изготовление шестерен, искуственных волокон…). Полиамид отличается сравнительно высоким влагопоглощением, которое ограничивает его применение во влажных средах для изготовления ответственных изделий. Горит голубоватым пламенем. При горении разбухает, “пшикает”, образует горящие потеки. Дым с запахом паленого волоса. Застывшие капли очень твердые и хрупкие. Полиамиды растворимы в растворе фенола, концентрированной серной кислоте. Плотность: 1,1-1,13 г/см. куб. Тонет в воде.

Как определить Полиуретан. Основная область применения - подошвы для обуви. Очень гибкий и эластичный материал (при комнатной температуре). На морозе - хрупок. Горит коптящим, светящимся пламенем. У основания пламя голубое. При горении образуются горящие капли-потеки. После остывания, эти капли - липкое, жирное на ощупь вещество. Полиуретан растворим в ледяной уксусной кислоте.

Как определить Пластик АВС . Все свойства по горению аналогичны полистиролу. От полистирола достаточно сложно отличить. Пластик АВС более прочный, жесткий и вязкий. В отличие от полистирола более устойчив к бензину.

Как определить Фторопласт-3. Применяется в виде суспензий для нанесения антикоррозийных покрытий. Не горюч, при сильном нагревании обугливается. При удалении из пламени сразу затухает. Плотность: 2,09-2,16 г/см.куб.

Как определить Фторопласт-4. Безпористый материал белого цвета, слегка просвечивающийся, с гладкой, скользкой поверхностью. Один из лучших диэлектриков! Не горюч, при сильном нагревании плавится. Не растворяется практически ни в одном растворителе. Самый стойкий из всех известных материалов. Плотность: 2,12-2,28 г/см.куб. (зависит от степени кристалличности - 40-89%).

Физико-химические свойства отходов пластмасс по отношению к кислотам

Наименование
отхода
Воздействующие факторы
H 2 SO 4 (к)
Хол.
H 2 SO 4 (к)
Кипяч.
HNO 3 (к)
Хол.
HNO 3 (к)
Кипяч.
HCl (к)
Хол.
HCl (к)
Кипяч.
Бутылки
из-под
кока-колы
Без изменений
Приобрели окраску
Сворачива-ются
Без изменений
Без изменений
Без изменений
Образцы свернулись
Пластико-вые пакеты
Без изменений
Практически растворились
Без изме-нений
Без изменений
Без изменений
Образцы
раствори-лись

Физико - химический свойств отходов пластмасс отходов пластмасс по отношению к щелочам

ЛЮБОЙ пластик выделяет в содержимое бутылки химикаты разной степени опасности.

На сегодняшний день существует огромное множество разновидностей пластика. Как же не потеряться в мире этих бесконечных наименований?

Давайте разбираться😊

  • ABS – прочный пластик, хорошо поддаётся обработке (механической и химической) – можно довести модели до абсолютно глянцевого состояния, устойчив к щелочам и кислотам, ударопрочный, влагостойкий, температура эксплуатации готовых изделий от -40°С до +90°С. Однако трескается при попадании прямых солнечных лучей (потребуется вскрыть готовое изделие специальным лаком во избежания трещин), проводит электричество, необходимо печатать без обдува, так как также растрескивается при охлаждении, растворяется ацетоном и имеет большую усадку при печати.
  • ABS+ – имеет меньшую усадку, чем обычный ABS, растрескивается при более низкой температуре обдува, имеет лучшее качество на поддержках и более прочный.
  • PLA – экологически чист (зачастую производится из тростника и кукурузы), модели из него хорошо сохраняют форму, имеет минимальную усадку, отлично печатается на поддержках, также имеет высокую вязкость, за счёт чего подходит для печати подшипников, рабочая температура до 60°С, можно печатать на принтерах без подогреваемой платформы. Данный пластик имеет огромное количество цветов, посмотреть которые Вы можете, перейдя по ссылке. При довольно неплохих характеристиках всё же имеются и недостатки: биологически разлагаем (срок эксплуатации изделий уменьшается), низкая температура размягчения, растворяется практически во всех растворителях, представленных на сегодняшний день на рынке.


  • PLA+ – имеет практически те же характеристики, что и обычный PLA, однако обладает гораздо большей прочностью.
  • PETG – очень гибкий и прочный пластик, усадка значительно меньше, чем у ABS, не растрескивается, температура от -40°С до +70°С, практически самый прозрачный пластик на рынке. Из минусов можно отметить растворимость в бензоле.
  • CoPET – пластик без вредных примесей в составе, температура от -40°С до +70°С, не проводит электричество, ударопрочный, не растворяется в большинстве растворителей, однако не стойкий к бензолу.
  • Особенности гибких пластиков:
  • Elastan бывает двух видов: D70 и D100 и отличаются друг от друга степенью жёсткости
  • Plastan также пластичный, однако если его согнуть, первозданную форму он уже не примет
  • Primalloy не растворяется и довольно мягкий по своей структуре
  • TPU по своим характеристикам напоминает резину и очень «чисто» печатает
  • Flex отличный гибкий материал, хорошо поддаётся выгибанию и возвращает себе прежнюю форму

Пластик для 3D принтера: разновидности филаментов

  • POM – идеально подходит для втулок, имеет очень высокий коэффициент скольжения, считается самым прочным пластиком, однако довольно нестабильный, из-за чего тяжело печатается и неточно передаёт форму изделия.
  • PET – более высокотемпературный пластик, однако со временем начинает стекловаться и тем самым изнашивает сопло.
  • Carbon Fiber – это смесь PLA пластика и карбонового порошка (80%:20%). Он жёсткий, матовый и создаёт практически идеально ровные модели, на которых не видно послойность. Минусы такие же, как и у PLA пластика. При использовании неправильного температурного режима может забивать сопло. Для печати данный пластиком необходим 3Д принтер, способный выдерживать очень большие температуры.
  • PC – довольно жёсткий пластик, но имеет сильную усадку.
  • PA (Nylon) – способен выдерживать широкий спектр температур и обладает стойкостью к большинству органических растворителей.
  • PEEK – самый высокотемпературный пластик для FDM печати, отлично подходит для применения в медицине, поскольку его можно стерилизовать.
  • PVA – водорастворимый пластик, используется для печати поддержек, однако имеет непостоянную усадку и плавится при температуре 180°С.
  • HIPS – также водорастворимый пластик, прочный полистирол, растворяется .
  • Металлические пластики – состоят на 80% из PLA пластика и на 20% из порошкового металла (алюминия, меди, бронзы либо латуни). Отлично подходят для декора, так как выглядят практически идентично с изделиями, сделанными из металла. Из-за своего состава быстро изнашивают сопло.
  • Деревянные пластики – отлично подходят для декора. При низких температурах более светлый цвет, при высоких – более тёмный. Также при длительном использовании изнашивают сопло 3Д принтера.

Все вышеперечисленные пластики для Вы можете приобрести в нашем магазине. Обращайтесь, с удовольствием проконсультируем Вас!

28.03.2018

Понятие прочности пластмассы с точки зрения обывателя и инженера сильно отличается. Если мы говорим о бытовой прочности, то имеем в виду простое понимание по признаку "ломается - не ломается". Та же характеристика для производства, строительства, дизайна имеет множество аспектов, при изучении которых выясняется, что все материалы обладают рядом признаков, по которым можно определить их назначение и возможность использования в определенных целях.

К сожалению, указать на самый прочный полимер не получится по объективным причинам. Это объясняется тем, что физические и прочностные характеристики классифицированы по широкому ряду признаков, совокупность которых определяет понятие прочности. Это зависит от свойств самого пластика, его структуры и реакции на изменение внешних условий. Например, считается "прочной" для создания бетонных монолитов, но проявляет крайне слабую стойкость к изгибу, ломается. Аналогичные противоречия для неспециалиста можно найти в свойствах любого полимера и основанного на нем материала - пластмассы.

Характеристики прочности, твердости, упругости пластика

В понятие прочности (характера реакции на физические нагрузки) принято включать результаты испытания материала по нескольким критериям. В зависимости от того, какое усилие было приложено к образцу, можно выяснить характеристики полимера, его способность сопротивляться определенной профильной нагрузке:

    прочность на сжатие - сохранение физической структуры и формы образца при сдавливании;

    прочность на разрыв характеризует способность образца сопротивляться растягивающему усилию;

    деформационная прочность - критерий, указывающий на способность противостоять деформации и возвращаться в исходное положение;

    предел пластичности - минимальное усилие, при котором материал "потечет", потянется, не возвращаясь в исходную форму;

    ударная вязкость - способность поглотить энергию удара без разрушения структуры;

    твердость - величина, обратная пластичности, предел сохранения формы при усилии.

В зависимости от того, какого рода нагрузки будут восприниматься изделием в процессе производства, обработки и эксплуатации, подбирается материал с определенными свойствами. Поэтому говорить о самом прочном полимере бесполезно. ? - это вопрос, требующий комплексного ответа, рассмотрения совокупности признаков.

Прочность разных видов пластиков

Практические примеры оценки прочностных характеристик разных пластиков и пластмасс показывают, насколько сложно пересекаются их свойства при глубоком профессиональном рассмотрении.

Деформационная прочность

Полистирол, поликарбонат, полиметилметакрилат характеризуются как механически прочные материалы при различных напряжениях, но деформационная нагрузка быстро вызывает их разрушение. При значительном ударном воздействии прочность окажется низкой, но для разрушения твердого пластика потребуется значительное деформирующее усилие. Итак, твердость пластика говорит о его прочности, ограниченной ударной вязкости и хрупкости при деформации. Неспециалисту в этом легко запутаться.

Гибкость и пластичность

Полиэтилен и полипропилен относятся к группе пластичных материалов - они незначительно спопротивляются деформации, но при этом долгое время не ломаются при такой нагрузке. Эта способность характеризуется начальным модулем упругости - первоначальное сопротивление деформирующему усилию достаточно большое, но после преодоления определенного предела начинается деформация. Гибкие пластики можно характеризовать как менее прочные, но обладающие высокими показателями ударовязкости. Они хорошо поглощают энергию извне, при ударе и нагрузке, долго меняют форму, не "ломаются". Именно поэтому применяется там, где нужна высокая гибкость материала, способность выдерживать значительное усилие с сохранением формы.

Прочные волокна пластиков

Материалы типа кевлара, нейлона и углеродного волокна обладают высокой прочностью, сравнимой с твердыми пластиками, они ограниченно воспринимают ударные нагрузки, способны долго сопротивляться деформации. Главное их достоинство - способность долго сопротивляться усилию на разрыв. Именно поэтому волокна используются там, где велика вероятность нагрузки на растяжение. Пример тому кевлар, способный не разрываться при усилиях, разрывающих сталь.