Расчет теплоотдачи радиатора тиристоров. Радиаторы для полупроводниковых приборов

Приведена методика, на примере процессора Intel Pentium4 Willamette 1.9 ГГц и кулера B66-1A производства компании ADDACorporation, описывающая порядок расчета ребристых радиаторов, предназначенных для охлаждения тепловыделяющих элементов РЭА с принудительной конвекцией и плоскими поверхностями теплового контакта мощностью до 100 Вт. Методика позволяет произвести практический расчет современных высокоэффективных малогабаритных устройств для отвода тепла и применить их ко всему спектру устройств радиоэлектроники нуждающихся в охлаждении.

Параметры, задаваемые в исходных данных:

P = 67 Вт, мощность выделяемая охлаждаемым элементом;

q с = 296 °К, температура среды (воздуха) в градусах Кельвина;

q пред = 348 °К, предельная температура кристалла;

q р = nn °K , средняя температура основания радиатора (вычисляется в процессе расчета);

H = 3 10 -2 м, высота ребра радиатора в метрах;

d = 0,8 10 -3 м, толщина ребра в метрах;

b = 1,5 10 -3 м, расстояние между ребрами;

l м = 380 Вт/(м °К), коэффициент теплопроводности материала радиатора;

L =8,3 10 -2 м, размер радиатора вдоль ребра в метрах;

B = 6,9 10 -2 м, размер радиатора поперек ребер;

А = 8 10 -3 м, толщина основания радиатора;

V ³ 2 м/сек, скорость воздуха в каналах радиатора;

Z = 27, число ребер радиатора;

u р = nn K , температура перегрева основания радиатора, вычисляется в процессе расчета;

e р = 0,7, степень черноты радиатора.

Предполагается, что источник тепла расположен по центру радиатора.

Все линейные размеры измеряются в метрах, температура в градусах Кельвина, мощность в ваттах, а время в секундах.

Конструкция радиатора и необходимые для расчетов параметры показана на Рис.1.

Рисунок 1.

Порядок расчета.

1. Определяем суммарную площадь сечения каналов между ребрами по формуле:

S к = (Z - 1)·b · H

Для принятых исходных данных - S к = (Z - 1)·b ·H = (27-1) ·1,5 10 -3 ·3 10 -2 = 1,1 10 -3 м 2

Для центральной установки вентилятора, воздушный поток выходит через две торцевые поверхности и площадь сечения каналов удваивается и равняется 2,2 10 -3 м 2 .

2. Задаемся двумя значениями температуры основания радиатора и проводим расчет для каждого значения:

q р = { 353 (+80°С) и 313 (+40°С)}

Отсюда определяется температура перегрева основания радиатора u р относительно окружающей среды.

u р = q р - q с

Для первой точки u р = 57°К, для второй u р = 17°К.

3. Определяем температуру q , необходимую для расчета критериев Нуссельта (Nu ) и Рейнольдса (Re ):

q = q с + P / (2 · V · S к · r · C р)

где: q с температура окружающего воздуха, среды,

V – скорость воздуха в каналах между ребрами, в м/сек;

S к – суммарная площадь поперечного сечения каналов между ребрами,в м 2 ;

r - плотность воздуха при температуре q ср, в кг/м 3 ,

q ср = 0,5 (q р + q с) ;

C р – теплоемкость воздуха при температуре q ср, в Дж/(кг х °К);

P – мощность отводимая радиатором.

Для принятых исходных данных - q = q с + P /(2·V ·S к ·r ·C р) = 296 К+67/(2·2м/сек·1,1 10 -3 м 2 ·1,21·1005) = 302,3°К (29,3°С)

* Величина, для данного ребристого радиатора с центральной установкой вентилятора, V из расчетов 1,5 - 2,5 м/сек (См. Приложение 2), из публикаций [Л.3] около 2 м/сек. Для коротких, расширяющихся каналов, как например у кулера Golden Orb скорость охлаждающегося воздуха может достигать 5 м/сек.

4. Определяем величины критериев Рейнольдса и Нуссельта, необходимые для расчета коэффициента теплоотдачи ребер радиатора:

Re = V ·L /n

где: n - коэффициент кинематической вязкости воздуха приq с, м 2 из Приложения1, таблица 1.

Для принятых исходных данных - Re = VL/ n = 2·8,3 10 -2 / 15,8 10 -6 = 1,05 10 4

Nu = 0,032 Re 0,8

Для принятых исходных данных - Nu = 0,032 Re 0,8 = 0,032 (2,62 10 4) 0,8 = 52,8

5. Определяем коэффициент конвективного теплообмена ребер радиатора:

a к = Nu · l в / L Вт / (м 2 К)

где, l - коэффициент теплопроводности воздуха (Вт/(м град)), при q с из Приложения 1, таблица1.

Для принятых исходных данных - a к = Nu· l в / L = 52,8 · 2,72 10 -2 / 8,3 10 -2 = 17,3

6. Определяем вспомогательные коэффициенты:

m = (2 · a к / l м · d ) 1/2

определяем значение mh и тангенса гиперболического th (mh ).

Для принятых исходных данных - m = (2 · a к / l м · d ) 1/2 = (2 · 17,3 /(380 · 0,8 10 -3)) 1/2 = 10,6

Для принятых исходных данных - m·H = 10,6 · 3 10 -2 = 0,32; th (m·H ) = 0,31

7. Определяем количество тепла, отдаваемое конвекцией с ребер радиатора:

P рк = Z · l м · m · S р · u р · th(m·H)

где: Z – число ребер;

l м = коэффициент теплопроводности металла радиатора, Вт/(м · °К);

m – см. формулу 7;

S р – площадь поперечного сечения ребра радиатора, м 2 ,

S р = L · d

u р – температура перегрева основания радиатора.

S р = L · d = 8,3 10 -2 · 0,8 10 -3 = 6,6 10 -5 м 2

P рк = Z · l м · m · S р · u р · th (m ·H ) = 27 · 380 · 10,6 · 6,6 10 -5 · 57 · 0,31 = 127 Вт.

8. Определяем среднюю температуру ребра радиатора:

q ср = (q р /2) [ 1 + 1 / ch (m ·H )]

где: ch (mH ) – косинус гиперболический.

Для принятых исходных данных - q ср = (q р /2) [ 1 + 1 / ch (m ·H )] = (353/2) =344°K (71°С)

*Величина тангенса и косинуса гиперболических вычисляется на инженерном калькуляторе путем последовательного выполнения операций “hyp ” и “tg ” или ”cos ”.

9. Определяем лучистый коэффициент теплообмена:

a л = e р · f (q ср, q с) · j

f (q ср, q с) = 0,23 [ 5 10 -3 (q ср + q с)] 3

Для принятых исходных данных - f (q ср, q с) = 0,23 [ 5 10 -3 (q ср + q с)] 3 = 0,23 3 = 7,54

Коэффициент облученности:

j = b / (b + 2h )

j = b / (b + 2H ) = 1,5 10 -3 / (1,5 10 -3 + 3 10 -2) = 0,048

a л = e р f (q ср, q с) j = 0,7 х 7,54 х 0,048 = 0,25 Вт/м 2 К

10. Определяем площадь поверхности излучающей тепловой поток:

S л = 2 L [ (Z -1) · (b + d ) + d ] +2 H · L · Z (м 2)

Для принятых исходных данных - S л = 2 L [(Z -1) · (b + d ) + d ] +2 H · L · Z = 0,1445 м 2

11. Определяем количество тепла отдаваемое через излучение:

P л = a л · S л (q ср - q с)

Для принятых исходных данных - P л = a л S л (q ср - q с) = 0,25 · 0,1445 · (344 – 296) = 1,73 Вт

12. Общее количество тепла отдаваемое радиатором при заданной температуре радиатора q р = 353К:

P = P рк + P л

Для принятых исходных данных - P = P рк + P л = 127 + 1,73 = 128,7 Вт.

13. Повторяем вычисления для температуры радиатора q р = 313К, и строим по двум точкам тепловую характеристику рассчитанного радиатора. Для этой точки Р=38Вт. Здесь по вертикальной оси откладывается количество тепла отдаваемое радиатором P р , а по горизонтальной температура радиатора q р .

Рисунок 2

Из полученного графика определяем для заданной мощности 67Вт, q р = 328 °К или 55°С.

14. По тепловой характеристике радиатора определяем что при заданной мощности P р =67Вт, температура радиатора q р =328,5°С. Температуру перегрева радиатора u р можно определяем по формуле 2.

Она равна u р = q р - q с = 328 – 296 = 32°К.

15. Определяем температуру кристалла и сравниваем её с предельным значением установленным производителем

q к = q р + Р (r пк + r пр) °К = 328+67(0,003+0,1)=335 (62°С),

q р температура основания радиатора для данной расчетной точки,

Р – результат вычисления по формуле 14,

r пк - тепловое сопротивление корпус процессора - кристалл, для данного теплового источника равна 0,003 К/Вт

r пр – тепловое сопротивление корпус-радиатор, для данного теплового источника равна 0,1К/Вт (с теплопроводящей пастой).

Полученный результат ниже определенной производителем предельной температуры, и близко данным [Л.2] (порядка 57°С). При этом температура перегрева кристалла относительно окружающего воздуха в приведенных расчетах 32°С, а в [Л.2] 34°С.

В общем виде, тепловое сопротивление между двумя плоскими поверхностями при применении припоев, паст и клеев:

r = d к · l к -1 · S конт -1

где: d к – толщина зазора между радиатором и корпусом охлаждаемого узла, заполненного теплопроводящим материалом в м,

l к – коэффициент теплопроводности теплопроводящего материала в зазоре Вт/(м К),

S конт – площадь контактной поверхности в м 2 .

Приближенное значение r кр при достаточной затяжке и без прокладок и смазок равно

r кр = 2,2 / S конт

При применении паст, тепловое сопротивление падает примерно в 2 раза.

16. Сравниваем q к с q пред , мы получили радиатор обеспечивающий q к = 325°K , меньше q пред = 348°К, - заданный радиатор обеспечивает с запасом тепловой режим узла.

17. Определяем тепловое сопротивление рассчитанного радиатора:

r = u р / P (°К/Вт)

r = u р / P (°/Вт) = 32/67 = 0,47°/Вт

Выводы:

Рассчитанный теплообменник обеспечивает отвод тепловой мощности 67Вт при температуре окружающего воздуха до 23°С, при этом температура кристалла 325 °К (62°С) не превышает допустимую для данного процессора 348°К (75°С).

Применение специальной обработки поверхности для увеличения отдачи тепловой мощности через излучение на температурах до 50°С оказалось неэффективно и не может быть рекомендовано, т.к. не окупает затрат.

Хотелось бы, чтобы данный материал помог Вам не только рассчитать и изготовить современный малогабаритный высокоэффективный теплообменник, подобный тем, что широко применяются в компьютерной технике, но и грамотно принимать решения по применению подобных устройств, применительно к Вашим задачам.

Приложение 1.

Константы для расчета теплообменника.

Таблица 1

q с, К (°С) l *10 -2
Вт/(м К)
n * 10 6 м 2 /сек Ср Дж/(кг*К) r , кг/м 2
273 (0)td> 2,44 13,3 1005 1,29
293 (20) 2,59 15,1 1005 1,21
373 (100) 3,21 23,1 1009 0,95

Значения констант для промежуточных значений температур, в первом приближении, можно получить построив графики функций для указанных в первом столбце температур.

Приложение 2.
Расчет скорости движения воздуха охлаждающего радиатор.

Скорость движения теплоносителя при вынужденной конвекции в газах:

V = Gv /S к

Где: Gv – объемный расход теплоносителя, (для вентилятора 70х70, S пр = 30 см 2 , 7 лопастей, P эм = 2,3Вт, w = 3500 об/мин, Gv = 0,6-0,8 м 3 /мин. или реально 0,2-0,3 или V = 2м/сек),

S к – свободная для прохода площадь поперечного сечения канала.

Учитывая, что площадь проходного сечения вентилятора 30 см 2 , а площадь каналов радиатора 22 см 2 , скорость продувки воздуха определяется меньшим, и будет равна:

V = Gv /S = 0,3 м 3 /мин / 2,2 10 -3 м 2 =136 м/мин = 2,2 м/сек.

Для расчетов принимаем, 2 м/сек.

Литература:

    Справочник конструктора РЭА, под ред.. Р.Г.Варламова, М, Советское радио, 1972;

    Справочник конструктора РЭА, под ред.. Р.Г.Варламова, М, Советское радио, 1980;

    http://www.ixbt.com/cpu/ , Кулеры для Socket 478, сезон весна-лето 2002, Виталий Криницин , Опубликовано - 29 июля 2002 г;

    http://www.ixbt.com/cpu/ , Измерение скоростей воздуха за охлаждающими вентиляторами и кулерами, Александр Цикулин, Алексей Рамейкин, Опубликовано - 30 августа 2002 г.

Подготовил в 2003 году по материалам Л.1 и 2

Устройство и принципы функционирования радиатора для светодиодов. Правила выбора материала и площади детали. Делаем радиатор своими руками легко и быстро.

Распространенное мнение, что светодиоды не нагреваются – заблуждение. Возникло оно потому, что маломощные светодиоды на ощупь не горячие. Все дело в то, что они оснащены отводчиками тепла – радиаторами.

Принцип действия теплоотвода

Главным потребителем тепла, выделяемого светодиодом, является окружающий воздух. Его холодные частицы подходят к нагретой поверхности теплообменника (радиатора), нагреваются и устремляются вверх, освобождая место новым холодным массам.

При столкновении с другими молекулами происходит распределение (рассеивание) тепла. Чем больше площадь поверхности радиатора, тем интенсивнее он передаст тепло от светодиода воздуху.

Подробнее о принципах работы светодиодов читайте .

Количество поглощенного воздушной массой тепла с единицы площади не зависит от материала радиатора: эффективность естественного «теплового насоса» ограничено его физическими свойствами.

Материалы для изготовления

Радиаторы для охлаждения светодиодов различаются по конструкции и материалу.

Окружающий воздух может принять не более 5-10 Вт с единичной поверхности. При выборе материала для изготовления радиатора следует принять во внимание выполнение следующего условия: теплопроводность его должна быть не менее 5-10 Вт. Материалы с меньшим параметром не смогут обеспечить передачу всего тепла, которое может принять воздух.

Теплопроводность выше 10 Вт будет технически избыточной, что повлечет за собой неоправданные финансовые затраты без увеличения эффективности радиатора.

Для изготовления радиаторов традиционно используют алюминий, медь или керамику. В последнее время появились изделия, выполненные из теплорассеивающих пластмасс.

Алюминиевые

Основным недостатком алюминиевого радиатора является многослойность конструкции. Это неизбежно приводит к возникновению переходных тепловых сопротивлений, преодолевать которые приходится с помощью применения дополнительных теплопроводящих материалов:

  • клейких веществ;
  • изолирующих пластин;
  • материалов, заполняющих воздушные промежутки и пр.

Алюминиевые радиаторы встречаются чаще всего: они хорошо прессуются и вполне сносно справляется с отводом тепла.

Алюминиевые радиаторы для светодиодов 1 вт

Медные

Медь обладает большей теплопроводностью, чем алюминий, поэтому в некоторых случаях ее использование для изготовления радиаторов оправдано. В целом же данный материал уступает алюминию в плане легкости конструкции и технологичности (медь – менее податливый металл).

Изготовление медного радиатора методом прессования – наиболее экономичным – невозможно. А обработка резанием дает большой процент отходов дорогостоящего материала.

Медные радиаторы

Керамические

Одним из наиболее удачных вариантов теплоотводчика является керамическая подложка, на которую предварительно наносятся токоведущие трассы. Непосредственно к ним и подпаиваются светодиоды. Такая конструкция позволяет отвести в два раза больше тепла по сравнению с металлическими радиаторами.

Лампочка с керамическим радиатором

Пластмассы теплорассеивающие

Все чаще появляется информация о перспективах замены металла и керамики на терморассеивающую пластмассу. Интерес к этому материалу понятен: стоит пластмасса намного дешевле алюминия, а ее технологичность намного выше. Однако теплопроводность обычной пластмассы не превышает 0,1-0,2 Вт/м.К. Добиться приемлемой теплопроводности пластмассы удается за счет применения различных наполнителей.

При замене алюминиевого радиатора на пластмассовый (равной величины) температура в зоне подвода температур возрастает всего на 4-5%. Учитывая, что теплопроводность теплорассеивающей пластмассы намного меньше алюминия (8 Вт/м.К против 220-180 Вт/м.К), можно сделать вывод: пластический материал вполне конкурентоспособен.

Лампочка с радиатором из термопластика

Конструктивные особенности

Конструктивные радиаторы делятся на две группы:

  • игольчатые;
  • ребристые.

Первый тип, в основном, применяется для естественного охлаждения светодиодов, второй – для принудительного. При равных габаритных размерах пассивный игольчатый радиатор на 70 процентов эффективнее ребристого.

Радиаторы игольчатого типа для мощных и смд светодиодов

Но это не значит, что пластинчатые (ребристые) радиаторы годятся только для работы в паре с вентилятором. В зависимости от геометрических размеров, они могут применяться и для пассивного охлаждения.

LED-лампа с ребристым радиатором

Обратите внимание на расстояние между пластинами (или иглами): если оно составляет 4 мм – изделие предназначено для естественного отвода тепла, если зазор между элементами радиатора всего 2 мм – его необходимо комплектовать вентилятором.

Оба типа радиаторов в поперечном сечении могут быть квадратными, прямоугольными или круглыми.

Расчет площади радиатора

Методики точного расчета параметров радиатора предполагают учет множество факторов:

  • параметры окружающего воздуха;
  • площадь рассеивания;
  • конфигурацию радиатора;
  • свойства материала, из которого изготовлен теплообменник.

Но все эти тонкости нужны для проектировщика, разрабатывающего теплоотвод. Радиолюбители чаще всего используют старые радиаторы, взятые из отслужившей свой срок радиоаппаратуры. Все, что им надо знать – какова максимальная рассеиваемая мощность теплообменника.

Ф = а х Sх (Т1 – Т2), где

  • Ф – тепловой поток (Вт);
  • S – площадь поверхности радиатора (сумма площадей всех ребер или иголок и подложки в кв. м). Подсчитывая площадь, следует иметь в виду, что ребро или пластина имеет две поверхности отвода тепла. То есть площадь теплоотвода прямоугольника площадью 1 см2 составит 2 см2. Поверхность иглы рассчитывается как длина окружности (π х D), умноженная на ее высоту;
  • Т1 – температура теплоотводящей среды (граничной), К;
  • Т2 – температура нагретой поверхности, К;
  • а – коэффициент теплоотдачи. Для неполированных поверхностей принимается равным 6-8 Вт/(м2К).

Есть еще одна упрощенная формула, полученная экспериментальным путем, по которой можно рассчитать необходимую площадь радиатора:

S = x W, где

  • S – площадь теплообменника;
  • W – подведенная мощность (Вт);
  • M – незадействованная мощность светодиода.

Для ребристых радиаторов, изготовленных из алюминия, можно воспользоваться примерными данными, представленными тайваньскими специалистами:

  • 1 Вт – от 10 до 15 см2;
  • 3 Вт – от 30 до 50 см2;
  • 10 Вт – около 1000 см2;
  • 60 Вт – от 7000 до 73000 см2.

Однако следует учесть, что вышеприведенные данные неточные, так как они указываются в диапазонах с достаточно большим разбегом. К тому же определены данные величины для климата Тайваня. Их можно использовать только для проведения предварительных расчетов.

Получить наиболее достоверный ответ об оптимальном способе расчета площади радиатора можно на следующем видео:

Сделать своими руками

Радиолюбители редко берутся за изготовление радиаторов, поскольку этот элемент – вещь ответственная, напрямую влияющая на долговечность светодиода. Но в жизни бывают разные ситуации, когда приходится мастерить теплоотводчик из подручных средств.

Вариант 1

Самая простая конструкция самодельного радиатора – круг, вырезанный из листа алюминия с выполненными на нем надрезами. Полученные сектора немного отгибаются (получается нечто, похожее на крыльчатку вентилятора).

По осям радиатора отгибаются 4 усика для крепления конструкции к корпусу лампы. Светодиод можно закрепить через термопасту саморезами.

Вариант 1 – самодельный радиатор из алюминия

Вариант 2

Радиатор для светодиода можно изготовить своими руками из куска трубы прямоугольного сечения и алюминиевого профиля.

Необходимые материалы:

  • труба 30х15х1,5;
  • пресс-шайба диаметром 16 мм;
  • термоклей;
  • термопаста КТП 8;
  • профиль 265 (Ш-образный);
  • саморезы.

В трубе для улучшения конвекции сверлятся три отверстия диаметром 8 мм, а в профиле – отверстия диаметром 3,8 мм – для его крепления саморезами.

Светодиоды приклеиваются к трубе – основанию радиатора – при помощи термоклея.

В местах соединения деталей радиатора наносится слой термопасты КТП 8. Затем производится сборка конструкции с помощью саморезов с пресс шайбой.

Способы крепления светодиодов к радиатору

Светодиоды прикрепляют к радиаторам двумя способами:

  • механическим;
  • приклеиванием.

Приклеить светодиод можно на термоклей. Для этого на металлическую поверхность наносится капелька клеящей массы, затем на нее садится светодиод.

Для получения прочного соединения светодиод необходимо на несколько часов придавить небольшим грузом – до полого высыхания клея.

Однако большинство радиолюбителей предпочитают механическое крепление светодиодов. Сейчас выпускаются специальные панели, с помощью которых можно быстро и надежно смонтировать светодиод.

В некоторых моделях предусмотрены зажимы для вторичной оптики. Монтаж выполняется просто: на радиатор устанавливается светодиод, на него – панелька, которая крепится к основанию саморезами.

Но не только радиаторы для светодиода можно изготовить самостоятельно. Любителям заниматься растениями рекомендуем ознакомиться со светодиодной .

Качественное охлаждение светодиода является залогом долговечности светодиода. Поэтому к подбору радиатора следует подходить со всей серьезностью. Лучше всего использовать готовые теплообменники: они продаются в магазинах радиотоваров. Стоят радиаторы недешево, зато легко монтируются и светодиод защищает от избытка тепла надежнее.

Радиаторы для полупроводниковых приборов

Во время работы мощные полупроводниковые приборы выделяют в окружающую среду определенную теплоту. Если не позаботиться об их охлаждении, транзисторы и диоды могут выйти из строя из-за перегрева рабочего кристалла. Обеспечение нормального теплового режима транзисторов (и диодов) - одна из важных задач. Для правильного решения этой задачи нужно иметь представление о работе радиатора и технически грамотном его конструировании.

Как известно, любой нагретый предмет охлаждаясь отдает тепло окружающей среде. Пока количество тепла, выделяющегося в транзисторе, больше отдаваемого им среде - температура корпуса транзистора будет непрерывно возрастать. При некотором ее значении наступает так называемый тепловой баланс, то есть равенство количеств рассеиваемого и выделяемого тепла. Если температура теплового баланса меньше максимально допустимой для транзистора - он будет надежно работать. Если эта температура выше допустимой максимальной температуры - транзистор выйдет из строя. Для того, чтобы тепловой баланс наступал при более низкой температуре, необходимо увеличить теплоотдачу транзистора.

Известны три способа передачи тепла: Теплопроводность, Лучеиспускание и Конвекция. Теплопроводность воздуха обычно мала - этим значением при расчете радиатора можно пренебречь. Доля тепла, рассеиваемая лучеиспусканием значительна лишь при высоких температурах (несколько сотен градусов по Цельсию), поэтому этой величиной при относительно низких температурах работы транзисторов (не более 60-80 градусов) также можно пренебречь. Конвекция - это движение воздуха в зоне нагретого тела, обусловленное разностью температур воздуха и тела. Количество тепла, отдаваемого нагретым предметом, пропорционально разности температур предмета и воздуха, площади поверхности и скорости воздушного потока, омывающего тело.

В молодости я столкнулся с оригинальным решением отвода тепла от мощных выходных транзисторов. Транзисторы (тогда для построения усилителей применяли транзисторы типа П210) на длинных проводах находились вне корпуса. К корпусу были прикручены две пластиковые баночки с водой, а транзисторы лежали в них. Таким образом было обеспечено "водяное" эффективное охлаждение. Когда вода в баночках нагревалась - ее просто заменяли на холодную... Вместо воды можно использовать минеральное (жидкое) или трансформаторное масло... Сейчас промышленность начала серийно выпускать водяные системы охлаждения процессоров и видеокарт компьютеров - по принципу автомобильных радиаторов (но это - уже, на мой взгляд, экзотика...).

Для обеспечения эффективного отвода тепла от кристалла полупроводника применяют теплоотводы (радиаторы). Познакомимся с некоторыми из конструкций радиаторов.

На приведенных рисунках показаны четыре разновидности теплоотводов.

Простейшим из них является пластинчатый радиатор. Площадь его поверхности равна сумме площадей двух сторон. Идеальной формой такого теплоотвода является круг, далее идут квадрат и прямоугольник. Пластинчатый радиатор целесообразно применять при небольших мощностях рассеивания. Устанавливаться такой радиатор должен вертикально, в противном случае - эффективная площадь рассеяния снижается.

Усовершенствованный пластинчатый теплоотвод представляет собой набор из нескольких пластин, загнутых в разные стороны. Этот радиатор при площади поверхности равной простейшему пластинчатому имеет меньшие габариты. Устанавливается такой теплоотвод аналогично пластинчатому. Количество пластин может быть различным - в зависимости от необходимой поверхности. Площадь рассеивания такого радиатора равна сумме площадей всех загнутых участков пластин, плюс площадь поверхности центральной части. Это тип радиатора имеет и недостатки: пониженную эффективность отвода тепла от всех пластин, а также невозможность получения идеально прямой поверхности в местах соединения пластин между собой.

Для изготовления пластинчатых радиаторов следует использовать пластины с толщиной не менее 1,5 (лучше - 3) миллиметров.

Ребристый радиатор - обычно цельнолитой, либо фрезерованный - может быть с одно или двухсторонним оребрением. Двухстороннее оребрение позволяет увеличить площадь поверхности. Площадь поверхности такого теплоотвода равна сумме площадей поверхности всех пластин и сумме площади поверхности основного тела радиатора.

Самым эффективным из всех перечисленных является штыревой (или игольчатый) радиатор. При минимальном объеме такой радиатор имеет максимальную эффективную площадь рассеивания. Площадь поверхности такого теплоотвода равна сумме площадей каждого штырька и площади основного тела.

Также существуют теплоотводы с принудительной подачей воздуха (пример - кулер процессора в вашем компьютере). Эти теплоотводы при небольшой площади поверхности радиатора способны рассеивать в окружающую среду значительные мощности (к примеру - процессор среднего быстродействия Р-1000 выделяет, в зависимости от загрузки 30-70 ватт тепловой энергии). Недостаток таких теплоотводов - повышенный шум при эксплуатации и ограниченный срок работы (механический износ вентилятора).

Материалом для радиаторов обычно служит алюминий и его сплавы. Лучшей эффективностью обладают теплоотводы, выполненные из меди, но вес и стоимость таких радиаторов выше, чем у алюминиевых.

Полупроводниковый прибор крепится на теплоотвод при помощи специальных фланцев. Если необходимо изолировать прибор от радиатора - применяются различные изоляционные прокладки. Применение прокладок снижает эффективность передачи тепла от кристалла, поэтому, если есть возможность - лучше изолировать теплоотвод от шасси конструкции. Для более эффективного отвода тепла поверхность, которая соприкасается с полупроводниковым прибором, должна быть ровной и гладкой. Для повышения эффективности применяют специальные термопасты (например "КПТ-8"). Применение термопаст способствует уменьшению теплового сопротивления участка "корпус - теплоотвод" и позволяет несколько понизить температуру кристалла. В качестве прокладок используют слюду, различные пленки из пластмассы, керамику. В свое время мной было получено авторское свидетельство по способу изолирования корпуса транзистора от теплоотвода. Суть данного метода заключается в следующем: Поверхность теплоотвода покрывается тонким слоем термопасты (например типа КПТ-8), на поверхность пасты наносится (методом насыпания) слой кварцевого песка (я использовал песок из плавкого предохранителя), далее излишек песка удаляется стряхиванием и транзистор плотно прижимается при помощи хомута, изготовленного из изоляционного материала. При заводских испытаниях данного метода "прокладка" выдерживала кратковременно подачу напряжения в 1000 вольт (от мегометра).

Некоторые зарубежные мощные транзисторы выпускаются в изолированном корпусе - такой транзистор можно крепить непосредственно к теплоотводу без применения каких либо прокладок (но это не исключает применения термопаст!).

Источником тепла в системе транзистор-радиатор-окружающая среда является коллекторный P-N переход. Весь путь тепла в этой системе можно разделить на три участка: переход - корпус транзистора, корпус транзистора - теплоотвод, теплоотвод - окружающая среда. Вследствие неидеальности передачи тепла температуры перехода, корпуса транзистора и окружающей среды существенно отличаются. Это происходит потому, что тепло на своем пути встречает некоторое сопротивление, называемое тепловым сопротивлением. Это сопротивление равно отношению разности температур на границах участка к рассеиваемой мощности. Сказанное можно проиллюстрировать примером: по справочнику тепловое сопротивление переход-корпус транзистора П214 равно 4 градуса Цельсия на ватт. Это означает, что в случае рассеивания на переходе мощности в 10 ватт, переход будет "теплее" корпуса на 4*10=40 градусов! Если учесть при этом тот факт, что максимальная температура перехода равна 85 градусам, то станет ясно, что температура корпуса при указанной мощности не должна превышать 85-40= 45 градусов Цельсия. Наличие теплового сопротивления радиатора является причиной существенного различия температуры его участков, разноудаленных от места установки транзистора. Это означает, что в активной отдаче тепла участвует не вся поверхность радиатора, а лишь часть ее, которая имеет наиболее высокую температуру и поэтому наилучшим образом омывается воздухом. Эта часть и называется эффективной поверхностью радиатора. Она будет тем больше, чем выше теплопроводящая способность радиатора. Теплопроводящая способность радиатора зависит от свойств материала из которого изготовлен теплоотвод и его толщины. Вот поэтому для изготовления теплоотводов используют медь или алюминий.

Полный расчет радиатора - очень трудоемкий процесс. Для грубого расчета можно использовать следующие данные: Для рассеивания 1 ватта тепла, выделяемого полупроводниковым прибором, достаточно использовать площадь теплоотвода, равную 30 квадратным сантиметрам.

Обозначение диода

Макс. темпер.

окр. среды

Площадь радиатора

КД202А,КД202В

БЕЗ РАДИАТОРА

КД202Д,КД202Ж

КД202К,КД202М

КД202Б,КД202Г

КД202Е,КД202И

КД202Л,КД202Н


В журнале "Радиоаматор-Конструктор" была опубликована статья неизвестного автора по методике упрощенного расчета радиаторов. .

Литература

Во время работы полупроводникового прибора в его кристалле выделяется мощность, которая приводит к разогреву последнего. Если тепла выделяется больше, чем рассеивается в окружающем пространстве, то температура кристалла будет расти и может превысить максимально допустимую. При этом его структура будет необратимо разрушена.

Следовательно, надежность работы полупроводниковых приборов во многом определяется эффективностью их охлаждения . Наиболее эффективным является конвективный механизм охлаждения, при котором тепло уносит поток газообразного или жидкого теплоносителя, омывающего охлаждаемую поверхность.

Чем больше охлаждаемая поверхность, тем эффективнее охлаждение, и поэтому мощные полупроводниковые приборы нужно устанавливать на металлические радиаторы, имеющие развитую охлаждаемую поверхность. В качестве теплоносителя обычно используется окружающий воздух.

По способу перемещения теплоносителя различают :

  • естественную вентиляцию;
  • принудительную вентиляцию.

В случае естественной вентиляции перемещение теплоносителя осуществляется за счет тяги, возникающей возле нагретого радиатора. В случае принудительной вентиляции перемещение теплоносителя осуществляется с помощью вентилятора. Во втором случае можно получить большие скорости потока и, соответственно, лучшие условия охлаждения.

Тепловые расчеты можно сильно упростить, если использовать тепловую модель охлаждения (рис. 18.26) Здесь разница между температурой кристалла T J и температурой среды Т A вызывает тепловой поток, движущийся от кристалла к окружающей среде, через тепловые сопротивления R JC (кристалл - корпус), R CS (корпус - радиатор) и R SA (радиатор - окружающая среда).

Рис 18.26. Тепловая модель охлаждения

Тепловое сопротивление имеет размерность °С/Вт. Суммарное максимальное тепловое сопротивление R JA на участке кристалл - окружающая среда можно найти по формуле:

где Р ПП - мощность, рассеиваемая на кристалле полупроводникового прибора, Вт.

Тепловое сопротивление R JC и R CS указывается в справочных данных на полупроводниковые приборы. Например, согласно справочным данным, на транзистор IRFP250N, его тепловое сопротивление на участке кристалл- радиатор равно R JC + R CS = 0,7 + 0,24 = 0,94 °С/ Вт.

Это означает, что если на кристалле выделяется мощность 10 Вт, то его температура будет на 9,4 °С больше температуры радиатора.

Тепловое сопротивление радиатора можно найти по формуле:

На рис. 18.27 приводятся графические зависимости между периметром сечения алюминиевого радиатора и его тепловым сопротивлением для естественного (красная линия) и принудительного (синяя линия) охлаждения воздушным потоком.

По умолчанию считается, что :

Если условия охлаждения отличаются от принятых по умолчанию, то необходимую поправку можно внести, воспользовавшись графиками на рис. 18.28 - рис. 18.30.

Рис. 18.27. Зависимости между сечением алюминиевого радиатора и его тепловым сопротивлением

Рис. 18.28. Поправочный коэффициент на разницу температуры радиатора и окружающей среды

Рис. 18.29. Поправочный коэффициент на скорость воздушного потока

Рис. 18.30. Поправочный коэффициент на длину радиатора

Для примера рассчитаем радиатор, обеспечивающий охлаждение транзистора ЭРСТ, состоящего из 20-ти транзисторов типа IRFP250N. Расчет радиатора можно вести для одного транзистора, а затем полученный размер увеличить в 20 раз.

Так как на ключевом транзисторе рассеивается суммарная мощность 528 Вт, то на каждом транзисторе IRFP250N рассеивается мощность 528/20 = 26,4 Вт. Радиатор должен обеспечивать максимальную температуру кристалла транзистора не более +110 °С при максимальной температуре окружающей среды +40 °С.

Найдем тепловое сопротивление R JA для одного транзистора IRFP250N:

Теперь найдем тепловое сопротивление радиатора :

Зная максимальную температуру кристалла и тепловое сопротивление на участке кристалл-радиатор, определим максимальную температуру радиатора:

По графику (рис. 18.28) определим поправочный коэффициент Кт на разницу температуры радиатора и окружающей среды:

Для охлаждения радиатора используется вентилятор типа 1,25ЭВ-2,8-6-3270У4, имеющий производительность 280 м3/ч. Чтобы вычислить скорость потока, нужно разделить производительность на сечение воздуховода, продуваемого вентилятором.

Если воздуховод имеет площадь поперечного сечения:

то скорость воздушного потока будет равна:

По графику (рис. 18.29) определим поправочный коэффициент K v на реальную скорость воздушного потока:

Допустим, что в нашем распоряжении имеется большое количество готовых радиаторов, имеющих периметр сечения 1050 мм и длину 80 мм. По графику (рис. 18.30) определим поправочный коэффициент K L на длину радиатора:

Чтобы найти общую поправку, перемножим все поправочные коэффициенты:

С учетом поправок, радиатор должен обеспечивать тепловое сопротивление :

С помощью графика (рис. 18.27) найдем, что для одного транзистора требуется радиатор с периметром сечения 200 мм. Для группы из 20-ти транзисторов IRFP250N радиатор должен иметь периметр сечения не менее 4000 мм. Так как имеющиеся в распоряжении радиаторы имеют периметр 1050 мм, то придется объединить 4 радиатора.

На диоде ЭРСТ рассеивается меньшая мощность, но из конструктивных соображений для него можно использовать аналогичный радиатор.

Зачастую производители охладителей указывают площадь поверхности радиатора, а не периметр и длину.

Чтобы из предлагаемой методики получить площадь радиатора, достаточно умножить длину радиатора на его периметр S P = 400 8 = 3200 см2.

В малосигнальных схемах транзисторы редко рассеивают мощность более 100 мВт. Распространение тепла вдоль проводников и конвекция от корпуса транзистора в окружающий воздух оказываются достаточными, чтобы избежать перегрева /?-и-перехода.

Транзисторы, на которых рассеиваются большие мощности, - в эмиттерных повторителях мощных источников питания и в выходных каскадах усилителей мощности - требуют специальных средств для отвода тепла. Обычно теплоотводы (радиаторы) используются с транзисторами, которые приспособлены для работы с радиаторами. На рис. 9.35, а изображен гофрированный металлический радиатор, который удваивает рассеяние тепла транзистором в корпусе Т05, например, транзистором BFY50. Мощный транзистор (рис. 9.35, б) в корпусе ТОЗ монтируется на массивном ребристом радиаторе. Установленный таким образом транзистор допускает рассеяние мощности 30 Вт; без теплоотвода рассеиваемая мощность ограничена 3 Вт.

Рис. 9.35. Радиаторы.

Электрическая изоляция

Корпус радиатора обычно привинчивается непосредственно к заземленному металлическому шасси или к корпусу прибора, или в некоторых случаях шасси само может служить теплоотводом. Во всех этих случаях необходимо помнить, что корпус транзистора обычно соединен с коллектором, и поэтому необходима электрическая изоляция между корпусом транзистора и радиатором. Слюдяные или лавсановые шайбы обеспечивают изоляцию без значительного уменьшения теплопроводности. Силиконовая смазка, нанесенная на каждую сторону шайбы, гарантирует хороший тепловой контакт.

Тепловое сопротивление

Качество теплоотвода обычно выражается величиной теплового сопротивления, которое учитывает тот факт, что скорость распространения тепла пропорциональна разности температур между источником тепла и внешней средой (сравните с электрическим сопротивлением, в котором скорость движения заряда пропорциональна разности потенциалов. [Только с очень большой натяжкой можно уподобить электрический ток скорости движения зарядов. - Примеч. перев.]).

Как это часто бывает с физическими понятиями, единица теплового сопротивления (градусы Цельсия на ватт) подает хорошую идею для его формального определения, которое выглядит так:

Другими словами, корпус теплоотвода, имеющий тепловое сопротивление 3 °С/Вт, при рассеиваемой мощности 30 Вт будет нагреваться до температуры на 3 х 30 °С = 90 °С выше температуры окружающей среды.

Полную картину установившегося теплового равновесия между транзистором и окружающей средой дает тепловая схема, приведенная на рис. 9.36. Тепловая мощность Р, выделяемая транзистором, рассматривается как «генератор теплового тока», который создает разность температур на различных тепловых сопротивлениях в системе.

Максимально допустимая температура р-n-перехода обычно составляет 150 °С, а температуру окружающей среды можно принять равной 50 °С - это температура, при которой допускается работа электронной аппаратуры общего назначения.

Производители транзисторов указывают безопасную максимальную температуру корпуса для своих транзисторов (часто 125 °С), в этом случае в, с

Рис. 9.36. Тепловая схема транзистора и его окружения.

исключается из наших вычислений, и мы спускаемся на одну ступеньку вниз по лестнице из резисторов на рис. 9.36. Кроме того, теплопроводность от корпуса транзистора к радиатору обычно столь хороша, что 6 CS 6 SA , так что тепловое сопротивление между радиатором и воздухом 6 SA является доминирующим фактором в большинстве вычислений. Зная мощность Р, рассеиваемую транзистором, легко найти температуру корпуса T casc , предполагая, что температура окружающей среды равна 50 °С:

Сверяясь с данными производителя, теперь можно сказать, может ли этот транзистор рассеивать требуемую мощность при найденной температуре корпуса. Если это не так, то тепловое сопротивление 6 SA должно быть уменьшено путем применения большего радиатора.

Большие ребристые радиаторы для мощных транзисторов обычно имеют температурное сопротивление от 2 до 4 °С/Вт, которое можно уменьшить до 1 °С/Вт путем принудительного охлаждения. С другой стороны, у небольших радиаторов, рассчитанных на транзисторы в корпусе Т05, среднее значение теплового сопротивления около 50 °С/Вт, и с их помощью допустимую мощность рассеяния у таких транзисторов средней мощности, как BFY50 или 2N3053, увеличивают с 0,8 до 1,5 Вт.