Силикатные материалы и изделия силикатный кирпич. Силикатные материалы и изделия автоклавного твердения

Силикатные материалы и изделия автоклавного твердения представляют собой искусственные строительные конгломераты на основе известково-кремнеземистого (силикатного) камня, синтезируемого в процессе автоклавной обработки под действием пара при высокой температуре и повышенном давлении. Одним из основных компонентов сырьевой смеси, из которой формуются изделия, служит известь, которая обладает большой химической активностью к кремнезему при термовлажностной обработке. Именно поэтому вторым основным компонентом сырьевой смеси является кварцевый песок или другие минеральные вещества, содержащие кремнезем, например шлаки, золы ТЭЦ и др. Чтобы химическое взаимодействие проходило достаточно интенсивно, кремнеземистый компонент подвергают тонкому измельчению. Чем более тонким будет измельченный песок, тем выше должно быть относительное содержание извести в смеси. В качестве других компонентов могут быть также введены заполнители в виде немолотого кварцевого песка, шлака, керамзита, вспученного перлита и т. п. Непременным компонентом во всех смесях выступает вода.

К числу автоклавных силикатных изделий относят силикатный кирпич, крупные силикатные блоки, плиты из тяжелого силикатного бетона, панели перекрытий и стеновые, колонны, балки и пр. Легкие заполнители позволяют понизить массу стеновых панелей и других элементов. Силикатные изделия выпускают полнотелыми или облегченными со сквозными или полузамкнутыми пустотами. Особое значение имеют силикатные ячеистые бетоны, заполненные равномерно распределенными воздушными ячейками, или пузырьками. Они могут иметь конструктивное и теплоизоляционное назначение, что обусловливает форму и размеры изделий, их качественные показатели.

Изделия приобретают свойства, необходимые для строительных материалов, после автоклавной обработки, в процессе которой образуется новый известково-кремнеземистый цемент с характерными для него новообразованиями гидросиликатов кальция и магния, а также безводных силикатов.

Возможность образования в автоклаве камневидного изделия была установлена в конце XIX в., но массовое производство силикатных изделий, деталей и конструкций, особенно типа бетонов, было впервые организовано в нашей стране. Технология их изготовления механизирована и в значительной мере автоматизирована, что обеспечивает получение более дешевой продукции по сравнению с цементными материалами и изделиями. Эффективные исследования в этом направлении были выполнены П.И. Боженовым, А.В. Волженским, П.П. Будниковым, Ю.М. Буттом и др. Было показано, что при автоклавной обработке образуются наиболее устойчивые низкоосновные гидросиликаты с соотношением Ca0:Si02 в пределах 0,8-1,2, хотя на промежуточных стадиях отвердевания возможны и более высокоосновные химические соединения. П.И. Боженов, отмечая «технический синтез» цементирующей связки в автоклавном конгломерате, состоящей из смеси гидросиликатов, полагает, что химическое сырье должно удовлетворять определенным требованиям. Оно должно быть высокодисперсным с удельной поверхностью порошка в пределах 2000-4000 см 2 /г, по возможности аморфным, стеклообразным. Химически активное сырье обеспечивает не только образование цементирующей связки в автоклавном конгломерате, но и ряд технологических свойств сырьевой смеси (формуемость изделий, ровность их поверхности, транспортабельность и др.). Но не только химические и физико-химические процессы влияют на формирование структуры и свойств силикатных материалов при автоклавной обработке. А.В. Волжен- ский первым обратил внимание на изменение тепловлажностных условий при автоклавной обработке и их влияние на качество изделий. В связи с этим было принято выделить три этапа в автоклавной обработке: наполнение автоклава и изделий паром до заданного максимального давления; спуск пара; извлечение изделий из автоклава.

Полный цикл автоклавной обработки, по данным П.И. Боженова, слагается из пяти этапов: впуск пара и установление температуры 100°С; дальнейшее повышение температуры среды и давления пара до назначенного максимума; изотермическая выдержка при постоянном давлении (чем выше давление, тем короче режим авто- клавизации); медленное и постепенное нарастание скорости снижения давления пара до атмосферного, а температуры - до 100°С; окончательное остывание изделий в автоклаве или после выгрузки их из автоклава. Оптимальный режим, т. е. наилучшие условия по величине давления пара, температуры и продолжительности всех стадий обработки, обусловливается видом сырья, хотя по экономическим соображениям всегда стремятся к быстрому подъему и медленному спуску давления.

Формирование микро- и макроструктуры силикатного изделия в автоклаве происходит на различных стадиях обработки. Механизм отвердевания известково-песчаного сырца до камневидного состояния выражается в том, что вначале образуется известково-кремнеземистое цементирующее вещество как продукт химического взаимодействия основных компонентов в смеси в условиях повышенных давлений и температур. Согласно одной из теорий (П.П. Будникова, Ю.М. Бутта и др.), образование цементирующего вещества происходит через предварительное растворение извести в воде. Так как растворимость извести с повышением температуры понижается, то постепенно раствор становится насыщенным. Но с повышением температуры возрастает растворимость тонкодисперсного кремнезема. Так, например, с повышением температуры с 80 до 120°С растворимость кремнезема возрастает (по данным Кеннеди) почти в 3 раза. Поэтому при температуре 120-130°С известь и кремнезем, находясь в растворе, взаимодействуют с образованием гелеобразных гидросиликатов кальция. По мере дальнейшего повышения температуры новообразования укрупняются с возникновением зародышей и кристаллической фазы, а затем и кристаллических сростков. При избытке извести возникают сравнительно крупнокристаллические двуосновные гидросиликаты кальция типа C2SH(A) и C2SH2, а после полного связывания извести и в процессе перекристаллизации возникают более устойчивые микрокристаллические низкоосновные гидросиликаты кальция типа CSH(B) и C5S6H5 (то- берморит). Кристаллизация происходит вокруг зерен кварца и в межзерновом пространстве; сопровождается срастанием кристаллических новообразований в каркас с дальнейшим его упрочнением и обрастанием.

Согласно другой теории, образование микроструктуры вяжущего происходит не через растворение извести и кремнезема, а в твердой фазе под влиянием процесса самодиффузии молекул в условиях водной среды и повышенной температуры. Имеется и третья теория (А.В. Саталкин, П.Г. Комохов и др.), допускающая образование микроструктуры вяжущего в результате реакций в жидкой и твердой фазах.

Большую пользу в формировании структуры и свойств силикатных камня и материалов оказывают вводимые в смеси добавочные вещества (добавки), выполняющие функции ускорителей процессов образования гидросиликатов кальция или магния, кристаллизации новообразований, модификаторов свойств и структуры. В целом в составе силикатного камня преобладают низкоосновные гидросиликаты кальция, имеющие тонкоигольчатое или чешуйчатое микрокристаллическое строение CSH(B) и тоберморит CsSeHs. В высокоизвестковых смесях в результате синтеза образуется гиллебрандит 2СаО Si0 2 Н2О (т. е. C 2 SH).

Оптимальная структура силикатного материала формируется при определенном количестве известково-кремнеземистого цемента и минимальном соотношении его фазовых составляющих.

Рис. 9.28. Зависимость прочности силикатного камня от соотношения масс известкового теста (Иг) и молотого песка (П м), а также от состава смеси:

1 - 20.80; 2 - 40.60; 3 - 60.40; 4 - 80.20. В числителе количество извести, в знаменателе - количество молотого песка (помола), взятых по массе


Рис. 9.29.

В свежеизготовленном конгломерате дисперсионной средой (с) служит известковое тесто (И т), а в качестве твердой дисперсной фазы (ф) выступает молотый кремнеземистый (песчаный) компонент (П м). Активность (прочность) известково-кремнеземистого вяжущего вещества оптимальной структуры после автоклавной обработки, как и другие свойства силикатного материала, зависит от величины соотношения И т: П м (по массе). Результаты экспериментальных исследований показали, что пределы прочности при сжатии, на растяжение при изгибе, средняя плотность и другие показатели свойств силикатного камня принимают экстремальные значения при некотором минимальном соотношении с7ф = И^/П м (рис. 9.28). В полном соответствии с формулой (3.4) прочность силикатного конгломерата R c = /Г/х, где R* - прочность автоклавного силикатного камня оптимальной структуры; х = Ит/Пм: И7Пм =

1 - 80:20; 2 - 60:40; 3 - 40:60; 4 - 30:70; 5 - 20:80; 6 - 17:83. Составы изготовлялись: 1,2, 3 - с применением керамдора; 4 , 5, 6 - с применением гранитного щебня. Кривые оптимальных структур 1,11 и III относятся к бетону соответственно с применением гранитного щебня, керамдора и только местного карьерного песка

6/5* - отношение усредненных толщин пленок известкового теста соответственно в вяжущем веществе конгломерата и в вяжущем веществе оптимальной структуры; п - показатель степени, зависит от качества исходных материалов.

Выполненные исследования силикатного камня и силикатного конгломерата на примерах бетонов мелко- и крупнозернистых (рис. 9.29) показали, что при оптимальных структурах их свойства полностью подчиняются общим закономерностям ИСК.

Кроме кремнеземистого сырьевого материала, можно использовать в производстве автоклавных изделий распространенные малокварцевые виды сырья - полевошпатовые, глинистые, карбонатные пески, а также шлаки и другие побочные продукты промышленности. Минералы малокварцевого сырья, растворившись в условиях автоклавирования, становятся активными компонентами, не уступающими по растворимости кварцу. Их активность зависит от размеров радиусов анионов и катионов, входящих в их состав. В автоклаве формируется новое вяжущее (безобжиговое солешлаковое вяжущее), по свойствам превосходящее известково-кремнеземистое автоклавное твердение. Оно состоит из низкоосновных слабозакристаллизован- ных гидросиликатов кальция, а в присутствии ионов алюминия - из высокоосновных гидросиликатов кальция.

Классификация силикатных изделий
Силикатные изделия состоят из смеси различных силикатов и полисиликатов. Получаются они путем термической или термохимической переработки силикатного сырья. В зависимости от условий этой переработки и качества сырья образующиеся продукты и изделия имеют различный химический состав и обладают различными физическими свойствами. На основе условий получения и свойств силикатных изделий их в практике делят на три категории: керамика, стекло и вяжущие вещества.
Керамические изделия получаются спеканием измельченных смесей различных минералов и окислов при высоких температурах. В зависимости от степени спекания их делят на изделия: а) с пористым и б) со спекшимся черепком. К первой группе этих изделий относятся: кирпич, фаянс, кафель, черепица, терракота, гончарные изделия и различные огнеупоры (шамот, динас и т. п.). Вторую группу изделий составляют фарфор, кислотоупорные изделия для химической промышленности, тротуарные и облицовочные плиты и т. п. В зависимости от состояния поверхности керамических изделий их делят на два типа: глазурованные и неглазурованные. К глазурованным относятся такие изделия, которые имеют на поверхности тонкий слой сплавленной стеклообразной массы.
После обжига некоторых порошкообразных силикатов, алюмосиликатов и других веществ минерального происхождения образуются такие продукты, которые обладают вяжущими свойствами, т. е. в присутствии воды превращаются в прочную каменистую массу. Такие продукты называются вяжущими веществами.
Нагрев смесей силикатов до расплавления, с последующим охлаждением жидкости до затвердевания, дает различные сорта стекла.
Классификация стекла и вяжущих веществ приведена ниже (см. главы III и IV).

Применение силикатных изделий
В настоящее время трудно назвать такую отрасль народного хозяйства, где бы не применялись силикатные изделия. Особенно велико их значение в Советском Союзе в связи с развернувшимся широким строительством гидроэлектростанций, городов и различных промышленных сооружений. Наши стройки в больших количествах потребляют цемент, кирпич, облицовочные плиты, черепицу, канализационные трубы, стекло и различные природные строительные материалы.
Непрерывно растет производство важнейшего силикатного материала — цемента, что связано с широким развитием жилищного и промышленного строительства в Советском Союзе. По плану 1965 г. в нашей стране будет производиться до 84,6 млн. т цемента, что в 2,5 раза превысит уровень, достигнутый в 1958 г.
Широко применяются силикатные изделия в химической и металлургической промышленности: это различные огнеупорные материалы, применяемые для кладки печей, кислотоупорные изделия— в производстве кислот, керамические трубы — для подвода и отвода агрессивных газов и жидкостей и т. д.
Много потребляет силикатных изделий электро и радиопромышленность: фарфоровых изоляторов различных систем и размеров, керамических деталей для нагревательных приборов, фарфоровых и шамотных труб для электрических печей и т. д.
Широкое развитие приобрела в годы Советской власти промышленность оптического стекла, которой до революции у нас по существу не было. Оптическое стекло применяется в производстве разнообразных оптических приборов: микроскопов разных систем, биноклей, оптических пирометров и т. п.
Наконец, большое количество силикатных изделий применяется в быту: стеклянная, фарфоровая и фаянсовая посуда, предметы санитарно-гигиенической техники и т. д.

  • Агрегатный индекс как форма общего индекса. Выбор весов при построении общих индексов. Индексы цен Г. Пааше и Э. Ласпейреса, их практическое применение.
  • Административная ответственность – это применение уполномоч органом или должност лицом админ наказания к лицу,совершившему админ правонаруш.
  • Ароматические углеводороды. Структурная формула бензола (по Кекуле). Химические свойства бензола. Получение и применение бензола и его гомологов.
  • Асбоцементные изделия. Свойства, разновидности, применение.
  • Ацетилен – представитель углеводородов с тройной связью в молекуле. Свойства, получение и применение ацетилена.
  • Б-12. Видеозапись как средство фиксации криминалистически значимой информации. Применение видеозаписи при производстве следственных действий.
  • Б9.6 Работы с применением автомобилей, грузоподъемных машин.
  • Силикатные изделия представляют собой искусственный каменный материал, изготовленный из смеси извести, песка и воды, отформованный путем прессования под большим давлением и прошедший автоклавную обработку.

    В строительстве широкое распространение получили силикатный кирпич; силикатный плотный бетон и изделия из него; ячеистые силикатные бетоны и изделия; силикатный бетон с пористыми заполнителями.

    Силикатный кирпич прессуют из известково-песчаной смеси следующего состава (%): чистый кварцевый песок 92-94; воздушная известь 6-8 и вода 7-8. Подготовленную в смесителях известково-песчаную массу формуют на прессах под давлением 15-20 МПа и запаривают в автоклавах при давлении насыщенного пара 0,8 МПа и температуре примерно 175 °С.

    При запаривании известь, песок и вода вступают в реакцию, в результате которой образуется гидросиликат кальция, цементирующий массу и придающий ей высокую прочность. Продолжительность цикла автоклавной обработки 10-14 ч, а всего процесса изготовления силикатного кирпича 16-18 ч, в то время как процесс изготовления обычного глиняного кирпича длится 5-6 сут.

    Силикатный кирпич выпускается двух видов: одинарный размером 250 X 120 X 65 мм и модульный размером 250 X 120 X 88 мм. Объемная масса силикатного кирпича 1800-1900 кг/м3, морозостойкость не ниже Мрз 15, водопоглощение 8-16% по массе. По прочности при сжатии силикатный кирпич делится на пять марок: 75, 100, ’25, 150 и 200. По теплопроводности силикатный кирпич незначительно отличается от обычного- глиняного и вполне заменяет последний при кладке стен любых зданий, кроме стен, маледящнхея в условиях высокой влажности или подвергающихся воздействию высоких температур (печи, дымовые трубы). По цвету силикатный кирпич светло-серый, но может быть и цветным, окрашенным в массе введением в нее минеральных пигментов.

    Изделия из плотного силикатного бетона. Мелкозернистый плотный силикатный бетон - бесцементный бетон автоклавного твердения на основе известково-кремнеземистых или известково-зольных вяжущих - получают по следующей технологической схеме: часть кварцевого песка (8-15%) смешивается с негашеной известью (6-10%) и подвергается тонкому помолу в шаровых мельницах, затем измельченное известково-песчаное вяжущее и обычный песок (75-85%) затворяют водой (7-8%), перемешивают в бетономешалках и затем смесь поступает на формовочный стенд. Отформованные изделия запаривают в автоклавах при температуре 175-190° С и давлении пара 0,8 и 1,2 МПа.



    Изделия из плотного силикатного бетона имеют объемную массу 1800-2200 кг/м3, морозостойкость 25-50 циклов, прочность при сжатии 10-60 МПа.

    Из плотного силикатного бетона изготовляют крупные полнотелые стеновые блоки, армированные плиты перекрытий, колонны, балки, фундаментные и цокольные блоки, конструкции лестниц и перегородок.

    Силикатные блоки для наружных стен и стен во влажных помещениях должны иметь марку не ниже 250.

    Изделия из ячеистого силикатного бетона. По способу образования пористой структуры ячеистые силикатные бетоны бывают пеносиликатные и газосиликатные.

    Основным вяжущим для приготовления этих бетонов является молотая известь. В качестве кремнеземистых компонентов вяжущего и мелких заполнителей используют молотые пески, вулканический туф, пемзу, золу-унос, трепел, диатомит, трас, шлаки.

    При изготовлении ячеистых силикатных изделий пластичную известково-песчаную массу смешивают с устойчивой пеной, прчго- товленной из препарата ГК, мыльного корня и др., или с газооб- разователями - алюминиевой пудрой, а затем смесь заливают в формы и подвергают автоклавной обработке.
    Объемная масса пеносиликатных изделий и газосиликатных изделий 300-1200 кг/м3, прочность при сжатии 1-20 МПа.



    По назначению ячеистые силикатные изделия делятся на теплоизоляционные объемной массой до 500 кг/м3 и конструктивно-теплоизоляционные объемной массой более 500 кг/м3.

    Теплоизоляционные ячеистые силикаты находят применение в качестве утеплителей, а из конструктивно-теплоизоляционных силикатов изготовляют наружные стеновые блоки и панели, а также комплексные плиты покрытий здания.

    Изделия из силикатного бетона на пористых заполнителях. В качестве вяжущего силикатного бетона на пористых заполнителях используют тонкомолотые известково-кремнеземистые смеси, а крупными заполнителями служат керамзит, пемза, поризованные шлаки и другие пористые легкие природные и искусственные материалы в виде гравия и щебня. После автоклавной обработки такие бетоны приобретают прочность при сжатии от 3,5 до 20 МПа при объемной массе от 500 до 1800 кг/м3 и из них в основном изготовляют блоки и панели наружных стен жилых и общественных зданий.

    Силикатный кирпич применяется наряду с глиняным для кладки стен и столбов. Однако не рекомендуется применять силикатный кирпич марки ниже 100 для частей конструкций, подвергающихся в эксплуатационных условиях увлажнению и замораживанию. Кислоты также разрушают силикатный кирпич.

    Силикатный кирпич не жаростойкий материал. При высоких температурах известь, содержащаяся в кирпиче в виде гидрата окиси кальция, переходит в окись кальция (известь-кипелку), которая при взаимодействии с водой снова начинает гаситься, увеличиваясь при этом в объеме и разрушая кирпич. Поэтому силикатный кирпич не применяют для кладки печей, труб и других конструкций, где возможно длительное воздействие высоких температур. Кратковременное воздействие температур до 350° силикатный кирпич выдерживает без разрушений.

    Силикатные изделия в строительстве находят применение не только в виде кирпича или стеновых камней. Их с успехом применяют также в качестве материалов для наружной облицовки зданий, крупных стеновых блоков, плит перекрытий и др. В настоящее время разработаны способы получения Силикатных изделий, обладающих очень высокой прочностью при сжатии – до 1 000 кг/см2. Такая прочность позволяет выпускать силикатные изделия в виде плиток для пола, канализационных труб, черепицы, плит для покрытий.

    Получение столь прочных силикатных материалов достигается добавкой в известково-песчаный раствор молотого песка. Молотый песок, обладая большей поверхностью и большей ее активностью, способствует более полному взаимодействию кремнезема песка с известью.

    Плиты для облицовки зданий и крупные блоки изготовляются трамбованием, прессованием или вибрированием с последующей пропаркой в автоклавах.

    Силикатные изделия, которые предназначены воспринимать в конструкции изгибающие нагрузки, выпускаются армированными сталью.

    Силикатные, гипсовые и асбоцементные материалы относятся к безобжиговым изделиям и составляют значительную группу строительных материалов из искусственного камня.

    Силикатный кирпич. Материалами для изготовления силикатного кирпича являются чистый кварцевый песок (92 - 95%), воздушная известь (5 - 8%) и вода (около 7%) . Кварцевый песок в производстве силикатного кирпича применяют немолотый или в виде сме­си немолотого и молотого. Допускаются равномерно распределённые глинистые примеси в количестве не более 10%. При таком содержании они несколько повышают удобоукладываемость смеси. Крупные включения глины в песке не допускаются.

    Силикатный кирпич изготавливают путем прессования смеси под давлением 15-20МПа с последующим пропариванием в автоклаве под давлением 0,8МПа и температуре 174 о С в течении 6-8 часов. Давление плавно поднимают и снижают. Длительность процесса 10-14 часов.

    Этот строительный материал по своей форме, размерам и основному назначению не отличаются от глиняного кирпича. Теплоизоляционные качества стен из силикатного и керамического кирпича практически равны, водо-, морозо- и огнестойкость меньше. Морозостойкость М рз -15циклов. Его нельзя использовать для кладки фундаментов, цоколей, наружных стен, помещений с высокой влажностью воздуха, а также для кладки печей. Себестоимость силикатного кирпича на 25…35% ниже, чем керамического.

    Кроме силикатного кирпича таким же способом изготовляют золосиликатный (зольный) кирпич, в нём частично или целиком песок заменён золой топлива. Этот кирпич легче силикатного и имеет более низкую теплопроводность. По прочности и стойкости зольный кирпич ус­тупает силикатному. Применяют зольный кирпич для возведения кладки стен зданий малой этажности (до трёх этажей), а также для стен верхних этажей многоэтажных зданий.

    Крупноразмерные изделия из силикатного бетона. Силикатным бето­ном называют затвердевшую в автоклаве уплотнённую смесь, состоя­щую из кварцевого песка (70 - 80%), молотого песка (8-15%) и молотой негашеной извести (6 - 10%). Из силикатного бетона маркой не ниже М-150, с при­менением тепловлажностной обработки в автоклаве, изготовляют круп­ные стеновые блоки внутренних несущих стен, панели перекрытий и несу­щих перегородок, ступени, плиты, балки. Элементы, работающие на из­гиб, армируют стержнями и сетками.

    Минеральные вяжущие вещества

    Минеральные вяжущие вещества получают путем обжига в печах природных каменных материалов (известняка гипса, ангидрита, доломита, магнезита). Куски полученные после обжига, путем помола превращаются в тонкий порошок. Чем меньше размер зерен после помола, тем выше активность вяжущего. Вяжущие вещества при смешивании с водой способны переходить из жидкого (тестообразного) в камневидное состояние.

    Вяжущие вещества делятся на две группы:

      Воздушные вяжущие вещества, способные твердеть и длительно сохранять свою проч­ность только на воздухе, во влажных условиях они снижают или теряют прочность.

      Гидравлические вяжущие вещества, твердеют и длительно сохраняют свою проч­ность не только на воздухе, но и в воде. В отличии от воздушных они имеют более высокую прочность, поэтому шире применяются в строительстве.

    К воздушным вяжущим веществам относятся: воздушная известь, гип­совые вяжущие, магнезиальные вяжущие и жидкое (растворимое) стекло. К гидравлическим вяжущим относятся: гидравлическая известь, романцемент, портландцемент и его разновидности.

    Вяжущие вещества широко применяются в строительстве для изготов­ления строительных растворов, бетонов, бетонных и железобетонных из­делий.

    Кирпичная и каменная кладки, бетон были известны человечеству ещё в доисторические времена, до изобретения им вяжущих веществ. Взамен вяжущих применялось пластическое глиняное тесто, которое, высыхая, превращалось в камнеподобный материал. Так как между глиной и водой никаких химических реакций не протекает, то высохшая и окаменевшая глина под действием воды может снова размокнуть и потерять прочность и связанность. В сухом климате или в условиях, исключающих увлажне­ние, глиняное тесто и в настоящее время используется как заменитель вя­жущих. В наше время глиняные растворы применяются при кладке печей и возведения стен зданий в сухом климате.

    Воздушная известь. Строительную воздушную известь получают путем обжига при температуре 1000-1200 о С известняков или других горных пород, содержащих углекислый кальций. На строительство известь поступает в виде кусков белого или серого цвета(комовая известь или кипелка). Негашеная известь химически соединяется с водой и образует гашеную (гидратную) известь. При гашении ограниченным количеством воды известь распадается, образуя тонкий порошок, называемый пушонкой. При большом количестве воды образуется известковое тесто. Известь применяют для приготовления строительных раство­ров, в производстве известково-пуццолановых вяжущих, для изготовления силикатного кирпича, силикатных и пеносиликатных изделий, шлакобе­тонных блоков, а также в качестве покрасочных составов. Существенный недостаток воздушной извести – невысокая прочность и малая стойкость во влажных условиях.

    Строительный гипс (алебастр) получают путем обжига природного гипсового камня с последующим размолом в тонкий порошок. В зависимости от тонкости помола и прочности строительный гипс делится на три сорта марок 35, 45, 55. Стро­ительныйгипс применяют для изготовления стеновых панелей, плит и кам­ней для внутренних перегородок зданий, сухой штукатурки, архитектурно-отделочных деталей. Гипсовые вяжущие вещества применяются в виде гипсового теста в кладочных и штукатурных растворах, бетонах, производ­стве теплоизоляционных материалов, искусственного мрамора и других декоративных изделий. По пределу прочности на сжатие гипсовые вяжу­щие вещества делятся на четыре марки: 50,100, 150,200 . При воздействии влаги прочность затвердевшего гипса значительно снижается, поэтому его применяют в помещениях с влажностью до 60%.

    Ma гнезиальные вяжущие. Различают два вида магнезиальных вяжу­щих - каустический магнезит и каустический доломит. Применяют магне­зиальные вяжущие для изготовления бесшовных ксилолитовых полов, пе­регородочных плит, плит для облицовки стен, а также ступеней и теплоизо­ляционныхизделий и т. п.

    Растворимое (жидкое) стекло. Растворимое стекло представляет собой калиевый или натриевый силикат. Натриевое жидкое стекло используется для приготовления кислотоупорного цемента, огнезащитных красок и об­мазок, для закрепления (силикатизации) фунтов, защиты природных ка­менных материалов.

    Портландцемент. Является важнейшим гидравлическим вяжущим ве­ществом. Его выпуск составляет около 80% от выпуска всех вяжущих. Высокая прочность, способность быстро твердеть на воздухе и в воде, относительно низкая стоимость сделали портландцемент самым рас­пространённым вяжущим. Его применяют для изготовления бетонных и железобетон­ных конструкций, для строительных растворов высокой прочности. Сырьем для портландцемента служат природные ископаемые – мергеля или смесь из 73% известняка, 25% глины, 2% гипса. Размолотое сырье обжигают и производят помол спекшейся смеси – клинкера в тонкий порошок. Порошок, затворенный водой, образует тесто, которое быстро твердеет в течение первых трех суток и твердение в основном заканчивается на 28 сутки, достигая марочной прочности. При благоприятных условиях прочность бетона на портландцементе продолжает возрастать и может в 2-3 раза превысить марочную (28-суточную). Нормальные условия твердения – это 15 о С и влажная атмосфера. При 0 о С и ниже тесто замерзает, и прочность не увеличивается. Прочность характеризуется маркой. Марку устанавливают по пределу прочности при изгибе и сжатии образцов в виде брусков из цементного раствора состава 1:3 с водой через 28 суток после изготовления. Выпускают портландцемент марок 300, 400, 500 и 600. Хранить цемент в сухом месте не более 6 месяцев. Портландцемент не рекомендуется применять для конструкций,которые будут подвергаться действию напора морской, минеральной или пресной воды.

    АВТОКЛАВНОГО ТВЕРДЕНИЯ

    7.1 Общие сведения и классификация

    Силикатными называются искусственные каменные материалы и изделия, получаемые из извести, кремнеземистых составляющих и воды, затвердевших в результате автоклавной тепловлажностной обработки. Сущность автоклавного твердения состоит в следующем. Изделия на основе извести в нормальных условиях имеют небольшую прочность. Набор ее происходит исключительно за счет твердения извести. В среде насыщенного пара при температуре 174,5–200 °С и давлении 0,8–1,5 МПа кремнезем приобретает активность и взаимодействует с известью по схеме

    Ca (OH) 2 SiO 2 + (n – 1) H 2 O → CaO SiO 2 n H 2 O.

    Образуется гидросиликат кальция – вещество высокой прочности и водостойкости. Запаривание изделий выполняется в автоклавах.

    Способ изготовления мелких камней из известково-песчаной смеси с последующей автоклавной обработкой был предложен немецким ученым В. Михаэлисом в 1880 г. Большой вклад в разработку технологии изготовления и применения силикатных материалов внесли П. И. Боженов, А. В. Волженский и другие ученые.

    К группе силикатных материалов и изделий относят бетоны и изделия из них, кирпич и камни силикатные.

    7.2 Силикатные бетоны и изделия из них

    Силикатные бетоны подразделяются на плотные и легкие ячеистые. Основным сырьем для плотных бетонов служат известь и кварцевый песок. Рекомендуется применять быстрогасящуюся кальциевую известь с активностью более 70 %. Лучшим является песок с шероховатой поверхностью.

    Для повышения прочности бетона применяют известково-кре-мнеземистое вяжущее, получаемое совместным помолом негашеной извести и кварцевого песка до удельной поверхности 3000–5000 см²/г, взятых в соотношении от 30: 70 до 50: 50 %.

    Тонкомолотый песок оказывает большое влияние на свойства бетонов. С возрастанием его дисперсности повышаются прочность, морозостойкость изделий.

    В качестве кремнеземистого компонента вместо кварцевого песка могут применяться кварцево-полевошпатовые пески, металлургические шлаки, золы ТЭС, нефелиновый шлам, отходы производства аглопорита, керамзита.

    Вода не должна содержать вредных примесей.

    Силикатные бетоны могут изготавливаться мелкозернистыми только на природных и дробленых песках и с применением крупных плотных или пористых заполнителей с размером зерен не более 20 мм.

    В качестве заполнителей рекомендуется применять щебень из доменного шлака, щебень и песок аглопоритовые, гравий и песок керамзитовые, щебень и песок пористый из металлургического шлака. К заполнителям предъявляются те же требования, что и для цементного бетона.

    Изделия из силикатного бетона изготавливаются чаще всего на оборудовании для изготовления изделий на цементах.

    Производство изделий включает следующие технологические операции: приготовление известково-кремнеземистого вяжущего, силикатобетонной смеси, формование изделий и тепловлажностную их обработку в автоклавах.

    Измельчение извести с песком до необходимой дисперсности, т.е. получение известково-кремнеземистого вяжущего, производится в шаровых мельницах. Приготавливают смесь в бетоносмесителях принудительного смешивания. Основной способ формования изделий – вибрирование. Тепловлажностную обработку силикатных изделий выполняют в автоклавах, которые представляют собой цилиндрические горизонтальные сосуды диаметром 2,0–3,6 и длиной 19–40 метров, закрываемые герметически крышками. По длине автоклава проложены рельсы, по которым загружаются вагонетки с изделиями. Автоклав оборудован магистралями для впуска и выпуска насыщенного пара. После загрузки автоклава крышки закрывают и впускают пар по определенному режиму. Температура пропаривания составляет 174,5–200 °С, давление, как правило, – 0,8–1,3 МПа. Общее время тепловлажностной обработки – 8–17 часов.

    Плотные силикатные бетоны по прочности на сжатие подразделяются на классы от В5 до В60; на марки: по морозостойкости от F35 до F600, по водонепроницаемости от W2 до W10, по средней плотности от Пл 1000 до Пл 2400.

    Из плотного силикатного бетона изготавливают железобетонные плиты для покрытия городских дорог, трамвайных путей, тротуарные плитки, бортовые камни, несущие армированные конструкции для промышленного и гражданского строительства, которые успешно заменяют конструкции из цементного железобетона. Имеется опыт применения тяжелых силикатных бетонов для изготовления шпал с предварительно напряженной арматурой, тюбингов для тоннелей.

    Арматурная сталь в конструкциях, эксплуатируемых при относительной влажности воздуха до 60 % , не корродирует. При повышенной влажности среды арматуру необходимо защищать от коррозии.

    Силикатные бетоны на пористых заполнителях – керамзите, аглопорите, шлаковой пемзе и других применяются для изготовления ограждающих конструкций зданий.