Треск проводов высоковольтной линии. Почему под лэп бьет током

В один прекрасный майский день у меня появилась возможность побывать у одного из самых грандиозных переходов ЛЭП в мире. Речь идёт о переходах высоковольтных линий 330 кВ и 750 кВ через Каховское водохранилище, на Украине.


Прибыв на место, я в первую очередь снял промежуточные опоры, в полях за Ильинкой. Это был своего рода «разгон» перед фотосессией переходных опор-гигантов, которые манили меня со стороны водохранилища)

Первым делом я снял опоры двух одноцепных ЛЭП 330кВ. Опоры были П-образные железобетонные, с внутренними связями – ПВС. На снимке эти опоры запечатлены на фоне жёлтого поля с рапсом.

Параллельно линии 330кВ мимо Ильинки проходила ЛЭП 750кВ. Особенно мне понравилась промежуточная опора 750кВ весьма элегантного вида.

Если промежуточная опора ЛЭП 750кВ выглядит довольно элегантно, словно жирафа, то анкерные опоры этой линии в сравнении с ней широкие и крепко скроенные крепыши. Именно возле этой опоры я стал «слушать» линию. Все знают, что ЛЭП гудят или трещат, и обычно чем выше класс напряжение, тем сильнее шум. Я помнил, что ЛЭП 750кВ гудят громко, но к своему удивлению обнаружил под линией мёртвую тишину – ровным счётом ничего, ЛЭП явно не работала! А ЛЭП 330кВ неподалёку трещали довольно сильно.

Затем, я заставил анкерную опору ЛЭП 750кВ «подержать» солнце на своих проводах)))

Теперь предстояло передислоцироваться к переходным опорам, что виднелись на горизонте, по пути к ним я снял несколько опор 330кВ и 750кВ.

Именно тут я впервые встретил опоры типа «рюмка» на линии 330кВ, по типу они были схожими с рюмками линий 500кВ.

Снимая рюмки, я весьма удивил местных огородников, ещё бы, не каждый день человек с камерой носится по полю между опорами и снимает их во всех позах. Только я отвлёкся от рюмок, как сразу переключился на монстроподобную концевую опору ЛЭП 330кВ, по-моему комментарии тут вообще излишни – это мощь в чистом виде.

Честно говоря, немного типов опор вызывали у меня такие эмоции как эта. Треск под ней стоял невообразимый. Провода словно стелились по земле. Поражала массивность этого чудовища!

Если бы у меня была возможность, я бы выбрал для паспорта фотку где я на фоне этой опоры;-)

Концевая опора 330кВ была предтечей перехода через «море». Наконец я сделал первый снимок переходных опор.



А теперь об истории создания переходов. В 70-е годы прошлого века, на юге Запорожской области, на левом берегу Каховского водохранилища была сооружена Запорожская ГРЭС мощностью 3 млн. 600 тыс. кВт. Экономически было необходимо построить две линии электропередачи напряжением 330 кВ, в Никопольский энергорайон, расположенный на правом берегу водохранилища. Переход линий через водные пространства такой протяжённости в Советском Союзе ранее не сооружался.

Для первого сооружаемого перехода (330 кВ) проектировщики выбрали воздушный вариант линии (кабельный подводный вариант был нерентабелен, сложен в строительстве и эксплуатации). Длина перехода между крайними переходными опорами составила целых 5,15 км (!), а непосредственно над водой - 4,6 км. Переход был выполнен двухцепным.

Береговая переходная опора ЛЭП 330кВ

На переходе 330кВ установлены семь переходных опор анкерного типа высотой 90 и 100 метров, из которых пять, установлены в акватории водохранилища. Переход принят по схеме К-А-А-А-А-А-А-А-К (К - концевая опора, А - анкерная). Длины пролётов ЛЭП 330 кВ составляют 810 — 920 м. Двухцепные опоры башенного типа выполнены из углового проката, прошедшего оцинковку.

Опоры оборудованы лестницами, площадками и ограждёнными трапами на траверсах, причём на опору можно беспрепятственно подняться - лестницы спускаются прямо к земле, в отличие от большинства других переходов, где лесенки обычно не доходят до земли 2-3 метра, что бы уменьшить соблазн «туристов» залезть на мачту. В данном случае, видимо, роль сыграла малонаселённость территории.

Масса стометровой опоры составляет 290 тонн, а девяностометровой - 260 тонн. Внешне оба типа опор очень похожи, заметить отличия, можно только внимательно их рассмотрев.

Наибольшую сложность представляло сооружение фундаментов этих опор на территории водохранилища. Монтаж переходных опор на акватории - весьма сложная задача, требующая специального обустройства фундаментной площадки временными причалами, грузоподъёмными механизмами. Поэтому впервые в практике строительства ЛЭП (как в нашей стране, так и за рубежом) было принято решение о сооружении перехода наплавным методом. Поэтому, в особом котловане - доке, были сооружены плавающие фундаменты и на них смонтированы переходные опоры. Наплавные фундаменты были выполнены пустотелыми, из тонкостенных железобетонных элементов и, по сути, представляли собой огромные поплавки.

Для обеспечения их плавучести, фундамент был собран из водонепроницаемого днища, наружного борта и внутренних переборок, разделяющих внутреннюю часть фундамента на 8 изолированных друг от друга балластных отсеков, а также отсека для размещения оборудования и центрального распределительного отсека. Такое исполнение обеспечило непотопляемость фундамента и точность его балластировки, а также необходимую устойчивость в период буксировки суднами.

После окончания строительных работ на фундаментах и монтажа на них переходных опор, котлован заполнился водой до отметки Каховского водохранилища. При открытых кингстонах одновременно происходило заполнение водой внутренних отсеков фундаментов. После этого была разобрана перемычка, разделяющая котлован-док и Каховское водохранилище (процесс - на фото).

Поочерёдно, при закрытых кингстонах, из каждого фундамента, мощными насосами откачивалась вода, и после его всплытия, производилась буксировка к месту установки на трассе перехода. Буксировка опор по водохранилищу и работы по их установке производились с помощью пяти буксирных теплоходов — двух головных (мощностью по 1200 л.с.); двух боковых (мощностью по 300 л.с.) и одного заднего (тормозного) мощностью 600 л.с. Доставка всех пяти систем фундамент-опора была выполнена за 12 дней. После доставки фундаментов к месту предназначения, отсеки снова затапливались, в результате чего фундаменты садились на необходимое место на дне водохранилища.

Переход ЛЭП 330 кВ (Л243/244) был введён в эксплуатацию в 1977 году. В 1984 году, для выдачи мощности Запорожской АЭС тем же составом строительно-монтажных организаций, аналогичным наплавным методом, сооружён одноцепной переход линии 750 кВ «Запорожская АЭС — ПС 750 кВ Днепровская» (мощная электроподстанция под Вольногорском см. http://io.ua/s75116).

Опоры в доке



Створ перехода для более мощной линии 750кВ выбран в районе расположения Запорожской ГРЭС, параллельно существующему переходу ВЛ 330 кВ, на расстоянии 350 м выше его по течению. При принятии решения на строительство перехода ВЛ 750 кВ через Каховское водохранилище — уникального сооружения по своим масштабам и мощности линии — большую роль сыграл опыт проектирования, строительства перехода линии 330 кВ. Переход был сделан одноцепным по схеме К-П-П-А-П-П-К; из пяти переходных опор, из которых три опоры установлены на акватории водохранилища. Опоры перехода этой линии также оцинкованные.

Переходные промежуточные опоры высотой 126 м имеют массу 375 тонн каждая. Анкерная опора высотой 100 м весит 350 т. Длины переходных пролётов составляют 1215—1350 метров. Монтаж проводов был выполнен при помощи раскаточных барж и буксиров без опускания на дно водохранилища во избежание повреждений. Переход линии 750 кВ был 1984 году введён в эксплуатацию.

Переходная береговая опора 750кВ.
Верхушка опоры 750кВ
Фундамент опоры 750кВ
Лесенка на переходную опору ЛЭП 750кВ


Гигантская береговая переходная опора №26 ЛЭП 750кВ

Время от времени на просторах интернета можно встретить сообщения о том, как кого-нибудь из велосипедистов больно ударило током от собственного велосипеда, когда он проезжал под высоковольтной ЛЭП с напряжением 100кВ и более. Точных и внятных ответов на подобные запросы никто дать не может: на форумах то и дело возникают споры по этому вопросу, однако догадки на данный счет имеются у многих пользователей сети.

Одно дело, когда речь идет , это было бы вполне понятно если бы оторвавшийся от ЛЭП провод контактировал бы с грунтом, и тогда стоя на земле кто-нибудь мог бы, случайно оказавшись не в то время не в том месте, попасть под опасное напряжение шага.

Это известный феномен, по его причине в 1928 году на ленинградской мостовой в один день погибли три лошади. Но в приводимых велосипедистами сообщениях речи о шаговом напряжении, кажется, не идет. Давайте же поразмыслим над данной проблемой более вдумчиво, и постараемся найти четкий ответ.

Итак, велосипед на резиновых шинах изолирован от поверхности земли, следовательно ток с земли на велосипед попасть не может, и даже если бы по воле несчастного случая велосипедист оказался бы на месте аварии, где по поверхности земли был бы распределен какой-то реально измеряемый потенциал, его бы и в этом случае не ударило бы током.

Кроме того, согласно сообщениям, велосипедист не спускается на землю, и специально не хватается ни за какие провода, значит ни от ЛЭП, ни от других проводов ток к велосипеду напрямую не подводится. Таким образом, прямое поражение током от ЛЭП однозначно исключается. Следовательно не остается другого соображения, как принять, что напряжение на велосипеде является индуцированным. Остается понять, наведено ли оно от ЛЭП магнитной составляющей или электрической составляющей.

Если предположить, что напряжение наводится на велосипед магнитной составляющей, то вспомнив закон Био-Савара-Лапласа, мы тут же обнаружим, что даже если в момент, когда велосипедист проезжал под проводом, по высоковольтной линии тек переменный ток максимальной величиной, скажем, в 2000А, то уже на расстоянии 5 метров от провода длиной 5 метров, магнитная индукция в своей амплитуде составила бы всего лишь около 40 мкТл, этого хватит разве что на то, чтобы слегка дезориентировать стрелку магнитного компаса. А уж о способности навести напрямую без трансформации сколь-нибудь ощутимое напряжение на велосипедную раму длиной 1 метр… об этом даже говорить уже не приходится. Вариант с электромагнитной индукцией отбрасывается как невозможный.

Остается электростатическая индукция. А вот для этого все возможности есть. Если предположить, что высоковольтная линия с напряжением 220000 вольт проходит над поверхностью земли на высоте 8 метров, надежно изолирована от нее, значит между проводом и землей есть переменное электрическое поле, напряженность которого распределена примерно линейно по высоте, и в амплитуде может достигать 27500 вольт на метр, то есть 275 вольт на сантиметр.

И хотя велосипед не контактирует с землей — это как раз то условие, когда от него велосипедиста все равно будет дергать током. Велосипед здесь выступает нижней обкладкой конденсатора, а велосипедист — верхней обкладкой. Этот конденсатор, с диэлектриком в виде воздуха и одежды велосипедиста, внесен в переменное электрическое поле и все время этим полем перезаряжается. И стоит велосипедисту случайно в момент, когда этот конденсатор заряжен, соприкоснуться с велосипедом, как он почувствует разряд. Убить — не убьет, но неприятные ощущения однозначно будут.

Если бы человек стоял под ЛЭП голыми ногами на земле, то он бы ничего похожего не почувствовал, так как все его тело приобрело бы нулевой потенциал земли. А стоя на земле под ЛЭП на тонком резиновом коврике, он бы получил похожий удар, коснувшись пальцем земли возле коврика. Так и с велосипедом, где слой диэлектрика (читай — костюм велосипедиста) довольно тонок, следовательно электроемкость получившегося конденсатора не так мала, как может показаться с первого взгляда.

Чаще всего мы представляем себе опору ЛЭП в виде решетчатой конструкции. Лет 30 назад это был единственный вариант, да и в наши дни их продолжают строить. На место строительства привозят набор металлических уголков и шаг за шагом свинчивают из этих типовых элементов опору. Затем приезжает кран и ставит конструкцию вертикально. Такой процесс занимает довольно много времени, что сказывается на сроках прокладки линий, а сами эти опоры с унылыми решетчатыми силуэтами весьма недолговечны. Причина — слабая защита от коррозии. Технологическое несовершенство такой опоры дополняет простой бетонный фундамент. Если сделан он недобросовестно, например с применением раствора ненадлежащего качества, то спустя какое-то время бетон растрескается, в трещины попадет вода. Несколько циклов заморозки-оттаивания, и фундамент надо переделывать или серьезно ремонтировать.

Трубки вместо уголков

О том, что за альтернатива идет на смену традиционным опорам из черного металла, мы спросили представителей ПАО «Россети». «В нашей компании, которая является крупнейшим электросетевым оператором в России, — говорит специалист этой организации, — мы давно пытались найти решение проблем, связанных с решетчатыми опорами, и в конце 1990-х начали переходить на гранные опоры. Это цилиндрические стойки из гнутого профиля, фактически трубы, в поперечном сечении имеющие вид многогранника. Кроме того, мы стали применять новые методы антикоррозионной защиты, в основном метод горячего цинкования. Это электрохимический способ нанесения защитного покрытия на металл. В агрессивной среде слой цинка истончается, но несущая часть опоры остается невредимой».

Помимо большей долговечности новые опоры отличаются еще и простотой монтажа. Никаких уголков больше свинчивать не надо: трубчатые элементы будущей опоры просто вставляются друг в друга, затем соединение закрепляется. Смонтировать такую конструкцию можно в восемь-десять раз быстрее, чем собрать решетчатую. Соответствующие преобразования претерпели и фундаменты. Вместо обычного бетонного стали применять так называемые сваи-оболочки. Конструкция опускается в землю, к ней крепится ответный фланец, а на него уже ставится сама опора. Расчетный срок службы таких опор — до 70 лет, то есть примерно в два раза больше, чем у решетчатых.


Опоры электрических воздушных линий мы обычно представляем себе именно так. Однако классическая решетчатая конструкция постепенно уступает место более прогрессивным вариантам — многогранным опорам и опорам из композитных материалов.

Почему гудят провода

А провода? Они висят высоко над землей и издали похожи на толстые монолитные тросы. На самом деле высоковольтные провода свиты из проволоки. Обычный и повсеместно применяемый провод имеет стальной сердечник, который обеспечивает конструктивную прочность и находится в окружении алюминиевой проволоки, так называемых внешних повивов, через которые передается токовая нагрузка. Между сталью и алюминием проложена смазка. Она нужна для того, чтобы уменьшить трение между сталью и алюминием — материалами, имеющими разный коэффициент теплового расширения. Но поскольку алюминиевая проволока имеет круглое сечение, витки прилегают друг к другу неплотно, поверхность провода имеет выраженный рельеф. У этого недостатка есть два последствия. Во‑первых, в щели между витками проникает влага и вымывает смазку. Трение усиливается, и создаются условия для коррозии. В результате срок службы такого провода составляет не более 12 лет. Чтобы продлить срок службы, на провод порой надевают ремонтные манжеты, которые также могут стать причинами проблем (об этом чуть ниже). Кроме того, такая конструкция провода способствует созданию вблизи воздушной линии хорошо различимого гула. Происходит он из-за того, что переменное напряжение 50 Гц рождает переменное магнитное поле, которое заставляет отдельные жилы в проводе вибрировать, что влечет их соударения друг с другом, и мы слышим характерное гудение. В странах ЕС такой шум считается акустическим загрязнением, и с ним борются. Теперь такая борьба началась и у нас.


«Старые провода мы сейчас хотим заменить на провода новой конструкции, которую разрабатываем, — говорит представитель ПАО «Россети». — Это тоже сталь-алюминиевые провода, но проволока там применяется не круглого сечения, а скорее трапециевидного. Повив получается плотным, а поверхность провода гладкая, без щелей. Влага внутрь попасть почти не может, смазка не вымывается, сердечник не ржавеет, и срок службы такого провода приближается к тридцати годам. Провода схожей конструкции уже используются в таких странах, как Финляндия и Австрия. Линии с новыми проводами есть и в России — в Калужской области. Это линия «Орбита-Спутник» длиной 37 км. Причем там провода имеют не просто гладкую поверхность, но и другой сердечник. Он выполнен не из стали, а из стекловолокна. Такой провод легче, но прочнее на разрыв, чем обычный сталь-алюминиевый».

Однако самым последним конструкторским достижением в данной области можно считать провод, созданный американским концерном 3M. В этих проводах несущая способность обеспечивается только токопроводящими повивами. Там нет сердечника, но сами повивы армированы оксидом алюминия, чем достигается высокая прочность. У этого провода прекрасная несущая способность, и при стандартных опорах он за счет своей прочности и малого веса может выдерживать пролеты длиной до 700 м (стандарт 250−300 м). Кроме того, провод очень стоек к тепловым нагрузкам, что обусловливает его использование в южных штатах США и, например, в Италии. Однако у провода от 3M есть один существенный минус — слишком высокая цена.


Оригинальные «дизайнерские» опоры служат несомненным украшением ландшафта, однако вряд ли они получат широкое распространение. В приоритете у электросетевых компаний надежность передачи энергии, а не дорогостоящие «скульптуры».

Лед и струны

У воздушных линий электропередач есть свои естественные враги. Один из них — обледенение проводов. Особенно это бедствие характерно для южных районов России. При температуре около нуля капли измороси падают на провод и замерзают на нем. Происходит образование кристаллической шапки на верхней части провода. Но это только начало. Шапка под своей тяжестью постепенно проворачивает провод, подставляя замерзающей влаге другую сторону. Рано или поздно вокруг провода образуется ледяная муфта, и если вес муфты превысит 200 кг на метр, провод оборвется и кто-то останется без света. В компании «Россети» есть свое ноу-хау по борьбе со льдом. Участок линии с обледеневшими проводами отключается от линии, но подключается к источнику постоянного тока. При использовании постоянного тока омическое сопротивление провода можно практически не учитывать и пропускать токи, скажем, в два раза сильнее, чем расчетное значение для переменного тока. Провод нагревается, и лед плавится. Провода сбрасывают ненужный груз. Но если на проводах есть ремонтные муфты, то возникает дополнительное сопротивление, и вот тогда провод может и перегореть.


Другой враг — высокочастотные и низкочастотные колебания. Натянутый провод воздушной линии — это струна, которая под воздействием ветра начинает вибрировать с высокой частотой. Если эта частота совпадет с собственной частотой провода и произойдет совмещение амплитуд, провод может порваться. Чтобы справиться с данной проблемой, на линиях устанавливают специальные устройства — гасители вибрации, имеющие вид тросика с двумя грузиками. Эта конструкция, имеющая свою частоту колебаний, расстраивает амплитуды и гасит вибрацию.

С низкочастотными колебаниями связан такой вредный эффект, как «пляска проводов». Когда на линии происходит обрыв (например, из-за образовавшегося льда), возникают колебания проводов, которые идут волной дальше, через несколько пролетов. В результате могут погнуться или даже упасть пять-семь опор, составляющих анкерный пролет (расстояние между двумя опорами с жестким креплением провода). Известное средство борьбы с «пляской» — установление межфазных распорок между соседними проводами. При наличии распорки провода будут взаимно гасить свои колебания. Другой вариант — использование на линии опор из композитных материалов, в частности из стеклопластика. В отличие от металлических опор, композитная имеет свойство упругой деформации и легко «отыграет» колебания проводов, нагнувшись, а затем восстановив вертикальное положение. Такая опора может предотвратить каскадное падение целого участка линии.


На фото отчетливо видна разница между традиционным высоковольтным проводом и проводом новой конструкции. Вместо проволоки круглого сечения использована предварительно деформированная проволока, а место стального сердечника занял сердечник из композита.

Опоры-уникумы

Разумеется, существуют разного рода уникальные случаи, связанные с прокладкой воздушных линий. Например, при установке опор в обводненный грунт или в условиях вечной мерзлоты обычные сваи-оболочки для фундамента не подойдут. Тогда используются винтовые сваи, которые ввинчивают в грунт как шуруп, чтобы достичь максимально прочного основания. Особый случай — это прохождение ЛЭП широких водных преград. Там используются специальные высотные опоры, которые весят раз в десять больше обычных и имеют высоту 250−270 м. Поскольку длина пролета может составлять более двух километров, применяется особый провод с усиленным сердечником, который дополнительно поддерживается грузотросом. Так устроен, например, переход ЛЭП через Каму с длиной пролета 2250 м.


Отдельную группу опор представляют конструкции, призванные не только держать провода, но и нести в себе определенную эстетическую ценность, например опоры-скульптуры. В 2006 году компания «Россети» инициировала проект с целью разработать опоры с оригинальным дизайном. Были интересные работы, но авторы их, дизайнеры, часто не могли оценить возможность и технологичность инженерного воплощения этих конструкций. Вообще надо сказать, что опоры, в которые вложен художественный замысел, как, например, опоры-фигуры в Сочи, обычно устанавливаются не по инициативе сетевых компаний, а по заказу каких-то сторонних коммерческих или государственных организаций. Например, в США популярна опора в виде буквы M, стилизованной под логотип сети фастфуда «Макдоналдс».

Почему гудят провода ЛЭП? Вы когда-нибудь задумывались об этом? А ведь ответ на этот вопрос может быть отнюдь не тривиальным, хотя и вполне бесхитростным. Давайте рассмотрим несколько вариантов объяснения, каждый из которых имеет право на существование.

Коронный разряд

Чаще всего приводят такую идею. Переменное электрическое поле вблизи провода ЛЭП электризует воздух вокруг провода, разгоняет свободные электроны, которые ионизируют молекулы воздуха, а они в свою очередь порождают . И вот, 100 раз в секунду загорается и гаснет коронный разряд вокруг провода, при этом воздух возле провода нагревается — остывает, расширяется - сжимается, и таким вот образом получается звуковая волна в воздухе, которая воспринимается нашим ухом как гудение провода.

Вибрируют жилы

Еще есть вот такая идея. Шум происходит от того, что переменный ток с частотой 50 Гц рождает переменное магнитное поле, которое вынуждает отдельные жилы в проводе (особенно стальные - в проводах марок типа АС-75, 120, 240) вибрировать, они как-бы соударяются друг с другом, и мы слышим характерный шум.

Кроме того, провода разных фаз расположены друг возле друга, их токи находятся в магнитных полях друг друга, и согласно закону Ампера на них действуют силы. Поскольку частота изменений полей 100 Гц — вот и вибрируют провода в магнитных полях друг друга от сил Ампера на этой частоте, и мы ее слышим.

Резонанс механической системы

И такая гипотеза кое-где встречается. Колебания частотой 50 или 100 Гц передаются на опору, и при определенных условиях опора, входя в резонанс, начинает издавать звук. На громкость и на резонансную частоту влияют плотность материала опоры, диаметр опоры, высота опоры, длина провода в пролете, а также его сечение и сила натяжения. Если в резонанс попадание есть — слышен шум. Если нет попадания в резонанс — шума нет или он тише.

Вибрация в магнитном поле Земли

Рассмотрим еще одну гипотезу. Провода вибрируют с частотой 100 Гц, а это значит, что на них постоянно оказывает действие переменная поперечная сила, связанная с током в проводах, с его величиной и направлением. Где же внешнее магнитное поле? Гипотетически, это может быть то магнитное поле, что всегда под ногами, которое ориентирует стрелку компаса, - .

Действительно, токи в проводах высоковольтных ЛЭП достигают в амплитуде нескольких сотен ампер, при этом протяженность проводов линий немала, и магнитное поле нашей планеты хоть и относительно мало (его индукция в средней полосе России составляет всего около 50 мкТл), тем не менее действует оно всюду по планете, и везде имеет не только горизонтальную, но и вертикальную составляющую, которая пересекает перпендикулярно как провода ЛЭП проложенные вдоль силовых линий магнитного поля Земли, так и те провода, что сориентированы поперек них или вообще под любым другим углом.

Для понимания процесса каждый может провести такой несложный эксперимент: возьмите автомобильный аккумулятор и гибкий акустический провод, сечением 25 кв.мм, длиной хотя бы 2 метра. Присоедините его на миг к клеммам аккумулятора. Провод подпрыгнет! Что это, если не импульс силы Ампера, подействовавшей на провод с током в магнитном поле Земли? Разве что провод подскочил в собственном магнитном поле...