Автомат с тепловым и электромагнитным расцепителем. Электромагнитный расцепитель ав

С помощью автоматических выключателей осуществляется многоразовая защита электроустановок от коротких замыканий и перегрузок. В отдельных случаях, эти устройства могут срабатывать при недопустимых снижениях напряжения и других аномальных состояниях. Одним из основных характеристик прибора является ток расцепителя автоматического выключателя. Для того, чтобы правильно понимать значение этого параметра, необходимо знать, что такое расцепитель и как он работает.

Назначение и принцип действия расцепителей

Непосредственная электрической цепи осуществляется с помощью подвижного и неподвижного контактов. В подвижном контакте имеется пружина, обеспечивающая быстрое расцепление контактов. Для приведения в действие механизма расцепления существуют два вида расцепителей.

Тепловой расцепитель , по сути, является биметаллической пластиной, которая нагревается при протекании тока. Когда ток превышает допустимое значение, происходит изгиб пластины и расцепляющий механизм начинает действовать. Время его срабатывания находится в зависимости от тока. Минимальное значение электротока, когда срабатывает расцепитель, имеет величину в 1,45 от значения тока уставки. Срабатывания настраивается с помощью специального регулировочного винта. После того, как пластина остынет, автомат будет полностью готов к последующему использованию.

Электромагнитный расцепитель обладает мгновенным действием и носит еще одно название отсечки. Это соленоид с подвижным сердечником, который и приводит в действие расцепляющий механизм. При протекании тока через обмотку происходит втягивание сердечника, если токовое значение превышает заданный порог. Срабатывание происходит мгновенно, в этих случаях превышение электротока может составлять 2-10 раз от номинального значения.

Характеристика тока расцепителя

Ток расцепителя автоматического выключателя имеет определенное значение, при котором происходит автоматическое отключение устройства. Это значение определяется произведением номинального тока в основной цепи и величины уставки тока срабатывания. Уставка может иметь заводские настройки или настраиваться вручную.

Ток в тепловом расцепителе должен быть не более номинала. Как только номинальное значение будет превышено, произойдет срабатывание автомата. Скорость срабатывания полностью зависит от времени прохождения электротока с превышенным номиналом.

Электромагнитный расцепитель срабатывает мгновенно, это характерно, в основном, для коротких замыканий в защищаемой линии.

Испытание автоматов АВВ, Hager и EKF

Как правильно выбрать автоматический выключатель?

Автоматический выключатель (на языке электриков "автомат") является основой защиты в силовых электрических цепях низкого (до 1000 Вольт) напряжения. Это комбинированный электроприбор, сочетающий в себе функции выключателя и защитного устройства. Практически вся система распределения и защиты бытовой электропроводки построена на автоматах. Хочу сразу заметить, что основное применение автомата - это защита того участка электропроводки, который находится между выходом из автомата и потребителем. Если далее по линии находится другой автомат, то наш автомат должен защищать участок между этими двумя автоматами. При возникновении перегрузки или короткого замыкания на каком-то участке цепи, должен сработать только один автомат, защищающий конкретно данный участок цепи.

Как подобрать автомат?

Возьмем классический пример. Делаем ремонт в квартире (или в частном доме), меняем электропроводку и хотим ее защитить от перегрузок и коротких замыканий. Обычная в наши дни практика - разделение проводки на несколько ветвей с защитой каждой из них отдельным автоматом. В квартирах часто разделяют на отдельные линии освещение и розетки. Помимо этого, отдельная линия может быть выделена под электроплиту, еще одна под кухонные розетки и розетки хозблока, в которые обычно включают самые мощные в квартире электроприборы: электрочайник, микроволновая печь, и т.д. Надо заметить, что стандартные электророзетки, применяемые в наших домах, обычно рассчитаны на максимальный ток 10 или 16А, и зачастую являются самым слабым звеном электропроводки. Поэтому и номинал автомата, защищающего линию с такими розетками, не может быть выше 16А, какой бы толстый провод ни был.

О материале и толщине провода - это отдельная тема, здесь лишь скажу кратко: медь и только медь, для квартир и частных домов берем сечение 1.5 кв.мм на освещение, 2.5 кв.мм - на стандартные розетки. Соответственно, номиналы автоматов для линий освещения 10А, для линий, питающих розетки, 16А (при условии, что розетки тоже 16-амперные). При этом возникает ряд вопросов. Получается, что каждая розетка может одна выдержать 16 Ампер, но при этом суммарный ток всей группы розеток также не должен превышать те же самые 16 Ампер.

Некоторым такой расклад не нравится, и они ставят автоматы на больший ток - 25А и даже выше. По некоторым соображениям, этого не стоит делать, даже если сечение провода будет позволять пропускать такой ток длительное время. Представим ситуацию, что в одну из розеток воткнули какой-то мощный электроинструмент, который потребляет ток до 25-30А. Понятно, что при таком токе в розетке могут пойти неприятные процессы, вплоть до возгорания, а 25-амперный автомат этой перегрузки не почувствует. Ну или почувствует, но тогда, когда все уже будет гореть синим пламенем. Кто-то может возразить, что нет стандартного электроинструмента с таким током потребления, но ведь инструмент может быть и нестандартным, и неисправным. А может случиться и такое, что через удлинитель к розетке подключат несколько мощных электроприборов одновременно, с таким же результатом.

Поэтому, если предполагается, что суммарный ток оборудования, одновременно включенного в розетки, будет больше 16А, то правильным решением будет разделить розетки на несколько групп и запитать каждую группу через отдельный автомат. Надо иметь в виду, что в продаже имеются как 16-ти, так и 10-амперные розетки. Я не скажу, что они плохого качества, просто они рассчитаны на максимальный ток нагрузки, равный 10 А. Для таких розеток допустимо прокладывать проводку сеченим 1.5 мм 2 , но и автомат в данном случае должен быть 10-амперный. По поводу удлинителей. Очень часто можно встретить дешевые варианты, сечение шнура такого удлинителя 1 мм 2 , бывает и меньше. Сами удлинители обычно никакой защиты не имеют. Поэтому используйте такие удлинители с особой осторожностью, понимая то, что автомат их не защищает.

Маркировка автоматических выключателей

На корпусе автомата мы можем увидеть некоторые загадочные надписи. Ниже обозначены цифрами главные из них:

Расшифровка:

  1. Номинальный ток автомата
  2. Характеристика срабатывания
  3. Максимальный ток отключения
  4. Класс отключения.

Помимо вышеперечисленных надписей, на корпусе обычно находится логотип производителя и тип автомата, а также краткое схематическое обозначение, показывающее, где находится неподвижный контакт (при вертикальном расположении его принято располагать сверху) и как расположены расцепители относительно контактов. Зажимные контактные винты могут закрываться шторками (см. крайний слева автомат), это удобно для опломбирования. Корпус обычно делается из полистирола - на мой взгляд, не самый подходящий материал для устройства, которое может прилично нагреваться.

Номинальный ток автомата

Пришло время разобраться с тем, что на деле означает номинальный ток автомата и какой при этом будет ток срабатывания защиты. Распространенная ошибка - часто люди считают, что номинальный ток и есть ток срабатывания. На самом деле, исправный автоматический выключатель никогда при номинальном токе не сработает. Более того, он не сработает даже при 10% перегрузке. При большой перегрузке автомат отключится, но это не значит, что он отключится быстро. Обычный модульный автомат имеет 2 расцепителя: медленный тепловой и быстро реагирующий электромагнитный. Тепловой расцепитель в своей основе содержит биметаллическую пластину, которая нагревается от проходящего через нее тока. От нагрева пластина изгибается, и при определенном положении воздействует на защелку, и выключатель отключается. Электромагнитный расцепитель представляет собой катушку со втягивающимся сердечником, который при большом токе также воздействует на защелку, отключающую автомат. Если назначение теплового расцепителя - отключать автомат при перегрузках, то задача электромагнитного - быстрое отключение при коротких замыканиях, когда значение тока в разы превышает номинальное.

Ряд значений номинальных токов

Мне приходилось устанавливать автоматические выключатели номиналом от 0.2А. Вообще, мне встречались модульные автоматы следующих номиналов: 0.2, 0.3, 0.5, 0.8, 1, 1.6, 2, 2.5 3, 4, 5, 6, 6.3, 8, 10, 13, 16, 20, 25, 32, 40, 50, 63, 80, 100, 125 Ампер. То есть, сказать, что номиналы соответствуют какому-то единому стандартному ряду, как например Е6, Е12 у резисторов или конденсаторов, я не могу. Лепят кто во что горазд. С автоматами выше 100А ситуация примерно такая же. Максимальный номинал автомата, предназначенного для работы в сетях 0.4 кВ, который я видел - 6300А. Это соответствует трансформатору мощностью 4МВА, ну а более мощных трансформаторов под это напряжение у нас не делают, это предел.

Характеристика срабатывания

Чувствительность электромагнитных расцепителей регламентируется параметром, называемым характеристикой срабатывания. Это важный параметр, и на нем стоит немного задержаться. Характеристика, иногда ее называют группой, обозначается одной латинской буквой, на корпусе автомата ее пишут прямо перед его номиналом, например надпись C16 означает, что номинальный ток автомата 16А, характеристика С (наиболее, кстати, распространенная). Менее популярны автоматы с характеристиками B и D, в основном на этих трех группах и строится токовая защита бытовых сетей. Но есть автоматы и с другими характеристиками.

Согласно википедии, автоматические выключатели делятся на следующие типы (классы) по току мгновенного расцепления:

  • тип B : свыше 3·I n до 5·I n включительно (где I n - номинальный ток)
  • тип C : свыше 5·I n до 10·I n включительно
  • тип D : свыше 10·I n до 20·I n включительно
  • тип L : свыше 8·I n
  • тип Z : свыше 4·I n
  • тип K : свыше 12·I n

При этом википедия ссылается на ГОСТ Р 50345-2010. Я специально перечитал весь этот стандарт, но ни о каких типах L, Z, K в нем ни разу не упоминается. Да и в продаже я что-то не наблюдаю таких автоматов. У европейских производителей классификация может несколько отличаться. В частности, имеется дополнительный тип A (свыше 2·I n до 3·I n ). У отдельных производителей существуют дополнительные кривые отключения. Например, у АВВ имеются автоматические выключатели с кривыми K (8 - 14·I n ) и Z (2 - 4·I n ), соответствующие стандарту МЭК 60947-2. В общем, будем иметь в виду, что, кроме B, C и D существуют и иные кривые, но в данной статье будем рассматривать только эти. Хотя сами по себе кривые одинаковы - они вообще показывают зависимость времени срабатывания теплового расцепителя от тока. Разница лишь в том, до какой отметки доходит кривая, после чего она резко обрывается до значения, близкого к нулю. А вот и сами графики:


Это усредненные графики, на самом деле допускается некоторый разброс по времени срабатывания тепловой защиты. Что нам следует иметь в виду, выбирая характеристику отключения? Здесь на первый план выходят пусковые токи того оборудования, которое мы собираемся включать через данный автомат. Нам важно, чтобы пусковой ток в сумме с другими токами в этой цепи не оказался выше тока срабатывания электромагнитного расцепителя (тока отсечки). Проще тогда, когда мы точно знаем, что будет подключаться к нашему автомату, но когда автомат защищает группу розеток, тогда мы только можем предполагать, что и когда туда будет включено. Конечно, мы можем взять с запасом - поставить автоматы группы D. Но далеко не факт, что ток короткого замыкания в нашей цепи где-нибудь на дальней розетке будет достаточен для срабатывания отсечки. Конечно, через десяток секунд тепловой расцепитель нагреется и отключит цепь, но для проводки это окажется серьезным испытанием, да и возгорание в месте замыкания может произойти. Поэтому нужно искать компромисс. Как показала практика, для защиты розеток в жилых помещениях, офисах - там, где не предполагается использование мощного электроинструмента, промышленного оборудования, - лучше всего устанавливать автоматы группы B. Для кухни и хозблока, для гаражей и мастерских обычно ставятся автоматы с характеристикой C - там, где есть достаточно мощные трансформаторы, электродвигатели, там есть и пусковые токи. Автоматы группы D следует ставить там, где есть оборудование с тяжелыми условиями пуска - транспортеры, лифты, подъемники, станки и т.д.

Посмотрите на следующую картинку, очень похожую по смыслу на предыдущую, здесь как раз показан разброс параметров тепловой защиты автоматических выключателей :

Обратите внимание на два числа сверху графика. Это очень важные числа. 1.13 - это та кратность, ниже которой никакой исправный автомат никогда не сработает. 1.45 - это та кратность, при которой любой исправный автомат гарантированно сработает. Что они означают на деле? Рассмотрим на примере. Возьмем автомат на 10А. Если мы пропустим через него ток 11.3А или меньше, он не отключится никогда. Если мы увеличим ток до 12, 13 или 14 А - наш автомат может через какое-то время отключиться, а может и не отключиться вовсе. И только когда ток превысит значение 14.5А, мы можем гарантировать, что автомат отключится. Насколько быстро - зависит от конкретного экземпляра. Например, при токе 15А время срабатывания может составлять от 40 секунд до 5 минут. Поэтому, когда кто-то жалуется, что у него 16-амперный автомат не срабатывает на 20 амперах, он это делает напрасно - автомат совершенно не обязан срабатывать при такой кратности. Более того - эти графики и цифры нормированы для температуры окружающей среды, равной 30°C, при более низкой температуре график смещается вправо, при более высокой - влево.

Класс токоограничения

Движемся дальше. Электромагнитный расцепитель, хоть и называется мгновенным, но тоже имеет определенное время срабатывания, которое отражает такой параметр, как класс ограничения. Он обозначается одной цифрой и у многих моделей эту цифру можно найти на корпусе аппарата. В основном сейчас выпускаются автоматы с классом токоограничения 3 - это значит, что со времени достижения током значения срабатывания до полного разрыва цепи пройдет время не более чем 1/3 полупериода. При стандартной у нас частоте 50 Герц это получается около 3,3 миллисекунд. Класс 2 соответствует значению 1/2 (порядка 5 мс), наверное существуют и другие, но об их существовании мне не известно. По некоторым источникам, отсутствие маркировки этого параметра равносильно классу 1. Я бы этот параметр назвал не классом токоограничения, а быстродействием отсечки. Казалось бы, чем быстрей, тем лучше. На деле же иногда есть смысл поставить автомат с более медленным срабатыванием - это касается групповых автоматов, чтобы при КЗ на какой-то отходящей линии они не срабатывали вместе с автоматом этой линии, т.е. чтобы была селективность. Хотя нет гарантий того, что автомат с меньшим классом сработает медленней автомата с большим классом. Поэтому строить селективность, исходя из данного параметра, я бы не стал, да и официальных рекомендаций насчет этого нет.

Максимальный ток отключения

Очень важный параметр - максимальный ток отключения. Этот параметр в большой степени отражает качество силовой части автомата. Обычно в розничной сети нам предлагаются автоматы с током отключения до 4.5 или 6 кА. Иногда попадаются дешевые модели с отключающей способностью в 3 кА. И хотя в бытовых условиях ток КЗ редко достигает таких величин, все-таки я не советую использовать автоматы с отключающей способностью менее 4.5 кА. Потому что, если отключающая способность мала, то там следует ожидать и контакты меньшей площади, и дугогасительные камеры похуже и т.д.

Где купить автоматы?

Автоматический выключатель с характеристикой C обычно купить не проблема - они в достаточном ассортименте представлены в строительных и хозяйственных магазинах и на рынках. Автоматы с характеристиками B, D тоже встречаются в этих местах, но достаточно редко. Их можно заказать на фирмах или в небольших специализированных магазинах. А можно купить в интернет-магазине АВС-электро. В этом магазине есть практически все автоматы всех номиналов и характеристик. Приятно, что есть не только привычные нам номиналы 6, 10, 16, 25, но и 8, 13, 20 Ампер, которых зачастую так не хватает для обеспечения хорошей селективности.

Зависимость срабатывания от окружающей температуры

Еще один момент, о котором часто забывают - это зависимость тепловой защиты автомата от температуры окружающей среды. А она очень существенная. Когда автомат и защищаемая линия находятся в одном помещении, то обычно ничего страшного: при понижении температуры чувствительность автомата уменьшается, но зато увеличивается нагрузочная способность провода, и баланс более-менее сохраняется. Проблемы могут быть тогда, когда провод в тепле, а автомат на холоде. Поэтому, если такая ситуация имеет место, то нужно сделать соответствующую поправку. Примеры таких зависимостей показаны ниже на графике. Более точную информацию по конкретной модели нужно смотреть в паспорте от завода-изготовителя.


Количество полюсов автомата. Последовательное и параллельное соединение полюсов и автоматов

У автомата может быть от 1 до 4 полюсов. Каждый полюс имеет свой как тепловой, так и электромагнитный расцепитель. При срабатывании одного из них отключаются одновременно все полюса. Включить также можно только все полюса вместе одной общей рукояткой. Существует еще одна разновидность автоматов - так называемые 1p+n. Этот автомат синхронно коммутирует 2 провода: фазный и нулевой, но расцепитель в нем один - только на фазном контакте. При срабатывании расцепителя оба контакта размыкаются. Несмотря на то, что через такой автомат проходит 2 провода, он не считается двухполюсным.

Можно ли соединять полюса параллельно или последовательно? Можно. Но для этого нужно иметь веские причины. Например, при отключении индуктивной нагрузки или просто в случаях перегрузки или короткого замыкания - то есть тогда, когда приходится разрывать большой ток, возникает электрическая дуга. Для ее разрыва имеются дугогасительные камеры, но все равно это не проходит бесследно - контакты могут подгорать, может появляться копоть. Если мы соединим полюса последовательно, то дуга разделится между ними, она будет быстрее погашена, износ контактов будет меньше. К недостаткам данного способа можно отнести повышенные потери - все-таки какое-то падение напряжения на контатках есть, и чем выше ток, тем больше на них теряется мощности (обычно несколько ватт на токах 10-100А, обычно изготовитель включает данную информацию в паспорт). Параллельное соединение полюсов обычно применяют тогда, когда нет автомата нужного номинала, но есть автомат меньшего номинала, но с "лишними" полюсами. При этом обычно, для подсчета суммарного номинального тока, рекомендуют для 2-х параллельных полюсов умножать номинальный ток одного полюса на 1.6, для 3-х - на 2.2, для 4-х - на 2.8. Возможно, в некоторых аварийных случаях это выход из положения, но при первой же возможности нужно заменить такой суррогат на автомат нужного номинала.

Еще сложней дело обстоит при параллельном и последовательном соединении автоматов. Конечно, можно придумать ситуацию и как-то даже обосновать параллельное соединение двух или нескольких автоматов, но я бы не советовал даже рассматривать такой вариант. Как распределятся токи, что будет после отключения одного из автоматов - все это сомнительно и трудно предсказуемо. Последовательно включать автоматы более разумно. Например, это можно рассматривать как повышение надежности защиты: в случае неисправности одного из автоматов другой его подстрахует. Но обычно так не делают, а в качестве страховки рассматривается групповой автомат. К тому же сам автоматический выключатель потребляет некоторое количество электроэнергии, поэтому дополнительный автомат - это еще и дополнительные потери.

Мощность рассеивания автоматических выключателей

Для примера приведу паспортные значения данного параметра для автоматов ВА 47-63 (значения даны новых автоматов при значениях тока, равных номинальному):

Номинальный ток In, A Мощность рассеивания, Вт
1-полюсные 2-полюсные 3-полюсные 4-полюсные
1 1,2 2,4 3,6 4,8
2 1,3 2,6 3,9 5,2
3 1,3 2,6 3,9 5,2
4 1,4 2,8 4,2 5,6
5 1,6 3,2 4,8 6,4
6 1,8 3,6 5,5 7,2
8 1,8 3,6 5,5 7,33
10 1,9 3,9 5,9 7,9
13 2,5 5,3 7,8 10,3
16 2,7 5,6 8,1 11,4
20 3,0 6,4 9,4 13,6
25 3,2 6,6 9,8 13,4
32 3,4 7,5 11,2 13,8
35 3,8 7,6 11,4 15,3
40 3,7 8,1 12,1 15,5
50 4,5 9,9 14,9 20,5
63 5,2 11,5 17,2 21,4

Как видим, автоматический выключатель тоже хочет есть. Поэтому не стоит увлекаться и втыкать автоматы везде, где это возможно. Где же происходят потери? Основная часть приходится на тепловой расцепитель. Но не надо излишне драматизировать ситуацию. Эти потери пропорциональны протекающему току. Поэтому, если например нагрузка в 2 раза меньше номинальной, то и потери будут соответственно вдвое меньше, а при отсутствии нагрузки не будет и потерь. Если их представить в процентном виде, то будут величины порядка 0,05-0.5%, причем наименьший процент у самых мощных автоматов. В самих контактах, пока автомат новый, потери незначительны. Но в процессе эксплуатации котакты будут подгорать, переходное сопротивление будет расти, а с ним будут расти и потери. Поэтому у старого автомата потери могут быть заметно больше. Кстати, измерить потери довольно просто - нужно измерить падение напряжения на автомате и ток, проходящий через него. У себя дома я делаю это с помощью вот такого очень недорогого прибора, сочетающего в себе мультиметр и токоизмерительные клещи:


Да - дешевый китайский ширпотреб, но для бытовых целей вполне пригодный.

Выбор автомата по мощности (току) нагрузки

Хотя основное назначение автомата - это защита электропроводки, при определенных условиях целесообразно рассчитывать автомат по току нагрузки. Это возможно в тех случаях, когда отходящая от автомата линия предназначена для питания одного конкретного электроприбора. В бытовых сетях это может быть электроплита или кондиционер, какой-либо станок, электрокотел и т.д. Как правило, нам известен номинальный ток электроприбора, либо мы можем вычислить его, зная мощность нагрузки. Так как проводка выбирается с определенным запасом, то в данном случае номинал автомата обычно меньше того, который мы бы получили, рассчитывая по допустимому току провода. Поэтому при каких-либо замыканиях внутри электроприбора или его перегрузках наша защита сработает, защитив его от дальнейшего разрушения.

Выбор автомата для электропривода (электродвигатель, электромагнитный клапан и т.д.)

Если нагрузкой в цепи является электродвигатель, то нужно помнить, что пусковой ток двигателя в несколько раз больше номинального, поэтому в данном случае нужно использовать автоматы с характеристикой C, а в отдельных случаях (не бытовых) даже D. Номинал автомата выбираем по номинальному току двигателя. Его можно прочитать на табличке или измерить вышеупомянутыми клещами. Измерять ток нужно при нагруженном двигателе, не забывайте. Понятно, что точного соответствия автомата току двигателя не получится, выбирайте ближайшее значение. Некоторые производители заявляют автоматы с особыми характеристиками, специально для электродвигателей. Хотя, при детальном рассмотрении, эти характеристики обычно являются чем-то средним между C и D. Конечно, такой автомат не защитит двигатель должным образом и, если, к примеру, заклинит вал, то произойдет следующее: отсечка не сработает, т.к. ток не будет выше пускового, а тепловая защита может не успеть - перегрев обмоток в двигателе идет очень быстро. Поэтому электродвигателю необходима дополнительная защита в виде специального быстродействующего теплового (или электронного) реле. Таких же правил следует придерживаться и при выборе автомата для электромагнитного привода (различные клапаны, шторки и т.д.).

Производители автоматических выключателей

Большие автоматы - это отдельная тема, здесь рассматриваем производителей исключительно в контексте модульной продукции. На постсоветском пространстве хорошо зарекомендовали себя такие бренды, как ABB, Legrand, Shneider Electric. Обычно продукцию этих фирм вам порекомендуют, когда вы попросите что-то понадежней. Из российских производителей вполне приличные аппараты изготавливают КЭАЗ, Контактор, DEKraft. Больше всего нелестных отзывов собрал IEK - наверное, справедливо, хотя в продаже они, пожалуй, самые покупаемые, благодаря низкой цене.

Предохранитель – это электрический прибор, обеспечивающий защиту электросети от аварийных ситуаций, связанных с выходом текущих параметров (тока, напряжения) за заданные рамки. Простейший предохранитель – плавкая вставка.

Это прибор, включенный в защищаемую цепь последовательно. Как только ток в цепи превышает заданный, проволочка плавится, контакт размыкается, и защищаемый участок цепи таким образом остается неповреждённым. Недостаток такого способа защиты – одноразовость защитного прибора. Сгорел – надо менять.

Устройство автоматического выключателя

Аналогичная задача решается при помощи так называемых автоматических выключателей (АВ). В отличие от плавких одноразовых предохранителей, автоматы – достаточно сложные приборы, при выборе их следует учитывать имеет несколько параметров.

Они также последовательно включаются в цепь. При повышении тока автоматический выключатель цепь разрывает. Автоматические выключатели выпускаются самого разного конструктивного исполнения и с различными параметрами. Наиболее распространены сегодня автоматы для крепления на ДИН-рейку (рис. 1).

Широко известны ещё советских времен автоматы АП-50 (рис. 3-5) и многие другие. Автоматы выпускаются с количеством полюсов (линий для подключения) от одного до четырёх. При этом двух- и четырёхполюсные автоматы могут иметь в своем составе не только защищенные, но и не защищённые контактные группы, которые обычно используются для разрыва нейтрали.



Состав и устройство АВ

В состав большинства автоматических выключателей входят:

  • механизм ручного управления (используется для ручного включения и выключения автомата);
  • коммутирующее устройство (набор подвижных и неподвижных контактов);
  • дугогасительные устройства (решетка из стальных пластин);
  • расцепители.

Дугогасительные устройства обеспечивают гашение и выдувание дуги, которая образуется при размыкании контактов, через которые проходит сверхток(рис.2)


Расцепитель – устройство (часть автомата или дополнительное устройство), механически связанное с механизмом АВ и обеспечивающее размыкание его контактов.

В составе автоматического выключателя имеются обычно два расцепителя.

Первый расцепитель – реагирует на долговременную, но небольшую перегрузку сети (тепловой расцепитель). Обычно это устройство на основе биметаллической пластины, которая под действием проходящего через неё тока постепенно нагревается, изменяет конфигурацию. В конце концов она нажимает на удерживающий механизм, который освобождает и размыкает подпружиненный контакт.

Второй расцепитель – так называемый, «электромагнитный». Он обеспечивает быструю реакцию АВ на короткое замыкание. Конструктивно этот расцепитель представляет из себя соленоид, внутри катушки которого находится подпружиненный сердечник со штырьком, упирающимся в подвижный силовой контакт.

Обмотка включена в цепь последовательно. При коротком замыкании ток в ней резко возрастает, за счет чего увеличивается магнитный поток. При этом преодолевается сопротивление пружины, и сердечник размыкает контакт.

Параметры АВ

Первый параметр – номинальное напряжение. Выпускаются автоматы для только постоянного тока и для переменного и постоянного. Автоматы для постоянного тока для общего использования достаточно редки. В бытовых и промышленных сетях используются в основном АВ для переменного и постоянного тока. Чаще всего используются АВ с номинальным напряжением 400В, 50Гц.

Второй параметр – номинальный ток (Iн). Это тот рабочий ток, который автомат пропускает через себя в длительном режиме. Обычный ряд номиналов (в амперах) – 6-10-16-20-25-32-40-50-63.

Третий параметр – отключающая способность, предельная коммутирующая способность (ПКС). Это максимальная сила тока короткого замыкания, при которой автомат сможет разомкнуть цепь, не разрушившись. Обычный ряд паспортных значений ПКС (в килоамперах) – 4,5-6-10. При напряжении 220 В, это соответствуют сопротивлению сети (R=U/I) 0.049 Ом, 0,037 Ом, 0,022 Ом.

Как правило, сопротивление проводов бытовой электросети может достигать 0,5 Ом, ток короткого замыкания на уровне 10 кА возможен только в непосредственной близости от электроподстанции. Поэтому самые распространённые ПКС – 4,5 или 6 кА. Автоматы с ПКС 10 кА применяются в основном в промышленных сетях.

Четвертый параметр, характеризующий АВ, - это ток уставки (уставка) теплового расцепителя. Этот параметр для различных автоматов составляет от 1,13 до 1,45 от номинального тока. Мы отмечали, что при прохождении номинального тока гарантируется длительная работа цепи с АВ.

Уставка теплового расцепителя больше номинала, именно достижение реальным током величины уставки вызовет отключение автомата. Следует отметить, что в автоматах советского периода предусмотрена ручная регулировка уставки тепловой защиты (рис. 5). Доступ к регулировочному винту в автоматах, устанавливаемых на ДИН-рейку невозможен.


Пятый параметр автоматического выключателя – ток уставки электромагнитного расцепителя. Этот параметр определяет кратность превышения номинального тока, при которой АВ сработает практически мгновенно, среагировав на короткое замыкание.

Важная характеристика автомата – это зависимость времени срабатывания от тока (рис. 6). Эта зависимость состоит из двух зон. Первая – зона ответственности тепловой защиты. Особенность её – постепенное уменьшение времени прохождения тока до расцепления. Это понятно – чем больше ток, тем быстрее нагревается биметаллическая пластина и размыкается контакт.

При очень большом токе (коротком замыкании) практически мгновенно (за 5 – 20 мс) срабатывает электромагнитный расцепитель. Эта вторая зона на нашем графике.


По уставке электромагнитного расцепителя все автоматы подразделяются на несколько типов:

  • A Преимущественно для защиты электронных схем и цепей большой протяжённости;
  • B Для обычных осветительных цепей;
  • C Для цепей с умеренными пусковыми токами (двигатели н трансформаторы бытовых приборов);
  • D Для цепей с большой индуктивной нагрузкой, для промышленных электродвигателей;
  • K Для индуктивных нагрузок;
  • Z Для электронных устройств.

Наиболее распространены – B, C и D.

Характеристика В – используется для сетей общего назначения, особенно там, где необходимо обеспечить селективность защиты. Электромагнитный расцепитель настроен на срабатывание при кратности тока по отношению к номиналу от 3 до 5.

При подключении чисто активных нагрузок (лампочек накаливания, обогревателей…) пусковые токи практически равны рабочим. Однако при подключении электродвигателей (даже холодильников и пылесосов) пусковые токи могут быть значительными и вызвать ложное срабатывание автомата с рассматриваемой характеристикой.

Наиболее распространены автоматы с характеристикой С. Они достаточно чувствительны, и в то же время не дают ложных срабатываний при пуске двигателей бытовой техники . Такой выключатель срабатывает при 5-10 кратном превышении номинального значения. Такие автоматы считаются универсальными и применяются всюду, включая промышленные объекты.

Характеристика D – это уставка электромагнитного расцепителя на 10 – 14 номиналов по току. Обычно такие значения нужны при использовании асинхронных двигателей . Как правило автоматы с характеристикой D используются в трёх- или четырёхполюсном исполнении для защиты промышленных сетей.

При совместном использовании автоматических выключателей нужно иметь представление о таком понятии, как селективная защита. Построение селективной защиты обеспечивает срабатывание автоматов, находящихся ближе к месту аварии, при этом более мощные автоматы, расположенные ближе к источнику напряжения, срабатывать не должны. Для этого более чувствительные и быстродействующие автоматы устанавливаются ближе к потребителям.

Доброе время суток, дорогие друзья!

Сегодня продолжу рассказывать про автоматические выключатели в свете измерения сопротивления петли «фаза-нуль».

В последней статье посвященной измерению сопротивления петли «фаза-ноль» я обмолвился о время-токовых характеристиках автоматических выключателей. Сегодня приведу для примера такие характеристики для автомата типа ВА47-29:

Для каждого автоматического выключателя такая характеристика своя. Обычно она приводится в паспорте на автомат в том виде как показано на рисунке. Т.е. имеется некоторый разброс в параметрах. Как можно заметить разброс этот достаточно большой.

Для характеристики «В» ток отсечки (ток электромагнитного расцепителя) может находиться в интервале от 3Iн до 5Iн;

Для характеристики «С» - от 5Iн до 10Iн;

Для характеристики «D» - от 10Iн до 14Iн.

Значит, измеренный или рассчитанный нами ток короткого замыкания для конкретной линии может, как удовлетворять параметрам автоматического выключателя (быть достаточным для его отключения), так и не удовлетворять.

Реальную же характеристику зависимости времени срабатывания автоматического выключателя от протекающего через него тока для каждого конкретного автомата можно получить только путем проведения проверки параметров этого автомата.

Но многие лаборатории не имеют оборудования для испытания автоматических выключателей. и соответственно, у них нет такого вида работ. Поступают просто. Для проверки соответствия автоматического выключателя параметрам линии (возможному току короткого замыкания) используют верхнее значение тока отсечки, т.е. для характеристики «С» это 10Iн. Такой подход вполне оправдан, т.к. автомат наверняка отключится при токе большем большего возможного тока срабатывания расцепителя, но в ряде случаев не достаточно достоверен. Потому что если измеренный ток короткого замыкания меньше 10Iн, то, разумеется при исправном состоянии проводов линии, необходима замена автоматического выключателя на подходящий. Хотя при проведении проверки автоматического выключателя может выясниться. что ток срабатывания его составляет, например, 7Iн и в этом случае уже при измеренном нами токе короткого замыкания автомат должен уверенно отключаться, т.е. замена автомата не требовалась.

Вернемся к время-токовой характеристике . Допустим, мы провели проверку автомата и по измеренным параметрам получили его индивидуальную характеристику (отображена зеленой линией на рисунке).

Что она нам дает?

Согласно ПУЭ п.1.7.79 время автоматического отключения питания в системе TN не должно превышать значения 0,4с при фазном напряжении 220В, но в цепях, питающих распределительные, групповые, этажные и др. щиты и щитки, время отключения не должно превышать 5с.

Таким образом, имеем две точки на характеристике 0,4с и 5с. В зависимости от места установки автоматического выключателя определяем, какая точка нужна нам и находим в этой точке ток срабатывания (отключения) автоматического выключателя.

Из полученной нами характеристики (зеленая линия) видно, автомат отключится за 0,4с при семикратном от номинального токе , а за 5 с при токе 4,5Iн.

Еще раз отвечу на частый вопрос: Зачем измерять сопротивление петли «фаза-нуль»?

Зная сопротивление петли «фаза-нуль» какой-то цепи (линии), можно найти ток короткого замыкания, который в этой линии может развиться. А зная этот ток, можно ответить на вопрос: сработает ли установленный в этой линии автоматический выключатель и за какое время.

Вот на сегодня и все. Если возникли вопросы, спрашивайте.

Для защиты бытовых электрических цепей обычно используются автоматические выключатели модульной конструкции. Компактность, легкость монтажа и замены, в случае необходимости, объясняет их широкое распространение.

Внешне такой автомат представляет собой корпус из термостойкой пластмассы. На лицевой поверхности расположена рукоятка включения и выключения, сзади – фиксатор-защелка для крепления на DIN-рейке, а сверху и снизу – винтовые клеммы . В данной статье рассмотрим.

Как работает автоматический выключатель?

В режиме штатной работы через автомат протекает ток, меньший или равный номинальному значению. Питающее напряжение от внешней сети подается на верхнюю клемму, соединенную с неподвижным контактом. С неподвижного контакта ток поступает на замкнутый с ним подвижный контакт, а от него, через гибкий медный проводник – на катушку соленоида. После соленоида ток подается на тепловой расцепитель и уже после него – на нижнюю клемму, с подключенной к ней сетью нагрузки.

В аварийных режимах автоматический выключатель отключает защищаемую цепь за счет срабатывания механизма свободного расцепления, приводимого в действие тепловым или электромагнитным расцепителем. Причиной такого срабатывания является перегрузка или короткое замыкание.

Тепловой расцепитель – это биметаллическая пластина, состоящая из двух слоев сплавов с различными коэффициентами термического расширения. При прохождении электрического тока пластина нагревается и изгибается в сторону слоя с меньшим коэффициентом термического расширения. При превышении заданного значения силы тока, изгиб пластины достигает величины, достаточной для приведения в действие механизма расцепления, и цепь размыкается, отсекая защищаемую нагрузку.

Электромагнитный расцепитель состоит из соленоида с подвижным стальным сердечником, удерживаемым пружиной. При превышении заданного значения тока, по закону электромагнитной индукции в катушке наводится электромагнитное поле, под действием которого сердечник втягивается внутрь катушки соленоида, преодолевая сопротивление пружины, и вызывает срабатывание механизма расцепления. В нормальном режиме работы в катушке также наводится магнитное поле, но его силы недостаточно, чтобы преодолеть сопротивление пружины и втянуть сердечник.


Как работает автомат в режиме перегрузки

Режим перегрузки возникает, когда ток в подключенной к автомату цепи превышает номинальное значение, на которое рассчитан автоматический выключатель. При этом повышенный ток, проходящий через тепловой расцепитель, вызывает повышение температуры биметаллической пластины и, соответственно, увеличение ее изгиба вплоть до срабатывания механизма расцепления. Автомат отключается и размыкает цепь.

Срабатывание тепловой защиты не происходит мгновенно, поскольку на разогрев биметаллической пластины потребуется некоторое время. Это время может варьироваться в зависимости от величины превышения номинального значения тока от нескольких секунд до часа.

Такая задержка позволяет избежать отключения питания при случайных и непродолжительных повышениях тока в цепи (например, при включении электродвигателей которые имеют большие пусковые токи).

Минимальное значение тока, при котором должен сработать тепловой расцепитель, устанавливается при помощи регулировочного винта на заводе-изготовителе. Обычно это значение в 1,13-1,45 раз превышает номинал, указанный на маркировке автомата.

На величину тока, при котором сработает тепловая защита, влияет и температура окружающей среды. В жарком помещении биметаллическая пластина прогреется и изогнется до срабатывания при меньшем токе. А в помещениях с низкими температурами ток, при котором сработает тепловой расцепитель, может оказаться выше допустимого.

Причиной перегрузки сети является подключение к ней потребителей, суммарная мощность которых превышает расчетную мощность защищаемой сети. Одновременное включение различных видов мощной бытовой техники (кондиционер, электрическая плита, стиральная и посудомоечная машина, утюг, электрочайник и т.д.) – вполне может привести к срабатыванию теплового расцепителя.

В этом случае определитесь, какие из потребителей можно отключить. И не спешите снова включать автомат. Вы все равно не сможете взвести его в рабочее положение, пока он не остынет, а биметаллическая пластина расцепителя не вернется в свое исходное состояние. Теперь вы знаете при перегрузках

Как работает автомат в режиме короткого замыкания

В случае короткого замыкания иной. При коротком замыкании ток в цепи резко и многократно возрастает до значений, способных расплавить проводку, а точнее изоляцию электропроводки. Для того чтобы предотвратить такое развитие событий необходимо мгновенно разорвать цепь. Электромагнитный расцепитель именно так и срабатывает.

Электромагнитный расцепитель представляет собой катушку соленоида, внутри которой расположен стальной сердечник, удерживаемый в фиксированном положении пружиной.

Многократное возрастание тока в обмотке соленоида, происходящее при коротком замыкании в цепи, приводит к пропорциональному возрастанию магнитного потока, под действием которого сердечник втягивается в катушку соленоида, преодолевая сопротивление пружины, и нажимает на спусковую планку механизма расцепления. Силовые контакты автомата размыкаются, прерывая питание аварийного участка цепи.

Таким образом, срабатывание электромагнитного расцепителя защищает от возгорания и разрушения электропроводку, замкнувший электроприбор и сам автомат. Время его срабатывания составляет порядка 0,02 секунды, и электропроводка не успевает разогреться до опасных температур.

В момент размыкания силовых контактов автомата, когда по ним проходит большой ток, между ними возникает электрическая дуга, температура которой может достигать 3000 градусов.

Чтобы защитить контакты и другие детали автомата от разрушительного воздействия этой дуги, в конструкции автомата предусмотрена дугогасительная камера. Дугогасительная камера представляет собой решетку из набора металлических пластин, которые изолированы друг от друга.

Дуга возникает в месте размыкания контакта, а затем один ее конец движется вместе с подвижным контактом, а второй скользит сначала по неподвижному контакту, а потом по соединенному с ним проводнику, ведущему к задней стенке дугогасительной камеры.

Там она делится (дробится) на пластинах дугогасительной камеры, слабеет и гаснет. В нижней части автомата предусмотрены специальные отверстия для отвода газов, образующихся при горении дуги.

В случае отключения автомата при срабатывании электромагнитного расцепителя, вы не сможете пользоваться электричеством до тех пор пока не найдете и не устраните причину короткого замыкания. Вероятнее всего причина в неисправности одного из потребителей.

Отключите все потребители и попробуйте включить автомат. Если вам это удалось и автомат не выбивает, значит, действительно – виноват один из потребителей и вам осталось выяснить какой именно. Если же автомат и с отключенными потребителями снова выбивает, значит все гораздо сложнее, и мы имеем дело с пробоем изоляции проводки. Придется искать, где это произошло.

Вот таков в условиях различных аварийных ситуаций.

Если отключение автоматического выключателя стало для вас постоянной проблемой, не пытайтесь решить ее установкой автомата с большим номинальным током.

Автоматы устанавливаются с учетом сечения вашей проводки, и, значит, больший ток в вашей сети просто не допускается. Найти решение проблемы можно только после полного обследования системы электроснабжения вашего жилища профессионалами.

Похожие материалы на сайте:

Эта статья продолжает серию публикаций по электрическим аппаратам защиты — автоматическим выключателям, УЗО, дифавтоматам, в которых мы подробно разберем назначение, конструкцию и принцип их работы, а также рассмотрим их основные характеристики и детально разберем расчет и выбор электрических аппаратов защиты. Завершит этот цикл статей пошаговой алгоритм, в котором кратко, схематично и в логической последовательности будет рассмотрен полный алгоритм расчета и выбора автоматических выключателей и УЗО.

Чтобы не пропустить выход новых материалов по этой теме подписывайтесь на новостную рассылку, форма подписки внизу этой статьи.

Ну а в этой статье мы разберемся, что же такое автоматический выключатель, для чего предназначен, как он устроен и рассмотрим, как он работает.

Автоматический выключатель (или обычно просто «автомат») - это контактный коммутационный аппарат, который предназначен для включения и отключения (т.е. для коммутации) электрической цепи, защиты кабелей, проводов и потребителей (электрических приборов) от токов перегрузки и от токов короткого замыкания.

Т.е. автоматический выключатель выполняет три основный функции:

1) коммутацию цепи (позволяет включать и отключать конкретный участок электрической цепи);

2) обеспечивает защиту от токов перегрузки, отключая защищаемую цепь, когда в ней протекает ток, превышающий допустимый (например, при подключении в линию мощного прибора или приборов);

3) отключает от питающей сети защищаемую цепь, когда в ней возникают большие по значению токи короткого замыкания.

Таким образом, автоматы выполняют одновременно и функции защиты и функции управления .

По конструктивному исполнению выпускаются три основных типа автоматических выключателей:

воздушные автоматические выключатели (применяются в промышленности в цепях с большими токами в тысячи ампер);

автоматические выключатели в литом корпусе (рассчитаны на большой диапазон рабочих токов от 16 до 1000 Ампер);

модульные автоматические выключатели , наиболее нам известные, к которым мы привыкли. Они широко применяются в быту, в наших домах и квартирах.

Модульными они называются потому, что их ширина стандартизирована и в зависимости от количества полюсов, кратна 17.5 мм, более подробно этот вопрос будет рассмотрен в отдельной статье.

Мы с вами, на страницах сайта , будем рассматривать именно модульные автоматические выключатели и устройства защитного отключения.

Устройство и принцип работы автоматического выключателя.

Тепловой расцепитель срабатывает не сразу, а через какое-то время, давая возможность току перегрузки вернуться к своему нормальному значению. Если же в течение этого времени ток не снижается, тепловой расцепитель срабатывает, защищая цепь потребителей от перегрева, оплавления изоляции и возможного возгорания проводки.

К перегрузке может приводить подключение в линию мощных приборов, превышающих расчетную мощность защищаемой цепи. Например, при включении в линию очень мощного нагревателя или электроплиты с духовкой (с мощностью, превышающей расчетную мощность линии), или одновременно несколько мощных потребителей (электроплита, кондиционер, стиральная машина, бойлер, электрочайник и т.п.), либо большого количества одновременно включенных приборов.

При коротком замыкании ток в цепи мгновенно возрастает, наводимое в катушке по закону электромагнитной индукции магнитное поле перемещает сердечник соленоида, который приводит в действие механизм расцепителя и размыкает силовые контакты автоматического выключателя (т.е. подвижный и неподвижный контакты). Линия размыкается, позволяя снять с аварийной цепи питание и защитить от возгорания и разрушения сам автомат, электропроводку и замкнувший электроприбор.

Электромагнитный расцепитель срабатывает практически мгновенно (около 0,02с), в отличие от теплового, но при значительно больших значениях тока (от 3-х и более значений номинального тока), поэтому электропроводка не успевает нагреться до температуры плавления изоляции.

При размыкании контактов цепи, когда в ней проходит электрический ток, возникает электрическая дуга, и чем больше ток в цепи — тем дуга мощнее. Электрическая дуга вызывает эррозию и разрушение контактов. Чтобы защитить контакты автоматического выключателя от ее разрушающего действия, дуга, возникающая в момент размыкания контактов, направляется в дугогасительную камеру (состоящую из параллельных пластин), где она дробится, затухает, охлаждается и исчезает. При горении дуги образуются газы, они отводятся наружу из корпуса автомата через специальное отверстие.

Автомат не рекомендуется использовать в качестве обычного выключателя цепи, особенно если его отключать при подключенной мощной нагрузке (т.е. при больших токах в цепи), поскольку это ускорит разрушение и эррозию контактов.

Итак, давайте резюмируем:

— автоматический выключатель позволяет коммутировать цепь (переводя рычаг управления вверх – автомат подключается к цепи; переводя рычаг вниз – автомат отключает питающую линию от цепи нагрузки);

— имеет встроенный тепловой расцепитель, который защищает линию нагрузки от токов перегрузки, он инерционен и срабатывает через некоторое время;

— имеет встроенный электромагнитный расцепитель, защищающий линию нагрузки от больших токов короткого замыкания и срабатывает почти мгновенно;

— содержит дугогасящую камеру, которая защищает силовые контакты от разрушительного действия электромагнитной дуги.

Конструкцию, назначение и принцип действия мы разобрали.

В следующей статье мы рассмотрим основные характеристики автоматического выключателя, которые необходимо знать при его выборе.

Смотрите Конструкция и принцип работы автоматического выключателя в видеоформате:

Полезные статьи

Тепловой расцепитель - обеспечивает защиту только от перегрузок по току.

Электромагнитный расцепитель - обеспечивает защиту только от коротких замыканий.

Термо-магнитный (магнитотермический, комбинированный) расцепитель - состоит из двух типов расцепителей - теплового и электромагнитного. Обеспечивает защиту как от перегрузки по току так и от коротких замыканий.

Термо-магнитный (магнитотермический, комбинированный) расцепитель, с защитой от токов утечек - кроме защиты от перегрузок и коротких замыканий обеспечивает защиту людей и электроустановок от замыкания на землю.

Электронный расцепитель (электронный блок защиты - Overcurrent Release) - (в зависимости от исполнения) обеспечивает максимальное количество типов защит.

Устройство расцепителей

Тепловой расцепитель

Тепловой расцепитель представляет собой биметаллическую пластину, которая при нагревании изгибается и воздействует на механизм свободного расцепления. Биметаллическую пластину изготавливают методом механического соединения двух металлических лент. Выбираются два материала с разными коэффициентами температурного расширения и соединяются между собой с помощью спаивания, заклёпывания или свариваются.

Преимущества:

  • нет подвижных частей;
  • нетребовательность к загрязнениям;
  • простота конструкции;
  • низкая цена.

Недостатки:

  • высокое собственное потребление энергии;
  • чувствительны к изменениям температуры окружающей среды;
  • при нагреве от сторонних источников могут вызывать ложные срабатывания.
Электромагнитный расцепитель

Электромагнитный расцепитель является устройством мгновенного действия. Представляет собой соленоид, сердечник которого воздействует на механизм свободного расцепления. При протекании по обмотке соленоида сверхтока, создаётся магнитное поле, которое перемещает сердечник, с преодолением сопротивления возвратной пружины.

ЭМ расцепитель может настраиваться (на заводе производителе или потребителем) на срабатывание при токах КЗ значениями от 2 до 20 In. Погрешность настройки варьируется около ±20% от заданного значения силы тока для выключателей в литом корпусе.
Для силовых автоматических выключателей уставку срабатывания при коротком замыкании (значение тока, при котором инициируется расцепление) могут указывать как значением в амперах, так и в кратности номинальному току.
Встречаются уставки: 3,5In; 7In, 10In; 12In и другие.

Достоинства:

  • простота конструкции;

Недостатки:

  • создаёт магнитное поле.
Термомагнитный расцепитель

Часто применяется последовательное соединение теплового и электромагнитного расцепителя. В зависимости от производителя, такое связывание двух устройств называют комбинированным или термомагнитным расцепителем.

Термомагнитный или комбинированный расцепитель

Термомагнитный расцепитель с защитой от токов утечек

Автомат с данными расцепителями кроме теплового и электромагнитного расцепителей имеет блок способный обнаружить ток повреждения на землю с помощью тороидального трансформатора, который охватывает все токоведущие части, а также нейтраль, если она распределена. Расцепители токов утечки на землю могут использоваться в сочетании с автоматическим выключателем для обеспечения двух основных функций в одном устройстве:

  • защита от перегрузок и коротких замыканий;
  • защита от косвенных прикосновений (появление напряжения) на токопроводящих частях вследствие повреждения изоляции).
Электронный расцепитель

Расцепитель, соединенный с измерительными трансформаторами тока (три или четыре, в зависимости от количества защищаемых проводников), которые установлены внутри автоматического выключателя и обеспечивают двойную функцию: подачи питания для нормального управления расцепителем и обнаружения значения тока, который проходит в токоведущих частях. Поэтому они совместимы только с сетями переменного тока.

Сигнал от трансформаторов обрабатывается электронной частью (микропроцессор), который сравнивает его с заданными уставками. Когда сигнал превышает порог, расцепитель автоматического выключателя воздействует непосредственно на узел свободного расцепления выключателя при помощи отключающей катушки.

Блок управления расцепителем позволяет выстраивать определённую пользователем программу, по которой автоматический выключатель будет производить расцепление главных контактов.

Достоинства:

  • разнообразный выбор настроек нужных пользователю;
  • высокая точность исполнения заданной программы;
  • индикаторы работоспособности и причины срабатывания;
  • логическая селективность с вышестоящими и нижестоящими выключателями.
  • высокая цена;
  • хрупкий блок управления;
  • подверженность к воздействию электромагнитных полей.

Основное назначение автоматических выключателей - использование их в качестве защитных аппаратов от токов коротких замыканий и токов перегрузок. Преимущественным спросом пользуются модульные автоматические выключатели серии ВА. В данной статье рассмотрим устройство автоматического выключателя серии ВА47-29 фирмы iek.

Устройство автоматических выключателей и принципы их работы подобны, различия заключаются, и это важно, в материале комплектующих и качестве сборки. Серьезные производители используют только качественные электротехнические материалы (медь, бронзу, серебро), но встречаются и изделия с комплектующими из материалов с «облегченными» характеристиками.

Простейший способ отличить оригинал от подделки - цена и вес: оригинал не может быть дешевым и легким при наличии комплектующих из меди. Вес фирменных автоматов определяется моделью и не может быть легче 100 - 150 г.

Конструктивно модульный автоматический выключатель выполнен в прямоугольном корпусе, состоящем из двух скрепленных между собой половинок. На лицевой стороне автомата указаны его технические характеристики и расположена рукоятка для ручного управления.

Как устроен автоматический выключатель - основные рабочие органы автомата?

Если разобрать корпус (для чего необходимо высверлить соединяющие его половинки заклепки), то можно увидеть устройство автоматического выключателя и получить доступ ко всем его компонентам. Рассмотрим наиболее важные из них, которые обеспечивают нормальное функционирование устройства.

1.Верхняя клемма для подключения;

2.Неподвижный силовой контакт;

3.Подвижный силовой контакт;

4.Дугогасительная камера;

10.Нижняя клемма для подключения;

11.Отверстие для выхода газов (которые образовываются при горении дуги).

Электромагнитный расцепитель

Функциональное назначение электромагнитного расцепителя - обеспечение практически автоматического выключателя при возникновении в защищаемой цепи короткого замыкания. В этой ситуации в электрических цепях возникают токи, величина которых в тысячи раз превышают номинальное значение этого параметра.

Тип характеристики обозначен в параметре номинального тока на корпусе автомата, например, С16. Для приведенных характеристик время срабатывания находится в пределах от сотых до тысячных долей секунды.

Электрически катушка соленоида включена последовательно в цепочку, состоящую из силовых контактов и теплового расцепителя.

Максимальный рабочий ток

Максимальный рабочий ток. Выбор автоматов по максимальному рабочему току заключается в том чтобы номинальный ток автомата (номинальный ток расцепителя)был больше или равен максимальному рабочему (расчетному) токукоторый может длительно проходить по защищаемому участку цепи с учетом возможных перегрузок:

Чтобы узнать максимальный рабочий ток для участка сети (например для квартиры) нужно найти суммарную мощность. Для этого суммируем мощность всех приборов, которые будут подключатся через данный автомат (холодильник, телевизор, св-печь и т.п.).Величину тока из полученной мощности можно найти двумя способами: методом сопоставления или по формуле.

Для сети 220 В при нагрузке в 1 кВт, ток составляет 5 А. В сети с напряжением 380 В величина тока для 1 кВт мощности составляет 3 А. С помощью такого варианта сопоставления можно найти ток через известную мощность. К примеру, суммарная мощность в квартире получилась 4.6 кВт, ток при этом равен примерно 23 А. Для более точного нахождения тока можно воспользоваться известной формулой:

Для бытовых электроприборов.

Отключающая способность

Отключающая способность. Выбор автомата по номинальному току отключения сводится к тому, чтобы ток который автомат способен отключитьбыл больше тока короткого замыканияв точке установки аппарата: Номинальный ток отключения это наибольший ток к.з. который автомат способен отключить при номинальном напряжении.

При выборе автоматов промышленного назначения их дополнительно проверяют на:

Электродинамическую стойкость:

Термическую стойкость:

Автоматические выключатели выпускаются с такой шкалой номинальных токов : 4, 6, 10, 16, 25, 32, 40, 63, 100 и 160 А.

В жилых секторах (дома, квартиры) как правило устанавливают двухполюсные автоматы с номиналом в 16 или 25 А и током отключения 3 кА.

Что такое время токовые характеристики автоматических выключателей

При нормальной работе электросети и всех приборов через автоматический выключатель протекает электрический ток . Однако если сила тока по каким-либо причинам превысила номинальные значения, происходит размыкание цепи из-за срабатывания расцепителей автоматического выключателя.

Характеристика срабатывания автоматического выключателя является очень важной характеристикой, которая описывает то, насколько время срабатывания автомата зависит от отношения силы тока, протекающего через автомат, к номинальному току автомата.

Данная характеристика сложна тем, что для ее выражения необходимо использование графиков. Автоматы с одним и тем же номиналом будут при разных превышениях тока по-разному отключаться в зависимости от типа кривой автомата (так иногда называется токовая характеристика), благодаря чему имеется возможность применять автоматы с разной характеристикой для разных типов нагрузки.

Тем самым, с одной стороны, осуществляется защитная токовая функция, а с другой стороны, обеспечивается минимальное количество ложных срабатываний - в этом и заключается важность данной характеристики.

В энергетических отраслях бывают ситуации, когда кратковременное увеличение тока не связано с появлением аварийного режима и защита не должно реагировать на такие изменения. Это же относится и к автоматам.

При включении какого-нибудь мотора, к примеру, дачного насоса или пылесоса, в линии происходит достаточно большой бросок тока, который в несколько раз превышает нормальный.

По логике работы, автомат, конечно же, должен отключиться. К примеру, мотор потребляет в пусковом режиме 12 А, а в рабочем - 5. Автомат стоит на 10 А, и от 12 его вырубит. Что в таком случае делать? Если например поставить на 16 А, тогда непонятно отключится он или нет если заклинит мотор или замкнет кабель.

Можно было бы решить эту проблему, если его поставить на меньший ток, но тогда он будет срабатывать от любого движения. Вот для этого и было придумано такое понятие для автомата, как его «время токовая характеристика».

Какие существуют время токовые характеристики автоматических выключателей и их отличие между собой

Как известно основными органами срабатывания автоматического выключателя являются тепловой и электромагнитный расцепитель.

Тепловой расцепитель представляет собой пластину из биметалла, изгибающуюся при нагреве протекающим током. Тем самым в действие приводится механизм расцепления, при длительной перегрузке срабатывая, с обратнозависимой выдержкой времени. Нагрев биметаллической пластинки и время срабатывание расцепителя напрямую зависят от уровня перегрузки.

Электромагнитный расцепитель является соленоидом с сердечником, магнитное поле соленоида при определенном токе втягивает сердечник, приводящий в действие механизм расцепления - происходит мгновенное срабатывание при КЗ, благодаря чему пострадавший участок сети не будет дожидаться прогревания теплового расцепителя (биметаллической пластины) в автомате.

Зависимость времени срабатывания автомата от силы тока, протекающего через автомат, как раз и определяется время токовой характеристикой автоматического выключателя.

Наверное, каждый замечал изображение латинских букв B, C, D на корпусах модульных автоматов. Так вот они характеризуют кратность уставки электромагнитного расцепителя к номиналу автомата, обозначая его время токовую характеристику.

Эти буквы указывают ток мгновенного срабатывания электромагнитного расцепителя автомата. Проще говоря, характеристика срабатывания автоматического выключателя показывает чувствительность автомата - наименьший ток при котором автомат отключится мгновенно.

Автоматы имеют несколько характеристик, самыми распространенными из которых являются:

B - от 3 до 5 ×In;

C - от 5 до 10 ×In;

D - от 10 до 20 ×In.

Что означают цифры указанные выше?

Приведу небольшой пример. Допустим, есть два автомата одинаковой мощности (равные по номинальному току) но характеристики срабатывания (латинские буквы на автомате) разные: автоматы В16 и С16.

Диапазоны срабатывания электромагнитного расцепителя для В16 составляет 16*(3...5)=48...80А. Для С16 диапазон токов мгновенного срабатывания 16*(5...10)=80...160А.

При токе 100 А автомат В16 отключится практически мгновенно, в то время как С16 отключится не сразу а через несколько секунд от тепловой защиты (после того как нагреется его биметаллическая пластина).

В жилых зданиях и квартирах, где нагрузки чисто активные (без больших пусковых токов), а какие-нибудь мощные моторы включаются нечасто, самыми чувствительными и предпочтительными к применению являются автоматы с характеристикой B. На сегодняшний день очень распространена характеристика С, которую также можно использовать для жилых и административных зданий.

Что касается характеристики D, то она как раз годится для питания каких-либо электромоторов, больших двигателей и других устройств, где могут быть при их включении большие пусковые токи. Также через пониженную чувствительность при КЗ автоматы с характеристикой D могут быть рекомендованы для использования как вводные для повышения шансов селективности со стоящими ниже групповыми АВ при КЗ.

Что защищает автоматический выключатель

Прежде чем подбирать автомат, стоит разобраться, как он работает и что он защищает. Многие люди считают, что автомат защищает бытовые приборы . Однако это абсолютно не так. Автомату нет никакого дела до приборов, которые вы подключаете к сети - он защищает электропроводку от перегрузки.

Ведь при перегрузке кабеля или возникновении короткого замыкания возрастает сила тока, что приводит к перегреву кабеля и даже возгоранию проводки.

Особенно сильно возрастает сила тока при коротком замыкании. Величина силы тока может возрасти до нескольких тысяч ампер. Конечно, никакой кабель не способен долго продержаться при такой нагрузке. Тем более, кабель сечением 2,5 кв. мм, который часто используют для прокладки электропроводки в частных домовладениях и квартирах. Он попросту загорится, как бенгальский огонь. А открытый огонь в помещении может привести к пожару.

Поэтому правильный расчет автоматического выключателя играет очень большую роль. Аналогичная ситуация возникает при перегрузках - автоматический выключатель защищает именно электропроводку.

Когда нагрузка превышает допустимое значение, сила тока резко возрастает, что приводит к нагреванию провода и оплавлению изоляции. В свою очередь, это может привести к возникновению короткого замыкания. А последствия такой ситуации предсказуемы - открытый огонь и пожар!

По каким токам производят расчет автоматов

Функция автоматического выключателя состоит в защите электропроводки, подключенной после него. Основным параметром, по которому производят расчет автоматов, является номинальный ток. Но номинальный ток чего, нагрузки или провода?

Исходя из требований ПУЭ 3.1.4, токи уставок автоматических выключателей которые служат для защиты отдельных участков сети, выбираются по возможности меньше расчетных токов этих участков или по номинальному току приемника.

Расчет автомата по мощности (по номинальному току электроприемника) производят, если провода по всей длине на всех участках электропроводки рассчитаны на такую нагрузку. То есть допустимый ток электропроводки больше номинала автомата.

Например, на участке, где используется провод сечением 1 кв. мм, величина нагрузки составляет 10 кВт. Выбираем автомат по номинальному току нагрузки - устанавливаем автомат на 40 А. Что произойдет в этом случае? Провод начнет греться и плавиться, поскольку он рассчитан на номинальный ток 10-12 ампер, а сквозь него проходит ток в 40 ампер. Автомат отключится лишь тогда, когда произойдет короткое замыкание. В результате может выйти из строя проводка и даже случиться пожар.

Поэтому определяющей величиной для выбора номинального тока автомата является сечение токопроводящего провода. Величина нагрузки учитывается лишь после выбора сечения провода. Номинальный ток, указанный на автомате, должен быть меньше максимального тока , допустимого для провода данного сечения.

Таким образом, выбор автомата производят по минимальному сечению провода, который используется в проводке.

Например, допустимый ток для медного провода сечением 1,5 кв. мм, составляет 19 ампер. Значит, для данного провода выбираем ближайшее значение номинального тока автомата в меньшую сторону, составляющее 16 ампер. Если выбрать автомат со значением 25 ампер, то проводка будет греться, так как провод данного сечения не предназначен для такого тока. Чтобы правильно произвести расчет автоматического выключателя, необходимо, в первую очередь, учитывать сечение провода.

Ни для кого не секрет, что автоматические выключатели это не просто рубильники, которые пропускают рабочий ток и обеспечивают два состояния электрической цепи: замкнутое и разомкнутое. Автоматический выключатель - это электрический аппарат , который в режиме реального времени «отслеживает» уровень протекающего тока в защищаемой цепи и отключает ее при превышении током определенного значения.

Самым распространенным сочетанием в автоматических выключателях является комбинация теплового и электромагнитного расцепителя. Именно эти два вида расцепителей обеспечивают основную защиту цепей от сверхтоков.

Тепловой расцепитель предназначен для отключения токов перегрузки электрической цепи. Тепловой расцепитель конструктивно состоит из двух слоев металлов, обладающих различными коэффициентами линейного расширения. Это и позволяет пластине изгибаться при нагреве и воздействовать на механизм свободного расцепления, в конечном итоге, отключая аппарат. Такой расцепитель еще называют термобиметаллическим расцепителем по названию основного элемента - биметаллической пластины.

Однако этот вид расцепителя обладает существенным недостатком - его свойства зависят от температуры окружающей среды. То есть, при слишком низкой температуре даже если цепь будет перегружена - тепловой расцепитель автоматического выключателя может не отключить линию. Возможна и обратная ситуация: в очень жаркую погоду автоматический выключатель может ложно отключать защищаемую линию, за счет нагрева биметаллической пластины окружающей средой. К тому же тепловой расцепитель потребляет электрическую энергию.

Электромагнитный расцепитель состоит из катушки и подвижного стального сердечника, удерживаемого пружиной. При превышении заданного значения тока, по закону электромагнитной индукции в катушке наводится электромагнитное поле, под действием которого сердечник втягивается внутрь катушки, преодолевая сопротивление пружины, и вызывает срабатывание механизма расцепления. В нормальном режиме работы в катушке также наводится электромагнитное поле, однако его силы не хватает, чтобы преодолеть сопротивление пружины и втянуть сердечник.


Устройство механизма электромагнитного расцепителя показано на примере АП50Б

Этот вид расцепителя не обладает таким большим потреблением электрической энергии , как тепловой расцепитель.

В настоящее время широкое распространение получили электронные расцепители на базе микроконтроллеров. С их помощью можно осуществлять точную настройку следующих параметров защиты:

  • уровень рабочего тока защиты
  • время защиты от перегрузки
  • время срабатывания в зоне перегрузки с функцией «тепловой памяти» и без нее
  • ток селективной отсечки
  • время селективной токовой отсечки

Реализованная функция проведения самотестирования работоспособности механизма свободного расцепления с помощью кнопки ТЕСТ позволяет проводить проверку аппарата потребителем.

Регулировка параметров настройки электрической цепи на лицевой панели устройства позволяет персоналу без лишнего труда понять, как настроена защита отходящей линии.

С помощью поворотных переключателей на лицевой панели устанавливается уровень рабочего тока цепи. Регулировка уставки рабочего тока расцепителя IR устанавливается в кратности: 0,4; 0,45; 0,5; 0,56; 0,63; 0,7; 0,8; 0,9; 0,95; 1,0 к номинальному току выключателя.

Существует два режима работы полупроводникового расцепителя при перегрузке электрической цепи:

  • с «тепловой памятью»;
  • без «тепловой памяти»

«Тепловая память» является эмуляцией работы теплового расцепителя (биметаллической пластины): микропроцессорный расцепитель программным способом задает время, которое потребовалось бы для остывания биметаллической пластины. Данная функция позволяет оборудованию и защищаемой цепи больше времени остывать и, соответственно, их срок службы не снижается.

Одним из преимуществ является установка уровня тока и времени срабатывания автоматического выключателя при коротком замыкании, что осуществляет необходимую селективность защиты. Это необходимо для того, чтобы вводной автоматический выключатель отключился позже, чем ближайшие к аварии аппараты. Важно отметить, что, в отличие от теплового расцепителя, уставки по времени в микропроцессорном расцепителе не меняются при изменении температуры окружающей среды.

Регулировка уставки тока селективной токовой отсечки выбирается кратно рабочему току I R: 1,5; 2; 3; 4; 5; 6; 7; 8; 9; 10.

Регулировка уставки времени селективной токовой отсечки выбирается в секундах: 0 (без выдержки времени); 0,1; 0,15; 0,2; 0,25; 0,3; 0,35; 0,4.

Электромагнитная совместимость микропроцессорных расцепителей автоматических выключателей OptiMat D позволяет применять эти аппараты в общепромышленных электроустановках. В свою очередь, электромагнитные поля, создаваемые элементами микропроцессорного расцепителя не оказывают негативного влияния на окружающую технику.

Рассмотрим выбор уставок на примере микропроцессорного расцепителя MR1-D250 автоматического выключателя OptiMat D. Имеется асинхронный двигатель АИР250S2 с параметрами Р=75 кВт; cosφ=0,9; Iп/Iном=7,5; для которого нужно выбрать уставки защищающего аппарата (автоматический выключатель защищает непосредственно линию с данным электродвигателем). Примем следующие условия: пуск электродвигателя легкий и время пуска равное 2 с.

Выбираем для нашего двигателя уставку в 4 секунды с функцией тепловой памяти:

В нашем случае номинальный ток электродвигателя составляет 126,6 А. Соответственно, выставляем переключатель регулировки номинального тока выключателя на значение 0,56, чтобы ближайшее значение получилось 140 А.

Чтобы автоматический выключатель не срабатывал ложно от пусковых токов, кратность которых для выбранного двигателя составляет 7,5 примем уставку селективной токовой отсечки равную 8.

Т. к. данный выключатель будет устанавливаться непосредственно для защиты электродвигателя для обеспечения селективности в действии выключателей принимаем мгновенную селективную токовую отсечку (без выдержки по времени).

Следует также отметить, что при превышении током короткого замыкания значения в 3000 А выключатель будет срабатывать мгновенно, то есть без выдержки по времени.

Таким образом, мы рассмотрели пример выбора уставок микропроцессорного расцепителя, обеспечивающие защиту асинхронного двигателя. Данный пример выбора уставок микропроцессорного расцепителя не является техническим руководством. В конечном виде панель настройки микропроцессорного расцепителя автоматического выключателя будет выглядеть так:

Электромагнитная совместимость, соответствующая требованиям ГОСТ Р 50030.2-2010, и возможность внедрения в систему автоматизации делает автоматические выключатели более надежными, удобными и выгодными решениями по многим показателям.

Основное назначение автоматических выключателей – использование их в качестве защитных аппаратов от токов коротких замыканий и токов перегрузок. Преимущественным спросом пользуются модульные автоматические выключатели серии ВА. В данной статье рассмотрим серии ВА47-29 фирмы iek.

Благодаря компактному исполнению (унифицированные размеры модулей по ширине), удобству монтажа (крепление на DIN-рейке с помощью специальных защелок) и обслуживания, они широко используются в бытовых и промышленных условиях.

Наиболее часто автоматы применяются в сетях со сравнительно небольшими значениями токов рабочего режима и короткого замыкания. Корпус автомата выполнен из диэлектрического материала, что позволяет устанавливать его в общедоступных местах.

Устройство автоматических выключателей и принципы их работы подобны, различия заключаются, и это важно, в материале комплектующих и качестве сборки. Серьезные производители используют только качественные электротехнические материалы (медь, бронзу, серебро), но встречаются и изделия с комплектующими из материалов с «облегченными» характеристиками.

Простейший способ отличить оригинал от подделки – цена и вес: оригинал не может быть дешевым и легким при наличии комплектующих из меди. Вес фирменных автоматов определяется моделью и не может быть легче 100 – 150 г.

Конструктивно модульный автоматический выключатель выполнен в прямоугольном корпусе, состоящем из двух скрепленных между собой половинок. На лицевой стороне автомата указаны его технические характеристики и расположена рукоятка для ручного управления.

Как устроен автоматический выключатель - основные рабочие органы автомата

Если разобрать корпус (для чего необходимо высверлить соединяющие его половинки заклепки), то можно увидеть и получить доступ ко всем его компонентам. Рассмотрим наиболее важные из них, которые обеспечивают нормальное функционирование устройства.

  1. 1. Верхняя клемма для подключения;
  2. 2. Неподвижный силовой контакт;
  3. 3. Подвижный силовой контакт;
  4. 4. Дугогасительная камера;
  5. 5. Гибкий проводник;
  6. 6. Электромагнитный расцепитель (катушка с сердечником);
  7. 7. Ручка для управления;
  8. 8. Тепловой расцепитель (биметаллическая пластина);
  9. 9. Винт для регулировки теплового расцепителя;
  10. 10. Нижняя клемма для подключения;
  11. 11. Отверстие для выхода газов (которые образовываются при горении дуги).

Электромагнитный расцепитель

Функциональное назначение электромагнитного расцепителя - обеспечение практически мгновенного срабатывания автоматического выключателя при возникновении в защищаемой цепи короткого замыкания. В этой ситуации в электрических цепях возникают токи, величина которых в тысячи раз превышают номинальное значение этого параметра.

Время срабатывания автомата определяется по его времятоковым характеристикам (зависимость времени срабатывания автомата от величины тока), которые обозначаются индексами А, В или C (наиболее распространенные).

Тип характеристики обозначен в параметре номинального тока на корпусе автомата, например, С16. Для приведенных характеристик время срабатывания находится в пределах от сотых до тысячных долей секунды.

Конструкция электромагнитного расцепителя представляет собой соленоид с подпружиненным сердечником, который связан с подвижным силовым контактом.


Электрически катушка соленоида включена последовательно в цепочку, состоящую из силовых контактов и теплового расцепителя. При включенном автомате и номинальном значении тока, через катушку соленоида протекает ток, однако, величина магнитного потока мала для втягивания сердечника. Силовые контакты замкнуты и это обеспечивает нормальное функционирование защищаемой установки.

При коротком замыкании резкое увеличение тока в соленоиде приводит к пропорциональному увеличению магнитного потока, способного преодолеть действие пружины и переместить сердечник и связанный с ним подвижный контакт. Перемещение сердечника вызывает размыкание силовых контактов и обесточивание защищаемой линии.

Тепловой расцепитель

Тепловой расцепитель выполняет функцию защиты при небольшом, но действующим в течении относительно длительного промежутка времени, превышении допустимого значения тока.

Тепловой расцепитель – расцепитель замедленного действия, он не реагирует на кратковременные броски тока. Время срабатывания этого вида защиты регламентируется также время-токовыми характеристиками.

Инерционность теплового расцепителя позволяет реализовать функцию защиты сети от перегрузки. Конструктивно тепловой расцепитель представляет консольно закрепленную в корпусе биметаллическую пластину, свободный конец которой через рычаг взаимодействует с механизмом расцепления.


Электрически биметаллическая пластина включена последовательно с катушкой электромагнитного расцепителя. При включенном автомате в последовательной цепочке протекает ток, нагревая биметаллическую пластину. Это приводит к перемещению ее свободного конца в непосредственную близость к рычагу механизма расцепления.

При достижении значений тока, указанных во временно-токовых характеристиках и по истечении определенного времени пластина нагреваясь изгибается, контактирует с рычагом. Последний через механизм расцепления размыкает силовые контакты - сеть оказывается защищенной от перегрузки.

Регулировка тока срабатывания теплового расцепителя с помощью винта 9 производится в процессе сборки. Так как большинство автоматов модульные и их механизмы запаяны в корпусе простому электрику нет возможности произвести такую регулировку.

Силовые контакты и дугогасительная камера

Размыкание силовых контактов при протекании через них тока приводит к возникновению электрической дуги. Мощность дуги обычно пропорциональна току в коммутируемой цепи. Чем мощнее дуга, тем сильнее она разрушает силовые контакты, повреждает пластмассовые детали корпуса.

В устройстве автоматического выключателя дугогасительная камера ограничивает действие электрической дуги в локальном объеме. Она располагается в зоне силовых контактов и выполнена из покрытых медью параллельных пластин.

В камере дуга распадается на мелкие части, попадая на пластины, остывает и прекращает свое существование. Выделяющиеся при горении дуги газы выводятся через отверстия в дне камеры и корпусе автомата.

Устройство автоматического выключателя и конструкция дугогасительной камеры обуславливают подключение питания на верхние неподвижные силовые контакты.

Похожие материалы на сайте:

Основные сведения

Расцепители автоматических выключателей

Расцепитель – часть выключателя, воздействующая непосредственно на механизм его отключения при критических параметрах защищаемой цепи (токе, напряжении).

Расцепители представляют собой реле или элементы реле, встроенные в выключа-

тель с использованием его элементов или приспособленные к его конструкции.

Расцепители выполняют на базе обычных электромагнитных реле (тока, напряже-

ния). Однако в последнее время все чаще применяются расцепители на базе статических электронных реле. Электронная часть этих реле контролирует ту или иную физическую величину, но в их выходной цепи все равно включено электромагнитное реле , якорь кото-

рого воздействует на механизм расцепления.

Любой автоматический выключатель обязательноимеет электромагнитный расце-

питель максимального тока , мгновенно отключающий выключатель при коротком замка-

нии (рис. 4.14 и 4.15).

В некоторых типах выключателей, кроме электромагнитного, применяется электро-

тепловой, отключающий выключатель с выдержкой времени в зоне токов перегрузки.

Такой расцепитель называют комбинированным (рис. 4.16). Следует заметить, что автоматические выключатели с одним электротепловым расцепителем не выпускаются.

Аппарат, имеющий только электротепловой расцепитель, называют электротепловым реле (ниже см. “Реле электротепловые”).

Дополнительно выключатели могут снабжаться расцепителями:

минимальными (минимального или нулевого напряжения) – для автоматического отключения выключателя при снижении напряжения ниже допустимого уровня или его исчезновении(рис. 4.17 и 4.18);

независимыми – для дистанционного отключения выключателя путем подачи на

пряжения на катушку расцепителя (рис. 4.19 и 4.20).

Рассмотрим поочередно устройство и принцип действия каждого упомянутого рас-

цепителя.

Электромагнитный расцепитель предназначен для отключения выключателя тока-

ми короткого замыкания, Его часто называют максимальным расцепителем. По устройст-

ву и принципу действия – это реле максимального тока.

Рис. 4.14. Принципиальная схема максимального расцепителя:

1 – рукоятка включения; 2 – удерживающий рычаг; 3 – отключающий рычаг; 4 – регулировочная пружина; 5 – отключающая пружина; 6 – катушка; 7 – якорь; 8 – подвижный контакт; 9 – неподвижный контакт

В исходном состоянии выключатель включен, ток цепи меньше тока уставки. При

этом удерживающий рычаг 2 находится в зацеплении с отключающим рычагом 3. Подвиж

ный 8 и неподвижный 9 контакты замкнуты, и через них и токовую катушку 6 протекает ток.

При коротком замыкании ток в катушке увеличивается и якорь 7, преодолевая про-

тиводействие регулировочной пружины 4, перемещается вниз. Якорь воздействует на отключающий рычаг 3 и выводит его из зацепления с удерживающим рычагом 2.

Подвижный контакт 8 под действием отключающей пружины 5 поворачивается в

направлении против часовой стрелки и размыкается с неподвижным 9.

Рукоятка включения выключателя 1 устанавливается в промежуточное положе-

ние, по которому легко определить, что выключатель отключился автоматически .

Рис. 4.15. Кинематическая схема максимального расцепителя:

1 – шина, 2 – сердечник; 3 – якорь, 4 – отключающий валик; 5 – отключающая пру-

жина; 6 – отключающий рычаг; 7 – плечо отключающего валика; 8 – регулировоч-

ная гайка

На рис. 4.12 изображена показана одна из конструкций максимального расцепите-

В ней в качестве катушки реле максимального тока используется токоведущая ши-

на 1, на которую надет сердечник 2. На якоре 3 реле укреплен отключающий рычаг 6, на-

ходящийся в зацеплении с отключающим валиком 4. Отключающая пружина 5 отттягива-

ет отключающий рычаг 6 вниз.

При коротком замыкании якорь 3 притягивается к сердечнику 2. Отключающий ры

чаг 6, преодолевая противодействие регулировочной пружины 5, поворачивается по часо-

вой стрелке вокруг оси Ои ударяет по выступающему плечу 7 отключающего валика 4. Валик поворачивается в направлении против часовой стрілки вокруг оси О, что приво-

дит к размыканию контактов выключателя.

Значение тока срабатывания (тока уставки) регулируют при помощи гайки 8. Чем сильней при помощи этой гайки растянута пружина 5, тем ток уставки больше, и наобо-

рот. С пружиной связана стрелка-указатель, скользящая вдоль шкалы, проградуирован-

ной в долях номинального тока, например, 0,7; 1,0; 1,5; 1,7; 2,0.