Как происходит очистка загрязненной воды в биофильтрах. Что такое биофильтры для очистки сточных вод? Принцип действия биофильтра и его конструкционные особенности

→ Очистка сточных вод

Классификация биофильтров


Классификация биофильтров


Биофильтры могут работать на полную и неполную биологическую очистку и классифицируются по различным признакам, основными из которых являются конструктивные особенности и вид загрузочного материала.

По виду загрузочного материала биофильтры делятся на: биофильтры с объемной загрузкой (гравий, шлак, керамзит, щебень и др.) и биофильтры с плоскостной загрузкой (пластмассы, асбестоцемент, керамика, металл, ткани и др.).

Биофильтры с объемной загрузкой подразделяются на следующие виды: – капельные, имеющие крупность фракций загрузочного материала 20-30 мм и высоту слоя загрузки 1-2 м; – высоконагружаемые, имеющие крупность загрузочного материала 40-60 мм и высоту слоя загрузки 2-4м; – биофильтры большой высоты (башенные), имеющие крупность загрузочного материала 60-80 мм и высоту слоя загрузки 8-16 м.

Объемный загрузочный материал имеет плотность 500-1500 кг/м3 и пористость 40-50%.

Биофильтры с плоскостной загрузкой подразделяются на следующие виды: – с жесткой засыпной загрузкой. В качестве загрузки могут использоваться керамические, пластмассовые и металлические засыпные элементы. В зависимости от материала загрузки плотность ее составляет 100-600 кг/м3, пористость 70-90%, высота слоя загрузки 1-6 м; – с жесткой блочной загрузкой. Блочные загрузки могут выполняться из различных видов пластмассы (гофрированные и плоские листы или пространственные элементы), а также из’ асбестоце-ментных листов. Плотность пластмассовой загрузки 40-100 кг/м3, пористость 90-97%), высота слоя загрузки 2-16 м; – с мягкой или рулонной загрузкой, выполненной из металлических сеток, пластмассовых пленок, синтетических тканей (нейлон, капрон), которые крепятся на каркасах или укладываются в виде рулонов. Плотность такой загрузки 5-60 кг/м3, пористость 94-99%, высота слоя загрузки 3-8 м.

Пропускная способность биофильтров зависит от конструктивных особенностей того или иного типа сооружения и объясняется содержанием активной биомассы на единицу объема биофильтра.

Биофильтры с объёмной загрузкой (капельные биофильтры). В капельном биофильтре сточная вода подается в виде капель или струй. Естественная вентиляция воздуха осуществляется через открытую поверхность биофильтра и дренаж. Такие биофильтры имеют низкую нагрузку по воде – обычно 0,5-2 м3 на 1 м3 объема загрузочного материала в сутки. Капельные биофильтры впервые появились в Салфорде (Великобритания) в 1893 г., их рекомендуется применять при расходе сточных вод не более 1000 м3/сут. Они предназначаются для полной биологической очистки сточных вод.

Схема работы капельных биофильтров следующая. Сточная вода, осветленная в первичных отстойниках, самотеком (или под напором) поступает в распределительные устройства, из которых периодически напускается на поверхность биофильтра. Вода, профильтровавшаяся через толщу загрузки, проходит через дренажную систему, а далее по непроницаемому днищу стекает к отводным лоткам, расположенным за пределами биофильтра. Затем вода поступает во вторичные отстойники, в которых отмершая биоплёнка отделяется от очищенной воды. При нагрузке по органическим загрязнениям больше допустимой, загрузочный материал быстро заиливается, и работа капельных биофильтров резко ухудшается.

Высоко нагружаемые биофильтры. В начале XX столетия появились биофильтры, которые у нас в стране получили название – аэрофильтры, а за рубежом – биофильтры высокой нагрузки.

Отличительной особенностью этих сооружений является более высокая, по сравнению с капельными биофильтрами, окислительная мощность, что обусловлено меньшей заиляемостью таких фильтров и лучшим обменом воздуха в них. Достигается это благодаря крупным фракциям загрузочного материала и повышенной в несколько раз нагрузке по воде. Высокая скорость движения сточной воды в биофильтре обеспечивает постоянный вынос задержанных трудноокисляемых нерастворенных примесей и отмирающей биопленки. Поступающий в тело биофильтра кислород воздуха расходуется в основном на биологическое окисление части загрязнений, не вынесенных из тела биофильтра. Конструкции аэрофильтров были предложены Н.А. Базякиной и С.Н. Строгановым и в 1929 г. построены на Кожуховской биологической станции. Они предназначаются для неполной и полной биологической очистки сточных вод.

Башенные биофильтры. Эти биофильтры имеют высоту 8-16 м и применяются для очистных станций пропускной способностью до 50 тыс.м3/сут при благоприятном рельефе местности и при БПК очищенных сточных вод 20-25 мг/л. В отечественной практике они распространения не получили.

Биофильтры с плоскостной загрузкой. Появление в 50-х годах XX века плоскостных – блочных, мягких и засыпных загрузочных материалов позволило значительно повысить производительность биологических фильтров (рис. 12.3).

Рис. 12.3. Биофильтр с плоскостной (пластмассовой) загрузкой:
1 – корпус из облегчённых листов по металлическому каркасу; 2 – пластмассовая загрузка; 3 – решетка; 4 – бетонные столбовые опоры; 5 – подводящий трубопровод; б – реактивный ороситель; 7 – отводящие лотки

Как видно из таблицы, плотность плоскостных загрузочных материалов (12,2-140 кг/м3) значительно меньше, чем традиционных из гравия или щебня (1350-1500 кг/м3), что позволяет упростить и облегчить фундамент и ограждающие конструкции биофильтров. Пористость плоскостных загрузочных материалов (87-99%) более чем вдвое выше, чем у объемных загрузок (40-50%), что позволяет отказаться от принудительной вентиляции и сэкономить значительное количество электроэнергии. Удельная поверхность плоскостных загрузочных материалов 80-450 м /м, против 50-80 м /м3 у объемных. Однако, даже при одинаковой удельной поверхности активная поверхность плоскостных загрузочных материалов значительно больше за счет отсутствия мертвых зон, образующихся при соприкосновении фракций засыпного загрузочного материала.

Установлено, что на производительность биофильтра большое влияние оказывает конфигурация загрузочного материала. В загрузочных материалах, где жидкость движется строго вертикально по гладкой поверхности, гидравлический режим ламинарный (идеальный вытеснитель), а в загрузочном материале со сложной формой поверхности, где поток отклоняется по вертикали (Флокор, Пласдек и др.), режим движения жидкости турбулентный. По данным зарубежных ученых, производительность сложных загрузочных материалов, по сравнению с гладкими (при одинаковой площади удельной поверхности и в одинаковых условиях работы), на 67% выше.

Биофильтры насчитывают столетнюю историю использования их в качестве биологических окислителей. Но с конца 50-х годов XX столетия число строящихся станций биофильтрации в нашей стране по субъективным и объективным причинам стало уменьшаться. Среди этих причин можно выделить следующие: неиндустриальность строительства; отсутствие загрузочного материала; малая пропускная способность; изменение состава поступающих на очистку сточных вод; ненадежность работы при перегрузках (особенно по органическим загрязнениям) и ряд других. Из общего числа проектируемых и строящихся биологических окислителей на долю биофильтров приходится не более 10%.

Вместе с тем при наличии дешевых местных материалов и дефиците электроэнергии, а также в тяжелых грунтовых условиях и сейсмичных районах предпочтение отдается биофильтрам. Например, в Киргизии из 31 действующей станции биологической очистки – 28 с биофильтрами. Следует отметить, что в ряде отраслей промышленности (гидролизно-дрожжевая, пищевая, и др.), где сточные воды обладают значительной пе-нообразующей способностью, целесообразно применять биофильтры.

В настоящее время сотни построенных станций биофильтрации работают в режиме, превышающем их расчетную пропускную способность, как по расходу сточных вод, так и нагрузкам по органическим загрязнениям. Весьма актуальной стала проблема модернизации таких станций биофильтрации, что явилось стимулом для разработки новых высокопроизводительных загрузочных материалов. Следствием этого и стало появление новых биофильтров с плоскостной загрузкой. Они имеют высокую индуст-иальность строительства, включая заводское изготовление блочного загрузочного материала или комплекса сооружений небольшой пропускной способности. Им свойственна высокая пропускная способность, как по расходу сточных вод, так и по снижению органических загрязнений, превышающая соответствующие показатели биофильтров с объемной загрузкой в 3-8 раз.

Что такое биологический фильтр? Он имеет резервуар специальной формы, в котором очищаются сточные воды с применением биологических материалов — оболочка из разных микроорганизмов.

Во время очистительных работ происходит постоянная циркуляция воздуха благодаря температурной разнице атмосферы и очищаемой воды. Вентиляция является обязательным условием поддержания жизни – обеспечение микроорганизмов кислородом.

Классификация биофильтров

В биологических фильтрах предусмотрены разные материалы для загрузки. Выделяют:

По используемой технологической схемы выделяют:

  • Фильтры с двумя ступенями очистки, которые выдают высокоочищенную воду. Их применяют при ограничении высоты устройства или при неблагоприятном климате.
  • Биофильтры с одной ступенью очистки.

По степени очистки биофильтры бывают:

  • с полной очисткой;
  • с неполной очисткой.

В зависимости от способа подачи воздуха биофильтры делятся:

  • с естественной циркуляцией воздуха;
  • с искусственной воздушной подачей.

Различают два режима работы биологических фильтров:

  • рециркуляционны — высококонцентрированная вода подается небольшими порциями для более эффективной очистки;
  • без рециркуляции – при низком загрязнении воды.

В зависимости от пропускной способности классифицируются на:

  • капельные — с малой пропускной способностью;
  • высоконагружаемые.

Биофильтры с объемной нагрузкой

Их принято разделять на:

  1. Капельные, которые характеризуются малой производительностью. Зернистость тела загрузки будет 20-30 миллиметров при двухметровой высоте слоя.
  2. Высоконагружаемые с размером загрузочного материала 40-60 миллиметров и четырехметровый слой.
  3. Башенные биофильтры имеют большую высоту – 16 метров, а зернистостью 40-60 миллиметров.

Биофильтры с плоской загрузкой

  1. Жесткая нагрузка обеспечивается кольцами, частями труб и подобными элементами. В бак засыпают крошку из металла, керамики или пластмассы. Их плотность доходить до 600 кг/м 3 , пористость материалов от 70%. Очищающий слой доходит до шести метров.
  2. Жесткая нагрузка с блочной или решетчатой нагрузкой. Блоки изготавливают из асбестовых листов (плотность до 250 кг/м 3 , пористость от 80%, шесть метров загрузки) или некоторых разновидностей пластмасс (плотность от 40 до 100 кг/м 3 , пористость от 90%, фильтрующий слой до 16 метров).
  3. Рулонная или мягкая нагрузка создается сеткой из металла, синтетическими тканями, пленкой из пластмассы. Загрузку выкладывают рулонами или закрепляют на каркас. Плотность до 60 кг/м3, пористость от 95% при высоте загрузки до 8 метров.
  4. Биофильтры для погружения – резервуары с вогнутым днищем. Диски из пластмассы, металла или асбеста монтируются выше уровня очищаемых вод. Диски расположены 10-20 миллиметров друг от друга, их диаметр – 06-3 метра. Вал вращается с частотой до 40 мин -1 .

Засыпная и мягкая нагрузка используется при максимальном расходе 10 000 м 3 /сутки, блочная нагрузка – 50 000 м 3 /сутки. Погружные биофильтры эффективны при низких нагрузках.

Схема работы фильтра

Подача водной массы осуществляется капельным или струйным методом. Воздух проходит через дренаж фильтра или забирается с поверхности. Предварительно очищенная сточная вода с невысокой концентрацией загрязнений сама течет в распределитель, который порциями подает ее на поверхность загрузочной массы. Далее вода идет в систему дренажа, а оттуда на водные лотки за границами биологического фильтра. Во втором отстойнике удаляется биопленка.

Капельные биофильтры характеризуются низкой органической нагрузкой. Что бы вовремя очистить тело фильтра от мертвой биопленки, используют гидравлическую нагрузку.

Должно быть обеспечено равномерное орошение всей загрузки биофильтра. Это необходимо для исключения возникновения повышенной или пониженной гидравлической нагрузки.

Капельные фильтры почти невозможно регулировать под изменения внешних условий. При эксплуатации следят за показателями загрязненности и состоянием биофильтров. Очистка загрузки имеет высокую стоимость – используют полную ее замену. В биофильтр должна поступать сточная вода с количеством взвешенных частиц менее 100 мг/л.

При эксплуатации важным является аэрация фильтра. Концентрация кислорода не должна снижаться за 2 мг/л. Необходимо обеспечить периодическую очистку полости под дренажем и над днищем.

Капельный биологические фильтры плохо переносит зимой ветер. Для эффективной работы предусматривают противоветровую защиту. Неоднородная нагрузка приводит к заболачиванию фильтра, которая ликвидируется заменой загрузки. Работу нарушают и посторонние предметы в загрузочной массе и дозирующих баках.

Высоконагружаемые биофильтры

Этот тип фильтров имеет повышенный воздухообмен и, соответственно, окислительную способность. Обеспечивается повышенный обмен воздуха крупной фракцией загрузки и повышенной водонагрузки.

Очищаемые воды двигаются с большой скоростью и выносят трудноокисляемые вещества и отработанную биопленку. Кислород расходуется на оставшиеся загрязнения.

Высоконагружаемые биофильтры имеют высокий загрузочный слой, повышенную зернистость дренажа и днище особой формы для обеспечения искусственной циркуляции воздуха.

Промывка фильтра будет происходить только условиях постоянного беспрерывного и высокой подаче воды.

Высота массы загрузки прямо пропорциональна эффективности биофильтра.

В состав биологических фильтров могут входить:

  • тело фильтра – фильтрующая загрузка, которая расположена в резервуаре, доступном для проникновения воды. Наполнители (пластмасса, шлак, щебень, керамзит и т.д.) должны иметь низкую плотность и повышенную поверхностную площадь;
  • устройство для распределения воды, позволяющее равномерно орошать фильтрующую загрузку грязной водой;
  • дренаж;
  • устройство распределения воздуха – подает кислород для окислительных реакций.

Окислительные процессы в биофильтрах схожи с орошением полей или как в сооружениях биологической очистки, но интенсивнее.

Схема работы биофильтра

Загрузочная масса очищает воду от нерастворенных примесей, которые остались после пройденных отстойников. Биопленка сорбирует растворенную органику. Микроорганизмы в биопленки живут за счет окисления органических веществ. Так же часть органики идет на увеличении биомассы. Происходит два эффективных действия: уничтожение ненужной органики из воды и увеличения биологической пленки. Поток сточной воды уносит с собой омертвевшую часть пленки. Кислород подается естественным и искусственным путем с помощью вентиляции.

Расчет биофильтров

Расчет производится для поиска эффективной толщины загрузочной массы и характеристик водораспределительного устройства, фракции дренажа и диаметра лотков, отводящих воду.

Эффективный размер загрузочной массы рассчитывают по окислительной мощности – ОМ. ОМ – это масса необходимого кислорода в сутки. На нее влияет температура воды и окружающей среды, материала загрузочной массы, типа загрязнения, способа воздухообмена и т.д. Если за год средняя температура менее 3 градусов, то биофильтр переносят в более теплое помещение с возможностью обогрева и пятикратной подачей свежего.

Часто используют следующий алгоритм:

  1. Определяют коэффициент К как произведение БПК20 входящей и выходящей воды.
  2. Из таблиц определить высоту фильтра и допустимую гидравлическую нагрузку, зависящая от среднезимней температуры окружающей среды и К.
  3. Общая площадь определяется делением расхода входящей воды на гидравлическую нагрузку.

Высоконагружаемые биофильтры

Для них существует точная методика расчета:

  1. Определяется допустимая концентрация загрязнения входящей воды: табличный коэффициент К умножается на БПК вышедшей воды.
  2. Рассчитывается коэффициент рециркуляции по специальной формуле. Он равен частному двух разностей: БПК поступающей сточной воды минус ее допустимая концентрация и допустимая концентрация минус БПК очищенной воды.
  3. Для определения площади фильтра берется произведение объема среднесуточной подачи воды, увеличенное на 1 отношение рециркуляционного расхода к расходу сточной воды и коэффициента с пункта 2. Все нежно разделить на допустимую нагрузку и температуру.

Существуют дополнительные методы расчета биологических фильтров, которые используют сложные формулы и дают более точные результаты.

Схема вентиляции биофильтра

Как уже упоминалось выше, биофильтры имеют два способа подачи кислорода: искусственный и естественны. Вид вентиляции зависит от климатических условий и типа фильтра.

Для высоконагруженных биофильтров используют вентиляторы с низким давлением — ЭВР, ЦЧ. Аэрофильтры нуждаются в искусственной вентиляции. При монтаже биофильтра в закрытом пространстве, так же предусматривают принудительную подачу воздуха в него.

Обеспечивают постоянную циркуляцию воздуха, так как перерывы могут поднять температуру до 60 градусов и вызвать плохие запах от разложения отработанной биопленки.

Биофильтр эффективно работает при температуре выше 6 градусов. Если вода будет меньшей температуры, то следует предусмотреть подогрев подаваемой воды.

Что бы в зимнее время фильтр не переохлаждался, устанавливают противоветровую защиту в виде купольного сооружения и снижают коэффициент неравномерности подачи сточных вод. Так же вводят ограничение по подаче холодного воздуха: на квадратный метр за час должно подаваться только 20 кубических метров. В вентиляционные решетки вставляют жалюзи, экраны из тканевых материалов.

Толщина биопленки оказывает влияние на равновесие в фильтре. Большая толщина может привести к прекращению потребления кислорода и начнется гниение. Наиболее распространено в капельных фильтрах.

Ранее считалось, что естественная подача кислорода происходит только благодаря разности температур. Сегодня доказано, что на естественную вентиляцию влияют диффузные процессы во время окислительно-восстановительных реакций.

Сооружения биологической очистки сточных вод. Биофильтры

Биофильтры. Представляют собой прямоугольные или круглые в плане сооружения со сплошными стенками и двойным дном: верхним в виде колосниковой решетки, и нижним сплошным. Колосниковая решетка или дырчатое днище, дренаж биофильтров устраивается из железобетонных плит. Общая площадь отверстий дренажа принимается не менее 5—8% площади поверхности фильтра.


Фильтрующим материалом служит щебень, галька горных пород, керамзит, шлак. Загрузка фильтрующего слоя по всей его высоте должна производиться материалом одинаковой крупности (табл.61).


Таблица 61. Крупность зерен загрузочного материала для биофильтра (СНиП II-Г. 6—62)


Мелочи в загрузочном материале должно быть не более 5%. Нижний поддерживающий слой во всех типах биофильтров должен применяться с размерами 60—100 мм.


Орошение биофильтров сточными водами производится через небольшие равномерные промежутки времени. Распределение сточных вод может быть капельным, струйным или в виде тонкого слоя.


Кислород, обеспечивающий жизнедеятельность бактерий, поступает в тело фильтра естественной или искусственной вентиляцией. Количество кислорода, получаемое с 1 м3 фильтрующего материала в сутки для снижения БПК сточных вод, называется окислительной мощностью. Она зависит от температуры сточных вод, наружного воздуха, характера загрязнений (табл. 62).


Таблица 62. Окислительная мощность, г, кислорода в сутки на 1 м3 загрузочного материала биофильтров (СНиП II-Г. 6—62)


Примечания: 1. Указанные в табл. 62 величины окислительной мощности определены для сточных вод со среднезимней температурой +10°. При другой среднезимнеи температуре сточных вод значения окислительной мощности следует увеличивать илн уменьшать пропорционально отношению фактической температуры к 10°С


2. При значении часового коэффициента неравномерности притока более 2, объем фильтрующего материала следует увеличить пропорционально отношению фактического коэффициента неравномерности К=2.


При среднегодовой температуре наружного воздуха ниже + 10°С и коэффициенте рециркуляции сточных вод более 4, а также при среднегодовой температуре воздуха до +3°С биофильтры любой производительности, и при среднегодовой температуре от +3 до +6°C биофильтры с производительностью до 500 м3 в сутки необходимо размещать в отапливаемых помещениях с расчетной температурой внутреннего воздуха на +20С выше температуры сточных вод и пятикратным воздухообменом в час. При производительности более 500 м3/сутки и среднегодовой температуре воздуха от +3 до +6°C биофильтры можно размещать в неотапливаемых помещениях облегченной конструкции.


При поступлении сточных вод с перерывами в течение суток строительство биофильтров в неотапливаемых помещениях или открытого типа должно обосновываться теплотехническим расчетом. При этом необходимо принимать во внимание опыт эксплуатации очистных сооружений, находящихся в данном районе или в других районах с аналогичными условиями.


Окислительную мощность биофильтра ОМ можно определить по формулам:


при работе с рециркуляцией


, (135)

без рециркуляции


, (136)

где LCM — БПК5 смеси поступающих сточных вод, мг/л;

Ld — БПКб поступающих на очистку сточных вод, мг/л;

Lt — БПК5 очищенных сточных вод, мг/л;

QcyT — суточный расход сточных вод, м3/сутки;

F — площадь фильтра, м2;

Н — высота загрузки фильтра, м;

q — расход сточных вод, л/сек;

n — коэффициент рециркуляции, определяемый по формуле (133).


При расчете биофильтров для промышленных сточных вод предприятий пищевой промышленности можно рекомендовать коэффициент скорости биохимического окисления Кс.б, указывающий на интенсивность прироста биологической пленки, определяемый по формуле


Кс.б = 21/a, (137)

где а — разность, проц., между ХПК и БПК20 сточных вод.


Низкие значения коэффициента указывают на нецелесообразность биохимических способов очистки сточных вод. Обратная величина коэффициента скорости биохимического окисления характеризует скорость прироста биологической пленки.


Коэффициент скорости биохимического окисления смеси сточных вод с различным размером загрязнений определяется по формуле


, (138)

где Q1, Q2...Qn — расходы различных по концентрации сточных вод;

а1, а2,...an — соответствующие разности, проц., между ХПК и БПК20.


Чем меньше коэффициент, тем больше интенсивность фактора прироста биологической пленки, поэтому коэффициент оказывает влияние на выбор фильтрующего материала (табл. 63).


Таблица 63. Зависимость вида загрузочного материала от коэффициента скорости биохимического окисления


Биофильтры подразделяются на капельные, высоконагружаемые, аэрофильтры, башенные.


Отличительной особенностью капельных биофильтров является небольшой диаметр фракций загрузочного материала (30— 50 мм) и высота загрузки (2 м), при этом нижний поддерживающий слой высотой 0,2 м принимается размером 60—100 мм, а также низкая нагрузка по сточной воде от 0,5 до 1,0 мг на 1 мг загрузки фильтра.



Высоконагружаемые биофильтры отличаются от капельных значительно большей гидравлической нагрузкой. Для капельных биофильтров нагрузка на 1 м2 поверхности в сутки составляет 1—2 м3 сточных вод, для высоконагружаемых — 10—30 м3 на 1 м2 поверхности в сутки, т. е. в 10—30 раз больше.


Более высокая окислительная мощность высоконагружаемых биофильтров обусловливается незаиляемостыо, лучшим обменом воздуха, что достигается благодаря более крупному загрузочному материалу и повышенной нагрузкой по воде. Значительные скорости прохода воды через загрузочный материал обеспечивают постоянный вынос трудноокисляемых примесей и отмирающей биопленки. Крупность частиц загрузки принимается размером 40—60 мм, что обеспечивает большой объем пор.


Конструктивные и эксплуатационные особенности высоконагружаемых биофильтров и их отличие от капельных следующие:

  1. высота слоя фильтрующей загрузки доходит до 4 м. Количество загрязнений, вносимых на 1 м2 площади фильтра в сутки, зависит от высоты фильтра. При высоте его 4 м окислительная мощность составляет 2400 г 02/м2, 3м — 2200, 2,5 м — 2000, 1 м— 1800 г 02/м2;
  2. крупность зерен доходит до 65 мм по всей высоте загрузки;
  3. искусственная вентиляция фильтра обеспечивается особой конструкцией днища и дренажа (ограждение глухими стенами с гидрозатвором) ;
  4. интервалы в орошении фильтра сточной водой должны быть сокращены до минимума. Нагрузка по воде должна быть повышенной и постоянной;
  5. направление концентрированных сточных вод на фильтры недопустимо, поэтому для поддержания повышенной нагрузки по воде необходимо их разбавление условно чистыми или очищаемыми водами при помощи рециркуляции;
  6. высоконагружаемые биофильтры могут работать на заданную степень очистки сточных вод;
  7. применяются как для полной, так и для частичной очистки сточных вод.

Высоконагружаемые биофильтры могут быть одно- (рис. 19) и двухступенчатые.


Рис. 19. Схема одноступенчатых высоконагружаемых биофильтров: П.О. — первичный отстойник; Н.С. — насосная станция; Б — биофильтр; В.О. — вторичный отстойник, К.Б, — коигакгиый бассейн; 1,2 — возможные варианты рециркуляции очищенной жидкости, 3 — удаление избыточной биопленки; 4 — хтораторная; 5 — очищенные и обеззараженные сточные воды иа выпуск.


Применение двухступенчатых высоконагружаемых биофильтров рекомендуется при благоприятном рельефе местности и при необходимости более глубокой очистки сточных вод. Разновидностью высоконагружаемых биофильтров могут быть сооружения перемежающейся фильтрации (рис. 20).


Рис. 20. Схема двухступенчатых высоконагружаемых биофильтров с перемежающейся фильтрацией: ПО — первичный отстойник, K1, К2 — камеры переключения, ИС — насосная станция, Б — биофильтры, ВО — вторичные отстойники, КБ контактный бассейн, 1 — удаление избыточной бнопленки, 2 — хлораторная, 3 — очищенные сточные воды на выпуск


Разновидностью высоконагружаемых биофильтров являются аэрофильтры. Особенность фильтров этого типа.— большая высота (3—4 м) и принудительная вентиляция, которая может осуществляться вентиляторами низкого давления.


Материал загрузки тела аэрофильтра должен быть по возможности гладким. Аэрофильтры устраиваются двух- и трехслойные. Нижний слой рекомендуется устраивать толщиной 0,2 м из кусков загрузочного материала размером 50—70 мм, а верхний — размером 30—40 мм (рис. 21).


Рис. 21. Схема аэрофильтра: 1 — загрузка, 2 — реактивный водораспределитель, 3 — гидрозатвор


Устойчивой работы и высокого эффекта очистки на аэрофильтрах можно достичь, если сточные воды, направляемые на очистку, будут иметь БПК не более 150 мг/л. Расчет аэрофильтров можно проводить по их окислительной мощности (табл. 64).


Таблица 64. Окислительная мощность, г, кислорода на 1 м3 загрузки аэрофильтра (СНиП II-Г. 6—62)


Данные табл. 64 определены для сточных вод со среднезимней температурой +10°C. При температуре сточных вод более или менее +10оС окислительную мощность аэрофильтра необходимо увеличивать или уменьшать соответственно пропорционально отношению фактической температуры к+10°С.

Биофильтр – это обладающий биологическим воздействием реактор неподвижного слоя для очистки воздуха или воды. Главной его целью является фильтрация газообразных примесей и растворенных в очищаемом веществе субстанций, а не твердых частиц.

Идея очищать отработанный воздух биологическим путем возникла еще в семидесятые годы двадцатого века, однако впервые была применена на практике лишь в 1980 году благодаря интенсивному исследованию ученых. Основываясь на микробиологической методике, несколько лет спустя была разработана концепция модульной установки с возможностью универсального применения.

Биофильтрация представляет собой относительно простой и экономичный процесс очистки отработанного воздуха, содержащего летучие органические соединения и неприятные запахи. При этом микроорганизмы разлагают вредные и пахучие вещества в такие безобидные продукты как двуокись углерода и воду. Биофильтры используются преимущественно для очистки воздуха. Для специфичных случаев также возможна биологическая очистка сточных вод, основанная по аналогичному принципу.

Биологическая очистка отработанного воздуха использует микроорганизмы, чтобы удалять вредные вещества из воздуха путем микробиологического распада. В роли расщепителей выступают различные микроорганизмы, такие как бактерии или грибы.

Весь процесс сводится к следующему: микроорганизмы превращают вредные вещества с помощью кислорода в углекислоту и воду, а это значит, что речь идет о реакции распада материи.

Эта реакция может протекать только тогда, когда вредные вещества из газообразного состояния переходят в жидкое, так как вода составляет жизненное пространство микроорганизмов. Именно поэтому переход вредных веществ в жидкое состояние является важнейшим фактором всех биологических методов. Выживают лишь те микроорганизмы, которые могут лучшим образом приспособиться к господствующим условиям и к питательной базе. При этом всегда речь идет о смеси из различных гетеротрофных видов, которые используют вредные вещества в воздухе как источник углерода и энергии.

Виды и способы эксплуатации биофильтров

Существуют различные виды биофильтров в зависимости от способа их эксплуатации и области применения. Например:

  • плоский рукавный,
  • контейнерного типа,
  • для колодцев,
  • этажный,
  • сотовый,
  • башенный.

Но во всех типах устройств отработанный воздух проходит через какой-либо фильтрующий материал.

В некоторых случаях перед биофильтром расположена воздухопромывная камера, в которой газ приобретает относительную влажность равную почти 100%. Это должно предотвращать высыхание материала. Кроме того, при необходимости в воздухопромывной камере происходит удаление из газа твердых частиц. Насыщенный водяным паром и очищенный от пыли сырой газ поступает непосредственно в биофильтр, в котором находится фильтрующий материал. Благодаря дополнительному орошению он всегда остается влажным. Именно здесь и живут микроорганизмы. При прохождении через фильтрующий слой вещества в составе отработанного воздуха сорбируются на поверхности материала, таким образом становясь питательной базой для обитающих здесь бактерий.

Чтобы гарантировать высокую микробную активность в фильтре, должны соблюдаться оптимальные условия для жизни микроорганизмов: уровень pH, влажность, температура и регулярное поступление питательного вещества. Практика показывает, что развивающиеся в биофильтрах микробные смешанные популяции очень выносливы, если соблюдать вышеперечисленные условия.

Фильтрующий материал

К фильтрующему материалу также предъявляются определенные требования.

Он должен обладать большой специфической поверхностью и вместе с тем комфортной зоной размножения для микроорганизмов, которая:

  • хорошо сохраняет влажность,
  • допускает лишь незначительное падение давления при прохождении газа,
  • самостоятельно регулирует колебания величины pH,
  • обеспечивает равномерное прохождение через фильтрующий слой,
  • имеет незначительную скорость перегнивания.

Кроме того, микроорганизмы должны снабжаться неорганическими питательными веществами и микроэлементами. Следующие материалы могут использоваться в качестве фильтрующего слоя:

  • Компост из древесины или мусора
  • Вереск, хворост или волокна кокосовой пальмы
  • Продукты торфа
  • Бумажный гранулят

Дополнительно для разрыхления добавляют инертные материалы, такие как керамзит, стиропор или пенопласт. При этом фильтрующий слой является не только носителем для микроорганизмов, но и поставщиком питательных веществ.

Преимущества и недостатки биофилтрации

При эксплуатации биофильтра основная проблема заключается в предотвращении высыхания или чрезмерного увлажнения фильтрующего слоя, а, следовательно, обеспечения равномерного прохождения через него загрязненного воздуха.

Этого можно достигнуть, прежде всего, капсуляцией биофильтров. В качестве недостатков этих устройств можно отметить следующие:

  • большие размеры занимаемой площади
  • затраты на энергию для повышения давления
  • необходимость дополнительного орошения

Однако по сравнению с другими методиками, например, с ионизацией воздуха при помощи ионизирующих труб, постоянный биологический процесс чистки благодаря экономии CO2 и многочисленными экономическими аспектами (средние расходы на приобретение, большой срок эксплуатации, средние издержки производства) является более выгодным.

Технологические основы

Технологической основой является по существу биохимическое окисление и вместе с тем разложение и преобразование материалов бактериями, грибами и дрожжами в безвредные и не обладающие неприятными запахами субстанции.

Предпосылками является то, что вредные материалы водорастворимы, биологически разлагаемы и не токсичны для микроорганизмов.

Быстро растущая популяция микроорганизмов, обитающая на фильтрующем слое, использует содержащиеся в загрязненном воздухе летучие органические соединения для собственных обменных процессов. Распад происходит при аэробных условиях и достаточном количестве кислорода. Последнее обеспечивается его достаточным содержанием непосредственно в воздухе. Необходимо использовать насыщенный водяным паром отработанный воздух, так как материал фильтра должен быть влажным.

Области применения биофильтров

  • Биофильтры находят свое применение для биологической очистки воздуха в следующих сферах:
  • Станции по очистке сточных вод
  • Полигоны ТБО, заводы по переработки мусора
  • Предприятия по покраске поверхностей с использованием растворителей (металл, дерево, пластмассы)
  • Переработка продуктов питания, грибные фермы, коптильни
  • Маслобойные предприятия и компании солодоращения
  • Сельскохозяйственные установки
  • Биогазовые установки, переработка газа из органических отходов
  • Скотоводческие фермы
  • Заводы по производству комбикормов
  • Скотобойни
  • Установки для сушки шлама
  • Промышленные производственные комплексы

Биофильтрация для устранения неприятного запаха

Основная область применения устройств биологической фильтрации - это очистка воздуха от неприятного запаха. Микробиологический распад веществ, образующих неприятный запах, на углекислый газ и воду происходит при окружающей температуре, так что нет никакой необходимости задействовать дополнительную энергию и добавки. Следовательно, издержки производства при этом процессе очень незначительны. Во многих областях биофильтрация становится неотъемлемой частью технического оснащения производства.

В Европе применяются тысячи устройств биофильтрации для устранения неприятных запахов, исходящих из самых разных эмиссионных источников. Проблемы возникновения невыносимого запаха часто встречаются вблизи от очистных установок, свалок, литейных заводов, пивоварен, предприятий пищевой промышленности, мест содержания животных, заводов по переработки мусора, сельскохозяйственных предприятий и скотобоен. Биофильтрация представляет собой самый малозатратный и самый надежный метод для уничтожения неприятных запахов - степень ее эффективности достигает 99%.

Биофильтры для канализационных колодцев

Биофильтры для колодцев устанавливаются непосредственно под брызговиком в шахту колодца, тем самым предотвращая выход сильных запахов из канализации. Они содержат интегрированный брызговик и фильтрующий слой (смесь из торфа и композита для микроорганизмов). Поступающая с поверхности вода направляется в всасывающий раструб под коллектором шлама и отводится по сточной трубе. Резиновая прокладка предотвращает выход неочищенного воздуха. Современные фильтры больше не препятствуют воздушному просачиванию. Современные фильтры на бумажной основе не требуют дополнительного обслуживания и функционируют от 5 до 6 лет без постоянного контроля и ухода. Их эффективность составляет около 99%.

Применение

Предназначен для эффективного устранения неприятных запахов из коммунальной или промышленной канализации.

Действие

Микроорганизмы, находящиеся в биофильтре, нейтрализуют неприятные запахи перед выходом их наружу.

Конструкция

Конструкция из материала HDPE (High Density Poly-Ethylene) и нержавеющей стали обеспечивает прочность устройства (~ 7 лет)

Биофильтры контейнерного типа

Главной целью биофильтрации является осуществление контакта микроорганизмов с загрязнениями содержащимися в струе воздуха. Фильтрационный материал составляющий почву для выращивания микроорганизмов помещен внутри биофильтра. Во время процесса биофильтрации, струя загрязнёного воздуха проникает в биофильтр, где происходит процесс абсорбции через фильтрационный материал. В эффекте разложения возникают метаболические полупродукты в виде СО2 и Н2О.

Преимущества:

  • Нет никаких отходов требующих специальной обработки.
  • Загрязнения раскладываются на нейтральные соединения такие как: H2O, CO2 и биомассу.
  • Биомасса сохраняется внутри аппарата и через какой-то промежуток времени подвергается компостированию вместе с фильтрующим материалом.
  • Правильно запроектированные биофильтры практически не требуют никакого обслуживания.
  • Исключительно низкая себестоимость инвестиции, а также низкие эксплуатационные расходы по сравнению с традиционными способами очистки воздуха.

Требования к отработанному воздуху

Важнейшими предпосылками для функционирования биофильтров являются:

  • Соблюдение благоприятного температурного режима (+5°C - +55°C).
  • Орошение фильтрующего слоя для предотвращения его высыхания.
  • Предотвращение образования щелей и трещин в фильтрующем слое.
  • Очищаемые вещества должны быть водорастворимыми.
  • Очищаемые вещества должны быть биологически разложимыми.
  • Регулярное поступление питательных веществ в зону обитания микроорганизмов.

Ссылки

H.C. Flemming and J. Wingender (2010). Nature Reviews Microbiology.

Joseph S. Devinny, Marc A. Deshusses and Todd S. Webster (1999). Biofiltration for Air Pollution Control.

Hermann Bubinger, Hans-Gerd Schwinning (1992). Grundlagen und Anwendungsbeispiele der Biofiltertechnologie.

Andreas Oberhammer (1997). Verfahren zur gleichmäßigen Befeuchtung ener Filtermasse


Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

В ведение

Г лава 1. Б иологические фильтры: общая характеристика и классификация

Биологический фильтр -- сооружение, в котором сточная вода фильтруется через загрузочный материал, покрытый биологической пленкой, образованной колониями микроорганизмов. Биофильтр состоит из следующих основных частей:

а) фильтрующей загрузки (тело фильтра) из шлака, гравия, керамзита, щебня, пластмасс, асбестоцемента, помещенной обычно в резервуаре с водопроницаемыми или водонепроницаемыми стенками;

б) водораспределительного устройства, обеспечивающего равномерное с небольшими интервалами орошение сточной водой поверхности загрузки биофильтра;

в) дренажного устройства для удаления профильтровавшейся воды;

г) воздухораспределительного устройства, с помощью которого по ступает необходимый для окислительного процесса воздух.

Процессы окисления, происходящие в биофильтре, аналогичны процессам, происходящим в других сооружениях биологической очистки, и в первую очередь на полях орошения и полях фильтрации. Однако в биофильтре эти процессы протекают значительно интенсивнее.

Проходя через загрузку биофильтра, загрязненная вода оставляет в ней нерастворенные примеси, не осевшие в первичных отстойниках, а также коллоидные и растворенные органические вещества, сорбируемые биологической пленкой. Густо заселяющие биопленку микроорганизмы окисляют органические вещества и отсюда черпают энергию, необходимую для своей жизнедеятельности. Часть органических веществ микроорганизмы используют как пластический материал для увеличения своей массы. Таким образом, из сточной воды удаляются органические вещества и в то же время увеличивается масса активной биологической пленки в теле биофильтра. Отработанная и омертвевшая пленка смывается протекающей сточной водой и выносится из тела биофильтра. Необходимый для биохимического процесса кислород воздуха поступает в толщу загрузки путем естественной и искусственной вентиляции фильтра.

Классификация биофильтров

Биофильтры классифицируются по различным признакам.

1. По степени очистки --на биофильтры, работающие на полную и неполную биологическую очистку. Высокопроизводительные биофильтры могут работать на полную или неполную очистку в зависимости от необходимой степени очистки. Малопроизводительные биофильтры работают только на полную очистку.

2. По способу подачи воздуха -- на биофильтры с естественной и искусственной подачей воздуха. Во втором случае они часто носят название аэрофильтров. Наибольшее применение в настоящее время имеют биофильтры с искусственной подачей воздуха.

3. По режиму работы -- на биофильтры, работающие с рециркуляцией и без нее. Если концентрация загрязнений в поступающих на биофильтр сточных водах невысока и они могут быть поданы на биофильтр в таком объеме, который достаточен для самопроизвольной его промывки, то рециркуляция стока не обязательна. При очистке концентрированных сточных вод рециркуляция желательна, а в некоторых случаях обязательна. Рециркуляция позволяет понизить концентрацию сточных вод до необходимой величины, так же как и предварительная их обработка в аэротенках -- на неполную очистку.

4. По технологической схеме -- на биофильтры одноступенчатые и двухступенчатые. Схемы работы одноступенчатых биофильтров с рециркуляцией и без нее приведены на 4.91, а, а двухступенчатых с рециркуляцией -- на 4.91,6. Двухступенчатые биофильтры применяются при неблагоприятных климатических условиях, при отсутствии возможности увеличивать высоту биофильтров и при необходимости более высокой степени очистки.

Иногда предусматривается переключение фильтров, т. е. периодическая эксплуатация каждого из них в качестве фильтра первой и второй ступени.

5. По пропускной способности -- на биофильтры малой пропускной способности (капельные) и большой пропускной способности (высоконагружаемые).

6. По конструктивным особенностям загрузочного материала -- на биофильтры с объемной загрузкой и с плоскостной загрузкой.

Биофильтры с объемной загрузкой можно подразделить на: капельные биофильтры (малой пропускной способности), имеющие крупность фракций загрузочного материала 20--30 мм и высоту слоя загрузки 1--2 м;

высоконагружаемые биофильтры, имеющие крупность загрузочного материала 40--60 мм и высоту слоя загрузки 2--4 м;

биофильтры большой высоты (башенные), имеющие крупность загрузочного материала 60--80 мм и высоту слоя загрузки 8--16 м. Биофильтры с плоскостной загрузкой подразделяются на: биофильтры с жесткой загрузкой в виде колец, обрезков труб и других элементов. В качестве загрузки могут быть использованы керамические, пластмассовые и металлические засыпные элементы. В зависимости от материала загрузки плотность ее составляет 100--600 кг/м8, пористость 70--90%, высота слоя загрузки 1--6 м;

биофильтры с жесткой загрузкой в виде решеток или блоков, собранных из чередующихся плоских и гофрированных листов. Блочные загрузки могут выполняться из различных видов пластмассы (поливинилхлорид, полиэтилен, полипропилен, полистирол и др.), а также из асбестоцементных листов. Плотность пластмассовой загрузки 40-- 100 кг/м3, пористость 90--97%, высота слоя загрузки 2--16 м. Плотность асбестоцементной загрузки 200--250 кг/м3, пористость 80--90%, высота слоя загрузки 2--6 м;

биофильтры с мягкой или рулонной загрузкой, выполненной из металлических сеток, пластмассовых пленок, синтетических тканей (нейлон, капрон), которые крепятся на каркасах или укладываются в виде рулонов. Плотность такой загрузки 5--60 кг/м3, пористость 94--99%, высота слоя загрузки 3--8 м.

К биофильтрам с плоскостной загрузкой следует отнести и погружные биофильтры, представляющие собой резервуары, заполненные сточной водой и имеющие днище вогнутой формы. Вдоль резервуара несколько выше уровня сточной воды устанавливается вал с насаженными пластмассовыми, асбестоцементными или металлическими дисками диаметром 0,6--3 м. Расстояние между дисками 10--20 мм, частота вращения вала с дисками 1--40 мин-1.

Плоскостные биофильтры с засыпной и мягкой загрузкой рекомендуется применять при расходах до 10 тыс. м3/сутки, с блочной загрузкой-- до 50 тыс. м3/сутки, погружные биофильтры -- для малых расходов до 500 м3/сутки.

Союзводоканалниипроектом составлен экспериментальный проект биофильтров пропускной способностью 200--1400 м3/сутки с загрузкой из пеностеклянных блоков 375X375 мм, из гофрированных листов полиэтилена размером 500X500 мм типа «сложная волна» (4. 92) и асбестоцементных листов размером 974X2000 мм.

Основные типы биофильтров

Капельные биофильтры. В капельном биофильтре (4.93) сточная вода подается в виде капель или струй. Естественная вентиляция воздуха происходит через открытую поверхность биофильтра и дренаж. Такие биофильтры имеют низкую нагрузку по воде; обычно она колеблется от 0,5 до 1 м3 воды на 1 м3 фильтра.

Схема работы капельных биофильтров следующая. Сточная вода, осветленная в первичных отстойниках, самотеком (или под напором) поступает в распределительные устройства, из которых периодически напускается на поверхность биофильтра. Вода, профильтровавшаяся через толщу биофильтра, попадает в дренажную систему и далее по сплошному непроницаемому днищу стекает к отводным лоткам, расположенным за пределами биофильтра. Затем вода поступает во вторичные отстойники, в которых выносимая пленка отделяется от очищенной воды.

При нагрузке по загрязнениям больше допустимой поверхность капельных биофильтров быстро заиливается, и работа их резко ухудшается.

Проектируются они круглыми или прямоугольными в плане со сплошными стенками и двойным дном: верхним в виде колосниковой решетки и нижним -- сплошным.

Высота междудонного пространства должна быть не менее 0,6 м для возможности периодического его осмотра. Дренаж биофильтров выполняют из железобетонных плит, уложенных на бетонные опоры. Общая площадь отверстий для пропуска воды в дренажную систему должна составлять не менее 5--8% площади поверхности биофильтров. Во избежание заиливания лотков дренажной системы скорость движения воды в них должна быть не менее 0,6 м/с.

Уклон нижнего днища к сборным лоткам принимается не менее 0,01, продольный уклон сборных лотков (максимально возможный по конструктивным соображениям) -- не менее 0,005.

Стенки биофильтров выполняются из сборного железобетона и возвышаются над поверхностью загрузки на 0,5 м для уменьшения влияния ветра на распределение воды по поверхности фильтра. При наличии дешевого загрузочного материала и свободной территории небольшие биофильтры можно устраивать без стенок; фильтрующий материал в этом случае засыпается под углом естественного откоса. Наилучшими материалами для засыпки биофильтров являются щебень и галька.

Все примененные для загрузки естественные и искусственные материалы должны удовлетворять следующим требованиям: при плотности до 1000 кг/м3 загруженный материал в естественном состоянии должен выдерживать нагрузку на поперечное сечение не менее 0,1 МПа, не менее 10 циклов испытаний на морозостойкость; кипячение в течение 1 ч в 5%-ном растворе соляной кислоты; материал не должен получать заметных повреждений или уменьшаться в весе более чем на 10% первоначальной загрузки биофильтров; загрузка биофильтров по высоте должна быть одинаковой крупности, и только для нижнего поддерживающего слоя высотой 0,2 м следует применять более крупную загрузку (диаметром 60--100 мм).

Высоконагружаемые биофильтры. В начале текущего столетия появились биофильтры, которые у нас в стране получили название аэрофильтры, а за рубежом -- биофильтры высокой нагрузки. Отличительной особенностью этих сооружений является более высокая, чем в обычных капельных биофильтрах, окислительная мощность, что обусловлено незаиляемостью таких фильтров и лучшим обменом воздуха в них. Достигается это благодаря более крупному загрузочному материалу и повышенной в несколько раз нагрузке по воде.

Повышенная скорость движения сточной воды обеспечивает постоянный вынос задержанных трудноокисляемых нерастворенных примесей и отмирающей биопленки. Поступающий в тело биофильтра кислород воздуха расходуется в основном на биологическое окисление части загрязнений, не вынесенных из тела фильтра.

Конструктивными отличиями высоконагружаемых биофильтров являются большая высота слоя загрузки, большая крупность ее зерен и особая конструкция днища и дренажа, обеспечивающая возможность искусственной продувки материала загрузки воздухом.

Междудонное пространство должно быть закрытым, и туда подается вентиляторами воздух. На отводных трубопроводах должны быть предусмотрены гидравлические затворы глубиной 200 мм.

Особенностями эксплуатационного характера являются необходимость орошения всей поверхности биофильтра с возможно малыми перерывами в подаче воды и поддержание повышенной нагрузки по воде на 1 м2 площади поверхности фильтра (в плане). Только при этих условиях обеспечивается промывка фильтров.

Высоконагружаемые биофильтры могут обеспечить любую заданную степень очистки сточных вод, поэтому применяются как для частичной, так и для полной их очистки.

Как показали исследования, в одинаковых условиях (одинаковая высота и крупность загрузки, характер загрязнений, степень очистки сточных вод и т. д.) высоконагружаемые биофильтры по сравнению с капельными имеют большую пропускную способность по объему пропускаемой через них воды, а не по количеству переработанных (окисленных) загрязнений. Повышенная же эффективность этих биофильтров по извлечению из сточных вод загрязняющих веществ достигается при увеличении высоты слоя загрузки, увеличении крупности зерен загрузки и лучшем воздухообмене.

Башенные биофильтры. Эти биофильтры имеют высоту 8--16 м и применяются для очистных станций пропускной способностью до 50 000 м3/сутки при благоприятном рельефе местности и при БПКго очищенной воды 20--25 мг/л. В отечественной практике они распространения не получили.

Расчет биофильтров

Капельные биофильтры. Расчет биофильтров состоит в определении необходимого объема загрузочного материала для очистки сточной воды и размеров элементов водораспределительных устройств, дренажа, лотков для сбора и отведения воды.

Объем фильтрующей загрузки определяют по окислительной мощности ОМ. Под окислительной мощностью понимается масса кислорода, выраженная в граммах БПК, которая может быть получена в сутки с 1 м3 загрузочного материала биофильтра.

Окислительная мощность биофильтра зависит от температуры сточной воды и наружного воздуха, от характера поступающих загрязнений, материала загрузки, способа подачи воздуха и др.

При иной среднегодовой температуре окислительную мощность увеличивают или уменьшают пропорционально отношению фактической температуры к 10° С.

При среднегодовой температуре воздуха до 3° С биофильтры любой пропускной способности размещаются в отапливаемых помещениях с пятикратным воздухообменом в 1 ч; температура в них должна быть на 2° выше температуры сточной воды. В таких же помещениях располагаются биофильтры пропускной способностью до 500 м3/сутки, если среднегодовая температура воздуха 3--6° С. Биофильтры большой пропускной способности в этом случае размещаются в шатрах.

Биофильтры устраивают в виде отдельных секций. Число и размеры секций зависят от способов распределения сточной воды по поверхности, условий их эксплуатации и пр.; число секций должно быть не менее 2 и не более 6--8; все секции должны быть рабочими.

Высоконагружаемые биофильтры. В результате исследований, проведенных АКХ и МИСИ (И. С. Постников, В. В. Безенов и С. В. Яковлев), разработаны достаточно точные методы расчета высоконагружаемых биофильтров.

Высоту биофильтра назначают в зависимости от местных условий и требуемой степени очистки сточных вод. Если очищенная сточная вода должна иметь БПК2о=25... 30 мг/л, высота биофильтра должна быть не менее 2 м, если БПК2о=20 мг/л -- не менее 3 м и при БПК2о= 15 мг/л -- не менее 4 м.

Приведенный метод имеет серьезные недостатки: высота биофильтра может назначаться в пределах от 2 до 4 м; отсутствует возможность проанализировать работу действующих биофильтров и рассчитать биофильтр на любую заданную степень очистки и пр.

Более точным является метод, предложенный проф. С. В. Яковлевым. Он дает возможность рассчитать биофильтр на любую пропускную способность и степень очистки.

Как известно, одновременно с процессом изъятия из сточных вод загрязняющих их веществ в теле биофильтров идет процесс окисления этих веществ. При этом, естественно, окисление идет значительно медленнее, чем изъятие загрязнений.

На основании анализа каждого процесса проф. С. В. Яковлевым предложены уравнения, характеризующие зависимость между основными факторами, обусловливающими работу биофильтров, и рекомендован графоаналитический метод расчета биофильтров.

Вентиляция биофильтров

Естественная вентиляция в биофильтрах происходит вследствие разницы температур наружного воздуха и тела биофильтра.

Основная масса воздуха поступает в тело биофильтра через междудонное пространство и сверху вместе с водой по мере ее движения в фильтре. Если температура сточных вод выше температуры воздуха, то устанавливается восходящий (от дренажа к поверхности) поток воздуха, при обратном соотношении -- нисходящий; при равенстве температур вентиляция может совсем прекратиться. Интенсивность вентиляции биофильтров зависит также от высоты слоя фильтрующей загрузки, размеров ее зерен и высоты междудонного пространства. Чем мельче загрузка, тем хуже условия вентиляции.

Исследования, проведенные Н. А. Базякиной, показали, что объем кислорода воздуха, используемого в биофильтрах, как и в других сооружениях биологической очистки, не превышает 7--8%.

Температура внутри биофильтра не должна быть ниже 6° С, иначе окислительный процесс практически прекращается.

В установках большой и средней пропускной способности необходимая температура поддерживается вследствие постоянного притока сточных вод, температура которых почти всегда выше 8° С. Поэтому такие фильтры обычно не требуют утепления. Небольшие фильтры, как уже отмечалось, приходится размещать в утепленных помещениях во избежание их переохлаждения, особенно в ночное время, когда приток сточной воды уменьшается.

Распределение сточных вод по биофильтрам

Надежная работа биофильтра может быть достигнута только при равномерном орошении водой его поверхности. Орошение производится распределительными устройствами, которые подразделяются на две основные группы: неподвижные и подвижные.

К неподвижным распределителям относятся дырчатые желоба или трубы и разбрызгиватели (спринклеры), к подвижным -- качающиеся желоба, движущиеся наливные колеса и вращающиеся реактивные распределители (оросители).

В отечественной и зарубежной практике наибольшее распространение получили спринклерное орошение и орошение при помощи подвижных оросителей.

Спринклерное орошение. Спринклерная система состоит из дозирующего бака, разводящей сети и спринклеров.

Спринклеры (спринклерные головки) -- специальные насадки, надетые на концы стояков, которые ответвляются от водораспределительных труб, уложенных на поверхности или в теле биофильтра. Отверстия спринклерных головок невелики -- обычно 19, 22 и 25 мм. Во избежание коррозии спринклеры изготовляют из бронзы или из латуни.

Достоинством головки этого типа является, то, что опора, к которой прикреплен отражательный обратный конус, находится в стороне от движущейся струи и не мешает ее действию.

Дозирующий бак автоматически подает воду в спринклерную сеть под постоянным напором. Продолжительность опорожнения бака (период орошения), зависящая в основном от вместимости бака и размеров выпускаемой трубы, всегда одинакова; продолжительность же наполнения бака зависит только от притока сточных вод, который колеблется в течение суток. Поэтому орошение биофильтра производится периодически, через неровные по продолжительности интервалы. Во избежание сильного охлаждения необогреваемых биофильтров интервал между орошением не должен превышать 5--8 мин.

При большой площади биофильтры разделяются на секции с самостоятельными распределительными сетями и отдельными дозирующими баками.

В отечественной практике наибольшее распространение получил дозирующий бак с сифоном (4. 97). Преимущество его перед другими состоит в том, что он совершенно не имеет движущихся частей.

Выпускная труба из дозирующего бака представляет собой сифон, верхний срез которого возвышается над дном бака. Внутри дозирующего бака расположен опрокинутый стакан, установленный на подставках и не доходящий до дна бака. К стакану в верхней его части присоединены две трубки: одна из них -- воздушная трубка -- заканчивается открытым концом в баке, другая трубка, представляющая собой вентиляционный затвор, или регулятор напора, заканчивается открытым концом, выведенным выше максимального уровня воды в баке. Кроме того, регулятор напора присоединен патрубком к главной выпускной трубе. В верхней части бака имеется переливная труба, диаметр которой принимается в соответствии с притоком воды в бак.

Действие автоматического сифона заключается в следующем. Вначале вода в баке стоит на низшем уровне А, соответствующем нижнему колену воздушной трубки. В сифоне вода в это время стоит на уровне Б выходного отверстия спринклеров; регулятор напора заполнен водой до уровня Вь на котором он присоединен к стакану. По мере поступления воды горизонт ее в баке повышается, причем давление под стаканом и в отводной трубе остается равным атмосферному до тех пор, пока уровень ее не дойдет до отверстия воздушной трубки. После этого выход воздуха из-под стакана прекращается и воздудшое давление в нем по мере заполнения бака начинает возрастать.

Когда горизонт воды в баке достигнет наивысшего уровня, а горизонт воды под стаканом достигнет верхнего края отводной трубы, уровень воды в регуляторе напора упадет до нижнего его колена В2, а в главном сифоне -- до уровня Б2> также почти у нижнего колена. При этом давление воздуха под стаканом, в главной трубе сифона и в регуляторе напора будет равно высоте столба воды /гИзб. В следующий момент гидравлический затвор в регуляторе напора прорвется, давление под стаканом упадет до атмосферного, вследствие чего вода из бака устремится в главную трубу и будет вытекать из нее до тех пор, пока горизонт в баке не упадет до уровня А нижнего колена воздушной трубки. Как только через нее воздух проникнет под стакан, действие сифона приостановится, причем колено регулятора напора, засасывающего во время действия сифона воду из главной отводной трубы, останется заполненным водой.

Для регулирования наивысшего уровня воды в баке, при котором начинают действовать сифоны, верхнюю часть регулятора напора делают подвижной на сальниках; поднимая или опуская переливной патрубок регулятора напора, можно установить начало действия сифона как раз в тот момент, когда уровень воды под стаканом дойдет до края выпускной трубы. Отводную трубу от бака можно устраивать с гидравлическим затвором и без него. Диаметр сифона равен диаметру разводящей трубы. Внутренний диаметр колокола принимают равным двум диаметрам трубы сифона, но он может быть и больше.

По мере вытекания воды из бака радиус действия спринклера, зависящий от напора, постепенно уменьшается и таким образом орошается вся площадь круга вокруг спринклера. Для более равномерного распределения воды по орошаемой площади дозирующему баку придают такую форму, при которой площадь его горизонтальных сечений на различных уровнях пропорциональна расходу воды из бака в данный момент. Этому требованию с достаточным приближением удовлетворяет форма опрокинутой усеченной пирамиды. Площадь нижнего ее сечения назначают в зависимости от размера выходной трубы; площадь верхнего сечения (соответствующего уровню воды при максимальном напоре) определяется из указанного соотношения.

Расчет водораспределительной системы сводится к определению расхода воды из каждого разбрызгивателя (спринклера), определению необходимого их числа, диаметра разводящей сети, емкости и времени работы дозирующего бака.

Распределительную сеть укладывают или на специальные столбы, или прямо на фильтрующую загрузку на глубине 0,7--0,8 м от поверхности биофильтра. Сеть укладывают с уклоном с тем, чтобы ее можно было опорожнить в случае необходимости. В конце каждой трубы целесообразно иметь пробку, через которую можно было бы промыть трубопровод чистой водой. Спринклерные головки устанавливают обычно на 0,15 м выше поверхности загрузки фильтра.

Реактивные вращающиеся водораспределители (оросители). Вращающийся ороситель состоит из двух или четырех дырчатых труб, консольно закрепленных на общем стояке (4.100).

Вода из распределительной камеры поступает под некоторым напором в стояк, установленный на шариковых подшипниках; стояк может свободно вращаться вокруг своей вертикальной оси. Из стояка вода поступает в радиально расположенные трубы и через отверстия в них выливается на поверхность биофильтра. Под действием реактивной силы, возникающей при истечении воды из отверстий, распределитель вращается.

Такие реактивные оросители получили большое распространение за рубежом (в Англии, ФРГ и Чехословакии) и вполне себя оправдали. У нас они применяются на очистных станциях во многих городах (Харькове, Славянске, Шереметьеве, Владимире и др.)

Для приведения в действие реактивного оросителя необходим сравнительно небольшой напор (0,2--1 м), что является одним из достоинств этого устройства. Кроме того, при реактивных оросителях отпадает необходимость в устройстве дозаторов.

Диаметр отверстий в радиально расположенных трубах обычно колеблется от 10 до 15 мм; расстояние между отверстиями увеличивается от периферии к центру, что обеспечивает более равномерное орошение биофильтра.

Глава 2. О чистка в биофильтрах

Биофильтры -- это сооружения, в корпусе которых размещается кусковая насадка (загрузка) и предусмотрены распределительные устройства для сточной воды. В биофильтрах сточная вода фильтруется через слой загрузки, покрытый пленкой из микроорганизмов.

В качестве загрузки используют различные материалы с высокой пористостью, малой плотностью и высокой удельной поверхностью: щебень, гравий, шлак, керамзит, керамические и пластмассовые кольца, кубы, шары, цилиндры, шестигранные блоки, металлические и пластмассовые сетки, скрученные в рулоны.

Биофильтры делят на: работающие с полной и неполной биологической очисткой; с естественной и искусственной подачей воздуха; с рециркуляцией и без рециркуляции сточных вод; одноступенчатые и двухступенчатые, капельные и высоконагружаемые.

Двухступенчатые биофильтры применяются в том случае, когда невозможно увеличивать высоту биофильтра для достижения высокой степени очистки.

Башенные биофильтры применяют для очистных сооружений производительностью до 5000 м3/сут. Погружные или дисковые биофильтры работают при расходах до 500 м3/сут. Они представляют собой резервуар, в котором имеется вращающийся вал с насаженными на нем дисками. Уровень сточной воды в резервуаре устанавливают на 2-3 см ниже горизонтального вала. Размер дисков 0,6-3 м, а расстояние между ними 10-20 мм. Диски могут быть металлические, пластмассовые и асбестоцементные. Вал вращается со скоростью 1-40 об/мин.

Биотенк-биофильтр (рис. 5.72) заключен в корпус с расположенными в шахматном порядке элементами загрузки, которые представляют собой полуцилиндры диаметром 80 мм. Сточная вода поступает сверху, наполняя элементы загрузки, и через края стекает вниз. На наружных поверхностях элементов образуется биопленка, а в элементах -- биомасса, напоминающая активный ил. Насыщение воды кислородом происходит при движении жидкости. биологический фильтр аэрация сточный

Применение кислорода для аэрации сточных вод

При пневматической аэрации вместо воздуха начинают использовать технический кислород. Иногда этот процесс называют "биоосаждением". Его проводят в закрытых аппаратах, которые называются окситенками.

Разработано несколько конструкций окситенков. На практике применяют окситенки двух типов: 1) комбинированные, работающие по принципу реактора-смесителя; 2) секционные окситенки-вытеснители с отдельным вторичным отстойником. Схема секционного окситенка показана на рис. 5.73. Окситенк представляет собой герметически перекрытый прямоугольный резервуар, разделенный перегородками с отверстиями на 4-6 секций. Верхнее отверстие перегородки служит для прохода газа, нижнее -- для прохода иловой смеси. Сточная вода, циркуляционный ил, кислород входят в первую секцию.

Среднюю продолжительность пребывания сточных вод в окситенке определяют по формуле:

т = (1а-1)/, (5.34)

где КQi и Ки -- коэффициенты, учитывающие влияние соответственно концентрации растворенного кислорода и дозы активного ила; Sn -- зольность ила, доли единицы; а -- доза активного ила, г/л; р -- удельная скорость окисления, мг; ВПК юлн на 1 г беззольного вещества или за 1ч.

В зависимости от состава очищаемых сточных вод в окситенках оптимальная концентрация кислорода в воде составляет 10-12 мг/л, а доза ила -- 7-10 г/л.

Бытовые сточные воды поступают в усреднитель, а затем в отстойник. После осветления воду направляют в смеситель, где смешивают с производственной сточной водой, поступающей из отстойника. Далее смесь бытовых и промышленных вод поступает в аэротенк. После отделения активного ила во вторичном отстойнике, сточные воды обезвреживают хлором, затем сбрасывают в водоем или направляют для использования в производстве.

Осадок из отстойников поступает в метантенки. Выделяемый в процессе сбраживания газ из метантенков направляют на сжигание в котельню.

Г лава 3. А ппаратурное оформление

3.1 Биофильтр «Гринвей »

Биофильтр «Гринвей» может конструироваться с одноступенчатым септиком и в виде самостоятельного сооружения после двухступенчатого септика. На рис. 4.4 показан одноступенчатый септик с биофильтром. В нижней части биофильтра установлена ткань «Водоросль». Полиамидная ткань защищает входные отверстия на картридже биофильтра от заиливания. В картридже размещается фильтрующая загрузка. Материал и диаметр загрузки назначается по аналогии с капельным биофильтром. Можно использовать фильтрующие материалы из искусственных материалов. После септика и биофильтра эффект очистки соответствует сооружениям полной биологической очистки. При использовании двухступенчатого септика с отдельно расположенным биофильтром отмечается глубокая очистка сточных вод. Показатели загрязнений сточных вод приведены в табл. 5.6.

Рис. 5.4. Комплексное очистное сооружение «Осина»: 1, 11 - асбестоцементные трубы; 2 - пенопласт; 3 - лабиринт; 4 - пригруз; 5, 7 - полиэтиленовые трубы; 6 - перегородки; 8 - отверстие; 9 - железобетонный корпус; 10 - загрузка

Сооружение «Осина»

У сооружения «Осина» биофильтр является составной частью. Сооружение разработано в Европе и нашло применение в России. Конструкция выполнена из железобетона и состоит из двухсекционного анаэробного сооружения и биофильтра с керамзитовой загрузкой. Анаэробная очистка протекает без доступа кислорода. Подача сточной воды осуществляется под уровень воды. Первая ступень анаэробной очистки отделяется от второй перегородкой. В центре перегородки выполнено отверстие, через которое очищенная вода поступает на вторую ступень анаэробной очистки. На поверхности анаэробных сооружений формируется корка из всплывающих загрязнений, выносимых газами. Между второй септической камерой и биофильтром установлен сифон. Вода через сифон поступает на биофильтр. В биофильтре над загрузкой размещается сетка, которая препятствует всплытию керамзита. В нижней части биофильтра размещается дренаж, а выше - поддерживающий слой и далее - загрузка. Производительность установки - 800 литров в сутки. Площадь сооружения равна 2,5 м2. Установка размещается ниже и выше уровня земли. На рис. 5.4 приведена схема сооружения очистки «Осина». В табл. 5.7 приведены показатели качества очистки сточных вод.

Установка «Осина» может быть использована при последующей доочистке на полях подземной или поверхностной очистки сточных вод, но при соответствующем экологическом обосновании. Ожидать эффективной работы установки в зимний период невозможно из-за понижения температуры воды вследствие промерзания грунта. Данное сооружение нуждается в регулярном обслуживании. Авторы предлагают выгрузку осадка и замену биофильтра осуществлять один раз в 3 года, а это будет зависеть от условий эксплуатации.

3.2 Очистные сооружения «Биодиск»

Очистные сооружения «Биодиск» разработаны для численности населения 100, 350 и 1000 человек . Производительность станции очистки составляет 20, 70 и 200 м3/сут. Станция очистки располагается в утепленных укрытиях на поверхности земли. Сточная вода от жилой застройки поступает в подземную насосную станцию, где очищается от грубых загрязнений на решетке-контейнере. Вода погружными насосами подается в приемную камеру и далее - на тангенциальные песколовки, где происходит очистка от песка. Песколовки назначаются, если производительность станции превышает 100 м3 в сутки. Из песколовки сточные воды самотеком поступают в септик. Септик рассчитан на пребывание воды в течение 12…24 часов. В септике происходит очистка сточных вод от взвешенных веществ, органических и азотных загрязнений, фосфатов и СПАВ. Из септика очищенная вода через отверстия в нижней части корыта подается на «Биодиск», разделенный на пять или семь дисковых барабанов. Количество барабанов зависит от производительности станции очистки. Движение жидкости происходит поступательно, и сооружение работает как вытеснитель. Биопленка на барабанах размножается и отмирает. Отмирающая биопленка с очищенной водой выносится во вторичный отстойник. Во вторичном отстойнике биопленка оседает и периодически перекачивается с помощью погружного насоса в септик. Для удаления фосфора во вторичный отстойник вводят реагенты. Этот же насос используется во вторичном отстойнике и для рециркуляции очищенных стоков. Рециркуляция воды снижает концентрацию загрязнений, поступающих на установку «Биодиск», позволяет регулировать ее качество и подвергает денитрификации нитраты. В дневное и ночное время рециркуляция обеспечивает непрерывную работу очистных сооружений. Для доочистки сточных вод применяется биореактор, загруженный ершами. Подача воздуха к ершам осуществляется эжектором. В эжектор сточные воды подаются погружным насосом, который установлен в емкости биореактора. Регенерация ершей осуществляется интенсивной подачей воздуха. Загрязнения, формируемые в биореакторе, перекачиваются погружным насосом в септик. Очищенная вода обеззараживается на установке УФ-облучения и сбрасывается в водоем. Осадок из септика удаляется периодически один раз в 6…12 месяцев в илоупнотнитель. Вода из илоуплотнителя возвращается в септик, а осадок подогревается до температуры 70 °С, что обеспечивает разрушения яиц гельминтов и частичное удаление патогенной микрофлоры. Обработанный осадок может храниться на иловых площадках или вывозиться на свалку.

Объединение на установке «Биодиск» септика, дискового биофильтра и вторичного отстойника не является оптимальным, так как нарушается гидравлическая схема работы дисковых биофильтров малой производительности, что приводит к нарушению очистки. Работа септика зависит от расхода и концентраций загрязнений сточных вод, количества рециркулируемой воды и воздействия на воду продуктов перегнивания.

3.3 Затопленные биофильтры

Двухступенчатый затопленный биофильтр ФЗД представляет собой две ступени безнапорных фильтров, загруженных различными зернистыми загрузками.

Первая ступень биофильтра ФЗД работает в режиме затопленного биофильтра. Высота керамзитовой недробленой загрузки (диаметр загрузки 2-10 мм) составляет 2,2 м. Снизу через водяную дренажную дырчатую распределительную систему подается сточная вода, а через воздушную - воздух для обеспечения жизнедеятельности микроорганизмов. Воздух подается на биофильтр ФЗД от воздуходувки в количестве З м3 на 1 м3 сточных вод. Фильтруясь снизу вверх через керамзитовую загрузку с нарощенной на ней биопленкой, частично очищенные сточные воды, отражаясь от струенаправляющего устройства, через водослив переливаются в открытый гидравлический канал, соединяющий первую ступень биофильтра ФЗД со второй ступенью. Затем очищаемая жидкость по распределительному желобу, один конец которого врезан в открытый гидравлический канал, поступает на биофильтр второй ступени фильтра ФЗД, который в зависимости от вида сточных вод и требуемой глубины очистки может загружаться различными фильтрующими материалами: керамзитом, цеолитизированным туфом, активированным углем или другими фильтрующими материалами. Высота загрузки второй ступени биофильтра ФЗД - 1 м, диаметр загрузки может изменяться в широких пределах: от 0,63 до 5 мм в зависимости от требуемой степени очистки, направление фильтрации - сверху вниз. Отвод очищенной воды с биофильтра второй ступени ФЗД производится через сифон для поддержания минимального уровня воды в начале фильтроцикла. Перед второй ступенью можно вводить окислитель: хлор, озон и др. Если перед второй ступенью фильтра ФЗД окислитель не вводится, вторая ступень работает в режиме затопленного биофильтра.

Обратная водовоздушная промывка осуществляется поэтапно: на первом - продувка воздухом интенсивностью 5-7 л/(с·м2) в течение 2-3 мин, на втором - совместная подача воздуха (той же интенсивностью) и воды (интенсивностью 5-6 л/(с·м2) в течение 5 мин, на третьем - промывка интенсивностью 14-16 л/(с·м2) в течение 5 мин, для этого используется очищенная вода, хранящаяся в специальном резевуаре. Грязная вода собирается в отдельной емкости, оборудованной простейшей системой аэрации для поддержания биопленки во взвешенном состоянии. Равномерная подача промывных вод из резервуара в «голову» очистных сооружений способствует повышению эффекта отстаивания на 20-30 %. Образующийся осадок (0,2-0,4 % от объема обрабатываемой воды) представляет собой смесь сырого осадка и биопленки в соотношении примерно 4:1.

Биофильтр ФЗД (табл. 5.8) по сравнению с биофильтром «оксипор» позволяет использовать различные виды загрузок на первой и второй ступенях с различными диаметрами, применять различные виды окислителей перед второй ступенью.

Рис. 2. Затопленный безнапорный биофильтр: 1 - первая ступень биофильтра, 2 - вторая ступень биофильтра; 3 - камера; 4 - водослив; 5 - струенаправляющее устройство; 6 - распределительные желоба; 7 - трубчатый дренаж; 8 - сборный дренаж осветленной воды второй ступени; 9 - воздушный трубчатый дренаж

Затопленные биофильтры могут быть использованы при соответствующем обосновании.

3.4 Биофильтры Matala

Выпускаются шесть плотностных разновидностей материалов «Matala®» как в форме плоских листов, так и в рулонах («R-Matala®»), причем четыре из этих разновидностей предназначены для садоводства и разведения декоративных пород карпов.

По существу, такие плотностные разновидности разрабатывались для их использования в качестве комбинированных материалов по принципу «прогрессивной фильтрации«; ниже приведены увеличенные изображения этих четырех разновидностей.

В случае использования для фильтрации воды в садоводстве в отстойных или отсадочных баках более приемлемы разновидности материала «Matala®» с низкой плотностью, а для биофильтров лучше подходят другие плотностные разновидности материала «Matala®».

Данные четыре плотностные разновидности материала «Matala®» обладают особой поверхностью фильтрующего материала представлена полипропиленовыми волокнами, имеющими определенную форму и объединенными в матрицу с превосходным трехмерным распределением.

В результате, этот фильтрующий материал обладает очень большим «свободным объемом» - до 94% (у керамзита или гравия - лишь 30%), так что вода может течь по материалу очень равномерно, без завихрений и колебаний плотности потока.

Поскольку фильтрующий материал «Matala®» более стойкий, он обладает некоторыми особыми преимуществами при установке и очистке: При установке «Matala®» в фильтры не требуются сетки для дополнительной поддержки.

Резка материала очень проста. Можно использовать большой кухонный нож без зубцов или кольцевую пилу для резки на месте.

Очистка материала - работа стала существенно чище и выполняется гораздо проще и быстрее, чем очистка других губок. Вымойте на месте или сполосните грязь с материала «Matala®» путем простого опускания и поднятия его из воды.

Если материал засорен слишком большим количеством твердой взвеси или водорослей, их можно удалить струей из шланга.

В фильтрационном материале «Matala®» в складках и местах соединения волокон созданы многочисленные поровые пространства. При прохождении этих пространств водный поток замедляется, образуя идеальную среду для первичного прикрепления и роста нитрифицирующих бактерий, формирующих тонкую биопленку.

Если различные разновидности материала «Matala®» установить последовательно, то взвешенные частицы и бактериальные хлопья будут очень легко захватываться без образования засоров и анаэробных зон.

При использовании метода последовательной фильтрации материал «Matala®» можно устанавливать в многокамерных фильтрах в качестве «уплотняющего» агента. Можно заполнять и эффективно использовать всю площадь или диаметр фильтрационных камер. В системах с картриджами в виде сот следует устанавливать другие типы фильтрационного материала во избежание засорения и блокировки фильтра.

В результате при одинаковых условиях эксплуатации фильтры с материалом «Matala®» обладают большей производительностью и эффективностью по сравнению с фильтрами, в которых используются другие материалы.

З аключение

Биофильтры с капельной фильтрацией имеют низкую производительность, но обеспечивают полную очистку. Гидравлическая нагрузка их равна 0,5-3 м3/(м2-сут). Их используют для очистки вод до 1 ООО м3/сут при БПК не более 200 мг/л. Высоконагружаемые биофильтры работают при гидравлической нагрузке 10-30 м3/(м2сут), т.е. очищают в 10-15 раз больше сточной воды, чем капельные. Однако они не обеспечивают полную биологическую очистку.

Для лучшего растворения кислорода производят аэрацию. Объем воздуха, подаваемого в биофильтр, не превышает 16 м3 на 1 м3 сточной воды. При БПК 300 мг/л обязательна рециркуляция очищенной воды.

С писок использованных источников

1. Архипченко И.А., Орлова О.В., Лихачев Ю.М., Федашко М.Я. Получение высококачественных биокомпостов // Экология и промышленность России, июль 2000, с.16.

2. Багрянцев Г.И., Малахов В.М., Черников В.Е. Термическое обезвреживание и переработка промышленных отходов и бытового мусора // Экология и промышленность, март 2001 г.

3. Бикбау М.Я. Новые подходы к переработке ТБО // Экологический вестник России, декабрь 2006 г.

4. Вайсман Я.И., Рудакова Л.В., Нурисламов Г.Р. Использование биотуннелей в технологии компостирования биологических отходов // Экология и промышленность, июнь 2001 г.

5. Галицкая И.В. Экологические проблемы обращения и утилизации бытовых и промышленных отходов // Геоэкология. Инженерная геология. Гидрогеология. Геокриология, 2005, № 2, с. 144-147.

6. Марьин В.К., Кузнецов Ю.С., Белоусов В.В., Калашников Д.В. Технологические основы переработки отходов: Учебное пособие. - Пенза: ПГУАС, 2004. - 204с.

7. Пальгунов П.П., Сумароков М.В. Утилизация промышленных отходов. - М.: Стройиздат, 1990. - 352 с.

8. Семенов В.Н. Современный комплекс для переработки бытовых и промышленных отходов // Технология машиностроения, 2005, № 1.

9. Сметанин В.И. Защита окружающей среды от отходов производства и потребления. - М.: КолосС, 2003. - 230с.

10. Спасибожко В.В. Основы безотходной технологии: Учебное пособие. - 2-е изд. - Челябинск: Изд. ЮУрГУ, 2001. - 132с.

11. Федеральный закон 89 - ФЗ «Об отходах производства и потребления» от 24.06.98. (Собрание законодательства, 1998, №26)

Размещено на Allbest.ru

Подобные документы

    Состав сточных вод. Характеристика сточных вод различного происхождения. Основные методы очистки сточных вод. Технологическая схема и компоновка оборудования. Механический расчет первичного и вторичного отстойников. Техническая характеристика фильтра.

    дипломная работа , добавлен 16.09.2015

    Применение механической очистки бытовых и производственных сточных вод для удаления взвешенных веществ: решеток, песколовок и отстойников. Сооружения биологической очистки и расчет аэротенков, биофильтров, полей фильтрации и вторичных отстойников.

    курсовая работа , добавлен 25.04.2012

    Расчет необходимой степени очистки сточных вод по взвешенным веществам, биологического потребления кислорода и активного кислорода. Выбор технологической схемы очистки. Определение количества песка, задерживаемого в песколовке. Расчет системы аэрации.

    курсовая работа , добавлен 24.06.2014

    Определение концентрации загрязнений сточных вод. Оценка степени загрязнения сточных вод, поступающих от населенного пункта. Разработка схемы очистки сточных вод с последующим их сбросом в водоем. Расчет необходимых сооружений для очистки сточных вод.

    курсовая работа , добавлен 09.01.2012

    Эффективность процесса биохимической очистки сточных вод, концентрация активного ила. Использование технического кислорода для аэрации. Биоадсорбционный способ биологической очистки. Использование мутагенеза, штаммов и адаптированных микроорганизмов.

    контрольная работа , добавлен 08.04.2015

    Физико-химическая характеристика сточных вод. Механические и физико-химические методы очистки сточных вод. Сущность биохимической очистки сточных вод коксохимических производств. Обзор технологических схем биохимических установок для очистки сточных вод.

    курсовая работа , добавлен 30.05.2014

    Характеристика современной очистки сточных вод для удаления загрязнений, примесей и вредных веществ. Методы очистки сточных вод: механические, химические, физико-химические и биологические. Анализ процессов флотации, сорбции. Знакомство с цеолитами.

    реферат , добавлен 21.11.2011

    Общая характеристика проблем защиты окружающей среды. Знакомство с этапами разработки технологической схемы очистки и деминерализации сточных пластовых вод на месторождении "Дыш". Рассмотрение методов очистки сточных вод нефтедобывающих предприятий.

    дипломная работа , добавлен 21.04.2016

    Внедрение технологии очистки сточных вод, образующихся при производстве стеновых и облицовочных материалов. Состав сточных вод предприятия. Локальная очистка и нейтрализация сточных вод. Механические, физико-химические и химические методы очистки.

    курсовая работа , добавлен 04.10.2009

    Описание и принцип действия песколовок. Расчет первичных отстойников, предназначенных для предварительного осветления сточных вод. Азротенки-вытеснители для очистки сточных вод. Выбор типа вторичных отстойников, схема расчета глубины и диаметра.