Скачать программный комплекс пожарная безопасность. Интеграция систем автоматической пожарной защиты здания

Назначение и задачи ПС

Основные задачи функционирования системы пожарной сигнализации в совокупности с организационными мероприятиями – это задачи спасения жизни людей и сохранения имущества. Минимизация ущерба при пожаре напрямую зависит от своевременного обнаружения и локализации очага возгорания.

Термины и определения

Шлейф пожарной сигнализации – это линия связи в системе пожарной сигнализации между приёмно-контрольным прибором, пожарным извещателем и другими техническими средствами системы пожарной сигнализации

Пожарные извещатели – техническое средство, предназначенное для обнаружения факторов пожара и/или формирования сигнала о пожаре. Существуют различные факторы пожара – дым, тепло, открытое пламя.

Приёмно-контрольные приборы – многофункциональные устройства, предназначенные для приёма сигналов от извещателей по шлейфам сигнализации, включения световых и звуковых оповещателей, выдачи информации на пульты централизованного наблюдения, обеспечения процедуры управления состоянием зон (шлейфов) с помощью органов управления. В качестве органов управления можно использовать выносные и встроенные клавиатуры с секретными кодами, а также считыватели совместно с электронными идентификаторами (карточками и ключами).

Оповещатели - устройства для оповещения людей о тревоге на объекте с помощью звуковых или световых сигналов.

ВУОС – выносное устройство оптической индикации. Предназначены для определения места сработавшего извещателя (если извещатели не имеют своего адресного устройства).

Принципы обнаружения факторов пожара

В системах пожарной сигнализации извещатели предназначены для обнаружения конкретного фактора пожара или комбинаций факторов:

  • Дым. При оценке этого фактора извещателем анализируется наличие продуктов горения в воздухе в объёме защищаемого помещения. Можно выделить два наиболее распространённых типа извещателей, работающих по факту обнаружения дыма:

Извещатели, производящие локальный (точечный) контроль оптической плотности воздуха, попадающего в оптическую камеру извещателя при перемещении воздушных потоков в помещении. Для этого в оптической камере пожарного извещателя под определённым углом устанавливаются инфракрасный светодиод и фотоприёмник. В дежурном режиме работы извещателя инфракрасное излучение от светодиода не попадает на фотоприёмник. Однако при наличии в оптической камере дыма, его частицы рассеивают инфракрасное излучение, и оно достигает фотоприёмника. При потоке отражённого света выше установленной величины извещатель пожарный дымовой формирует сигнал пожарной тревоги.

Извещатели, контролирующие оптическую плотность воздуха в определённом объёме (линейные извещатели). Данные извещатели являются двухкомпонентными, состоящими из излучателя и приёмника (либо из одного блока приёмника-излучателя и отражателя). Приёмник и передатчик такого извещателя располагаются у потолка на противоположных стенах защищаемого помещения. В дежурном режиме сигнал передатчика фиксируется приёмником. В случае возгорания дым, поднимается к потолку, отражая и рассеивая сигнал передатчика. В приёмнике вычисляется отношение уровня текущей величины этого сигнала к уровню сигнала, соответствующему сигналу в дежурном режиме. При достижении определённого порога этой величины формируется тревожное извещение о пожарной тревоге.

Тепло. В данном случае извещателями оценивается величина и рост температуры в защищаемом помещении. Тепловые извещатели подразделяются на:

      • Максимальные – формирующие извещение о пожаре при достижении ранее заданных значений температуры окружающей среды;
      • Дифференциальные - формирующие извещение о пожаре при превышении скорости нарастания температуры окружающей среды выше установленного порогового значения;
      • Максимально-дифференциальные - совмещающие функции максимального и дифференциального тепловых пожарных извещателей.
      • Открытое пламя. Извещатели пламени реагируют на такой фактор, как излучение пламени или тлеющего очага. Пламя различных материалов является источником оптического излучения, имеющим свои особенности в различных областях спектра. Соответственно, различные очаги горения имеют свою индивидуальную спектральную характеристику. Поэтому тип датчика выбирается с учётом особенностей источников излучения, расположенных в поле его действия. Извещатели пламени подразделяются на:
        • Ультрафиолетовые – используют диапазон от 185 до 280 нм – область ультрафиолета;
        • Инфракрасные – реагируют на инфракрасную часть спектра пламени;
        • Многоспектральные – реагирующие как на ультрафиолетовую часть спектра, так и на инфракрасную. Для реализации этого метода выбираются несколько приёмников, способных реагировать на излучение в различных участках спектров излучения источника.
        • Особое место отводится обнаружению факторов пожара непосредственно человеком через его органы чувств. В таких случаях для ручного включения сигнала пожарной тревоги в системах пожарной сигнализации устанавливаются ручные пожарные извещатели.

Типы пожарной сигнализации

Неадресная (традиционная) система пожарной сигнализации

В таких системах приёмно-контрольные приборы определяют состояние шлейфа сигнализации, измеряя электрический ток в шлейфе сигнализации с установленными в него извещателями, которые могут находиться лишь в двух статических состояниях: «норма» и «пожар». При фиксации фактора пожара извещатель формирует извещение «пожар», скачкообразно изменяя своё внутреннее сопротивление и, как следствие, изменяется ток в шлейфе сигнализации.

Важно отделить тревожные извещения от служебных, связанных с неисправностями в шлейфе сигнализации или ложными срабатываниями. Поэтому весь диапазон значений сопротивления шлейфа для приемно-контрольного прибора разделён на несколько областей, за каждой из которых закреплён один из режимов («Норма», «Внимание», «Пожар», «Неисправность»). Извещатели определённым образом подключаются к линии шлейфа сигнализации, с учетом их индивидуального внутреннего сопротивления в состоянии «норма» и «пожар».

Для традиционных систем предусматриваются такие особенности, как возможность автоматического сброса питания пожарного извещателя с целью подтверждения сработки, возможность обнаружения нескольких сработавших извещателей в шлейфе, а также реализация механизмов, предусматривающих минимизацию влияния переходных процессов в шлейфах.

Адресно-пороговая система пожарной сигнализации

Отличие адресно-пороговой системы сигнализации от традиционной заключается в топологии построения схемы и алгоритме опроса датчиков. Приёмно-контрольный прибор циклически опрашивает подключенные пожарные извещатели с целью выяснить их состояние. При этом каждый извещатель в шлейфе имеет свой уникальный адрес и может находиться уже в нескольких статических состояниях: «норма», «пожар», «неисправность», «внимание», «запылён» и проч. В отличие от традиционных систем подобный алгоритм опроса позволяет с точностью до извещателя определить место возникновения пожара. Противопожарными нормами в России допускается установка одного адресного извещателя для обнаружения пожара при условии, что по срабатыванию этого пожарного извещателя не формируется сигнал на управление установками пожаротушения или системами оповещения о пожаре 5-го типа.

Адресно-аналоговая система пожарной сигнализации

Адресно-аналоговые системы на текущий момент являются самыми прогрессивными, они обладают всеми преимуществами адресно-пороговых систем, а также дополнительным функционалом. В адресно-аналоговых системах решение о состоянии объекта принимает контрольный прибор, а не извещатель. То есть, в конфигурации контрольного прибора для каждого подключенного адресного устройства заданы пороги срабатывания («Норма», «Внимание» и «Пожар»). Это позволяет гибко формировать режимы работы пожарной сигнализации для помещений с разной степенью внешних помех (пыль, уровень производственной задымленности и др.), в том числе в течение суток. Контрольный прибор постоянно производит опрос подключенных устройств и анализирует полученные значения, сравнивая их с пороговыми значениями, заданными в его конфигурации. При этом топология адресной линии, к которой подключены извещатели, может быть кольцевой. В этом случае обрыв адресной линии приведёт к тому, что она просто распадётся на два радиальных независимых шлейфа, которые полностью сохранят свою работоспособность.

Перечисленные особенности адресно-аналоговых систем формируют такие преимущества перед другими видами систем пожарной сигнализации, как раннее обнаружение возгораний, низкий уровень ложных тревог. Контроль работоспособности пожарных извещателей в режиме реального времени позволяет заранее выделить извещатели, перспективные для обслуживания и составить план для выезда специалистов обслуживающей организации на объект. Количество защищаемых помещений одним контроллером определяется адресной ёмкостью этого контроллера.

О применимости систем

На первый взгляд использовать традиционные системы целесообразно на малых и средних объектах, когда одним из главных критериев выбора является относительно низкая стоимость системы. А стоимость системы по большей части определяется стоимостью извещателя. На сегодняшний день обычные неадресные извещатели относительно дёшевы. Несмотря на то, что использование современных алгоритмов цифровой обработки сигналов в приемно-контрольных приборах позволяет существенно повысить надежность детектирования сигнала от извещателей, и как следствие – снизить вероятность ложных тревог, всё-таки нужно учесть, что зачастую такие извещатели не обеспечивают достаточного уровня надёжности. И – как следствие данного факта – необходимость установки в одном помещении как минимум двух или даже трёх извещателей. Традиционные системы не обеспечивают удобства и в монтаже – шлейфы в таких системах могут быть только радиальными. Соответственно, чем система больше – тем больше линий связи нужно смонтировать и тем больше извещателей установить.

Когда критерий надёжности выходят на первый план, можно уже говорить об установки адресно-пороговой или адресно-аналоговой системы на объекте.

На тех же самых малых и средних объектах целесообразно использовать адресно-пороговые системы, сочетающие преимущества адресно-аналоговых и традиционных систем. В данном случае мы уже можем устанавливать в помещении один извещатель (стоимость которого несколько ниже, чем стоимость адресно-аналогового извещателя), свободную топологию линии (шина или кольцо), а также для адресных извещателей нет необходимости использовать ВУОСы. Однако стоит учесть, что для таких систем нет возможности использовать изоляторы короткого замыкания в шлейфе, а также определять точное место обрывы кольцевого шлейфа. Обслуживание таких систем проводится так же в планово-предупредительном порядке.

Адресно-аналоговые системы лишены таких недостатков. Преимущества монтажа таких систем очевидны – свободная топология плюс возможности использования изоляторов короткого замыкания и определения места обрыва линии, возможность задания аналоговых значений для тревожных сообщений "Внимание», «Пожар» (причём для дня и ночи эти значения могут быть разными), а также для значения «Запылённости». При использовании адресно-аналоговой системы экономия на обслуживании очевидна - контроль работоспособности пожарных извещателей в режиме реального времени позволяет заранее выделить извещатели, перспективные для обслуживания и составить план для выезда специалистов обслуживающей организации на объект. В программном обеспечении микроконтроллеров адресно-аналоговых извещателей компании «Болид» внедрены алгоритмы, исключающие ложные срабатывания при различных воздействиях окружающей среды

Неадресная система пожарной сигнализации с использованием приборов ИСО «Орион»

Для построения неадресной пожарной сигнализации в интегрированной системе охраны «Орион» производства компании «Болид» можно применить следующие приёмно-контрольные приборы с контролем радиальных шлейфов сигнализации:

  • Сигнал-20П;
  • Сигнал-20М;
  • Сигнал-10;
  • С2000-4.

Все приборы, за исключением «Сигнал-20П», могут работать в автономном режиме. Однако при использовании приборов для организации пожарной сигнализации обычно также в системе применяется сетевой контроллер – пульт «С2000М» (или «С2000»). Пульт в системах ПС может выполнять функции отображения событий, происходящих в системе, а также функции управления реле, если используются дополнительные релейные модули. В случае потребности в блоках индикации пульт также необходим.

В зависимости от типа подключаемых пожарных извещателей, при программировании конфигураций приборов шлейфам может быть присвоен один из типов:

Тип 1. Пожарный дымовой с распознаванием двойной сработки .

В ШС включаются пожарные дымовые (нормально-разомкнутые) извещатели.

  • «Обрыв» − сопротивление ШС более 6 кОм;

При срабатывании извещателя прибор формирует сообщение «Сработка датчика» и осуществляет перезапрос состояния ШС: на 3 с сбрасывает (кратковременно отключает) питание ШС. Если в течение 55 секунд после сброса извещатель срабатывает повторно, то ШС переходит в режим «Внимание». Если повторного срабатывания извещателя в течение 55 с не произойдёт, то ШС возвращается в состояние «На охране». Из режима «Внимание» ШС может перейти в режим «Пожар», если в данном ШС сработает второй извещатель, а также по истечении временной задержки, задаваемой параметром «Задержка перехода в Тревогу/Пожар» . Если параметр «Задержка перехода в Тревогу/Пожар» «Задержка перехода в Тревогу/Пожар» , равное 255 с (максимально возможное значение), соответствует бесконечной временной задержке, и переход из режима «Внимание» в режим «Пожар» возможен только при срабатывании второго извещателя в ШС.

Тип 2. Пожарный комбинированный однопороговый .

В ШС включаются пожарные дымовые (нормально-разомкнутые) и тепловые (нормально-замкнутые) извещатели.

Возможные режимы (состояния) ШС:

  • «На охране» («Взят») – ШС контролируется, сопротивление в норме;
  • «Снят с охраны» («Снят») – ШС не контролируется;
  • «Внимание» – зафиксировано срабатывание теплового извещателя или повторное срабатывание дымового извещателя;
  • «Пожар» − после срабатывания извещателя истекла «Задержка перехода в Тревогу/Пожар» ;
  • «Короткое замыкание» − сопротивление ШС менее 100 Ом;
  • «Обрыв» − сопротивление ШС более 16 кОм (более 50 кОм для «С2000-4»);
  • «Невзятие» − ШС был нарушен в момент взятия на охрану.

При срабатывании теплового извещателя прибор переходит в режим «Внимание». При срабатывании дымового извещателя прибор формирует сообщение «Сработка датчика», делает перезапрос состояния ШС (см. тип 1). При подтверждённом срабатывании извещателя ШС переходит в режим «Внимание».

Из режима «Внимание» ШС может перейти в режим «Пожар» по истечении временной задержки, задаваемой параметром «Задержка перехода в Тревогу/Пожар» . Если параметр «Задержка перехода в Тревогу/Пожар» равен 0, то переход из режима «Внимание» в режим «Пожар» произойдёт мгновенно. Значение параметра «Задержка перехода в Тревогу/Пожар» , равное 255 с (максимально возможное значение), соответствует бесконечной временной задержке, и переход из режима «Внимание» в режим «Пожар» невозможен.

Тип 3. Пожарный тепловой двухпороговый .

В ШС включаются пожарные тепловые (нормально-замкнутые) извещатели.

Возможные режимы (состояния) ШС:

  • «На охране» («Взят») – ШС контролируется, сопротивление в норме;
  • «Снят с охраны» («Снят») – ШС не контролируется;
  • «Задержка взятия» – не закончилась задержка взятия на охрану;
  • «Внимание» – зафиксировано срабатывание одного извещателя;
  • «Пожар» − зафиксировано срабатывание более одного извещателя, либо после срабатывания одного извещателя истекла «Задержка перехода в Тревогу/Пожар» ;
  • «Короткое замыкание» − сопротивление ШС менее 2 кОм;
  • «Обрыв» − сопротивление ШС более 25 кОм (более 50 кОм для «С2000-4»);
  • «Невзятие» − ШС был нарушен в момент взятия на охрану.

При срабатывании извещателя прибор переходит в режим «Внимание» по данному ШС. Из режима «Внимание» прибор может перейти в режим «Пожар», если в ШС сработает второй извещатель, а также по истечении временной задержки, задаваемой параметром «Задержка перехода в Тревогу/Пожар». Если параметр «Задержка перехода в Тревогу/Пожар» равен 0, то переход из режима «Внимание» в режим «Пожар» произойдёт мгновенно. Значение параметра «Задержка перехода в Тревогу/Пожар», равное 255 с (максимально возможное значение), соответствует бесконечной временной задержке, и переход из режима «Внимание» в режим «Пожар» возможен только при срабатывании второго извещателя в данном ШС.

Для каждого шлейфа помимо типа можно настроить такие дополнительные параметры, как:

  • Задержка перехода в Тревогу/Пожар - для любого из пожарных шлейфов это время перехода из состояния «Внимание» в состояние «Пожар». Шлейфы типа 1 и типа 3 (с распознаванием двойной сработки) могут также перейти в состояние "Пожар" при срабатывании второго пожарного извещателя в ШС. Если "Задержка перехода в Тревогу/Пожар" равна 255 с, то прибор не переходит в режим "Пожар" по времени (бесконечная задержка). В этом случае шлейф типа 1 и 3 могут перейти в состояние "Пожар" только по сработке второго извещателя в шлейфе, а шлейф типа 2 не перейдёт в состояние "Пожар" ни при каких условиях.
  • Задержка анализа ШС после сброса питания - это длительность паузы перед анализом шлейфа после снятия напряжения питания шлейфа (при перезапросе состояния пожарного шлейфа и при взятии на охрану). Такая задержка позволяет включать в шлейф извещатели с большим временем готовности (временем "успокоения").
  • Без права снятия – не позволяет снять шлейф с охраны ни при каких условиях.
  • Автовзятие из Тревоги/Пожара – шлейф автоматически перейдёт в состояние «Взят», как только сопротивление шлейфа будет в норме в течение времени, равному численному значению этого параметра, умноженному на 15 с.

Максимальная длина шлейфов сигнализации ограничена только сопротивлением проводов (не более 100 Ом).

Каждый приёмно-контрольный прибор имеет релейные выходы. С помощью релейных выходов приборов можно управлять различными исполнительными устройствами – световыми и звуковыми оповещателями, а также осуществлять передачу извещений на ПЦН. Тактику работы любого релейного выхода можно запрограммировать, как и привязку срабатывания (от конкретного шлейфа или от группы шлейфов).

При организации системы пожарной сигнализации можно применять следующие алгоритмы работы реле:

  • Включить/выключить, если хотя бы один из связанных с реле шлейфов перешёл в состояние «Пожар»;
  • Включить/выключить на время, если хотя бы один из связанных с реле шлейфов перешёл в состояние «Пожар»;
  • Мигать из состояния включено/выключено, если хотя бы один из связанных с реле шлейфов перешёл в состояние «Пожар»;
  • «Лампа» – мигать, если хотя бы один из связанных с реле шлейфов перешёл в состояние «Пожар» (мигать с иной скважностью, если хотя бы один из связанных шлейфов перешёл в состояние «Внимание»); включить в случае взятия связанного шлейфа (шлейфов), выключить в случае снятия связанного шлейфа (шлейфов). При этом тревожные состояния более приоритетны.
  • «ПЦН» - включить при взятии хотя бы одного из связанных с реле шлейфов, во всех других случаях - выключить;
  • «АСПТ» - Включить на заданное время, если два или более шлейфов, связанных с реле, перешли в состояние «Пожар» и нет нарушения технологических ШС. Нарушенный технологический шлейф блокирует включение. Если технологический ШС был нарушен во время задержки управления реле, то при его восстановлении выход будет включен на заданное время (нарушение технологического шлейфа приостанавливает отсчёт задержки включения реле
  • «Сирена» - Если хотя бы один из связанных с реле шлейфов перешёл в состояние «Пожар», переключаться заданное время с одной скважностью, если в состояние внимание – с другой;
  • «Пожарный ПЦН» - если хотя бы один из связанных с реле шлейфов перешёл в состояние «Пожар» или «Внимание, то включить, иначе – выключить;
  • Выход «Неисправность» - если один из связанных с реле шлейфов в состоянии «Неисправность», «Невзятие», «Снят» или «Задержка взятия», то выключить, иначе включить;
  • Пожарная лампа - Если хотя бы один из связанных с реле шлейфов перешёл в состояние «Пожар», то мигать с одной скважностью, если во «Внимание», то мигать с другой скважность, если все связанные с реле шлейфы в состоянии «Взято», то включить, иначе выключить;
  • «Старая тактика ПЦН» - включить, если все связанные с реле шлейфы взяты или сняты (нет состояния «Пожара», «Неисправность», «Невзятия»), иначе – выключить;
  • Включить/выключить на заданное время перед взятием связанного с реле шлейфа (шлейфов);
  • Включить/выключить на заданное время при взятии связанного с реле шлейфа (шлейфов);
  • Включить/выключить на заданное время при невзятии связанного с реле шлейфа (шлейфов);
  • Включить/выключить при снятии связанного с реле шлейфа (шлейфов);
  • Включить/выключить при взятии связанного с реле шлейфа (шлейфов);
  • «АСПТ-1» - Включить на заданное время, если один из связанных с реле шлейфов перешёл в состояние "ПОЖАР" и нет нарушенных технологических шлейфов. Если технологический шлейфбыл нарушен во время задержки управления реле, то при его восстановлении выход будет включен на заданное время (нарушение технологического шлейфа приостанавливает отсчёт задержки включения реле);
  • «АСПТ-А» - Включить на заданное время, если два или более связанных с реле шлейф блокирует включение, при его восстановлении выход останется выключенным;
  • «АСПТ-А1» - Включить на заданное время, если хотя бы один из связанных с реле шлейфов перешёл в состояние "ПОЖАР" и нет нарушенных технологических шлейфов. Нарушенный технологический шлейф блокирует включение, при его восстановлении выход останется выключенным.

Приёмно-контрольные приборы ИСО «Орион» в автономном режиме

ППКОП С2000-4

Рисунок 1. Автономное использование прибора "С2000-4"

«С2000-4» в автономном режиме используется на небольших объектах. Например, прибор можно использовать в небольших магазинах, небольших офисах, квартирах и т.п.

Прибор имеет:

  1. Четыре шлейфа сигнализации, в которые можно включать любые типы неадресных пожарных извещателей. Все шлейфы являются свободно программируемыми, т.е. для любого шлейфа можно задать типы 1, 2 3, а также настроить индивидуально для каждого шлейфа и другие конфигурационные параметры.
  2. Два релейных выхода типа «сухой контакт» и два выхода с контролем исправности цепей подключения. К релейным выходам прибора можно подключать исполнительные устройства (световые и звуковые оповещатели), а также осуществлять с помощью реле передачу извещений на ПЦН. Во втором случае релейный выход объектового прибора включается в так называемый шлейф «общей тревоги» прибора передачи извещений, имеющий встроенный передатчик по GSM-каналу и/или выход для подключения к ГТС. Таким образом, при переходе прибора в режим «Пожар» реле замыкается, нарушается шлейф общей тревоги и происходит передача тревожного извещения на ПЦН по каналам GSM или по телефонной сети;
  3. Цепь для подключения считывателя (можно подключать различные считыватели, работающие по интерфейсу Touch Memory, Wiegand, Aba Track II).
  4. Четыре индикатора состояния шлейфов сигнализации, а также индикатор режима работы прибора.


ППКОП Сигнал-10

Рисунок 2. Автономное использование прибора "Сигнал-10"

«Сигнал-10» в автономном режиме используется на небольших и средних объектах.

У прибора имеется удобная функция управления состоянием зон посредством бесконтактных идентификаторов – ключей Touch Memory или Wiegand (до 85 паролей пользователей). Полномочия каждого ключа можно гибко настроить – разрешить полноценное управление одним или произвольной группой шлейфов, либо же разрешить только перевзятие шлейфов.Полномочия каждого ключа можно гибко настроить – разрешить полноценное управление одним или произвольной группой шлейфов, либо же разрешить только перевзятие шлейфов.

Прибор имеет:

1. Десять шлейфов сигнализации, в которые можно включать любые типы неадресных пожарных извещателей. Все шлейфы являются свободно программируемыми, т.е. для любого шлейфа можно задать типы 1, 2 и 3, а также настроить индивидуально для каждого шлейфа и другие конфигурационные параметры.

2. Два релейных выхода типа «сухой контакт» и два выхода с контролем исправности цепей подключения. К релейным выходам прибора можно подключать исполнительные устройства (световые и звуковые оповещатели), а также осуществлять с помощью реле передачу извещений на ПЦН. Во втором случае релейный выход объектового прибора включается в так называемый шлейф «общей тревоги» прибора передачи извещений, имеющий встроенный передатчик по GSM-каналу и/или выход для подключения к ГТС. Таким образом, при переходе прибора в режим «Пожар» реле замыкается, нарушается шлейф общей тревоги и происходит передача тревожного извещения на ПЦН по каналам GSM или по телефонной сети.

3. Цепь для подключения считывателя, с помощью которого реализуется удобный способ управления взятием и снятием с охраны с помощью электронных ключей или карточек. Подключать можно любые считыватели ключей Touch Memory или бесконтактных Proxy-карт, имеющие на выходе интерфейс Touch Memory (например, «Считыватель-2», «С2000-Proxy», «Proxy-2A», «Proxy-3A» и т.д.).

4. Десять индикаторов состояния шлейфов сигнализации и функциональный индикатор работы прибора.

ППКОП Сигнал-20М

«Сигнал-20М» может использоваться на малых и средних объектах (например, складские помещения, небольшие офисы, жилые дома и т.д.).

Для управления состоянием зон могут быть использованы PIN-коды (поддерживается 64 PIN-кода пользователя), Полномочия пользователей (каждого PIN-кода) можно гибко настроить – разрешить полноценное управление, или же разрешить только перевзятие на охрану. Любой пользователь может управлять произвольным количеством шлейфов, для каждого шлейфа полномочия взятия и снятия также можно индивидуально настроить.

Двадцать шлейфов сигнализации «Сигнала-20м» обеспечивают достаточную локализацию тревожного извещения на упомянутых объектах при сработке какого-либо охранного извещателя в шлейфе. Прибор имеет:

1. Двадцать шлейфов сигнализации, в которые можно включать любые виды неадресных пожарных извещателей. Все шлейфы являются свободно программируемыми, т.е.. для любого шлейфа можно задать типы 1, 2 и 3, а также настроить индивидуально для каждого шлейфа и другие конфигурационные параметры;

2. Три релейных выхода типа «сухой контакт» и два выхода с контролем исправности цепей подключения. К релейным выходам прибора можно подключать исполнительные устройства (световые и звуковые оповещатели), а также осуществлять с помощью реле передачу извещений на ПЦН. Во втором случае релейный объектового выход прибора включается в так называемый шлейф «общей тревоги» прибора передачи извещений, имеющий встроенный передатчик по GSM-каналу и/или выход для подключения к ГТС. Для реле определяется тактика работы, например, включить при тревоге. Таким образом, при переходе прибора в режим «Пожар» реле замыкается, нарушается шлейф общей тревоги и происходит передача тревожного извещения на ПЦН по каналам GSM или по телефонной сети;

3. Клавиатуру для управления с помощью PIN-кодов состоянием зон на корпусе прибора. Прибор поддерживает до 64 паролей пользователей, 1 пароль оператора, 1 пароль администратора. Пользователи могут иметь права либо на взятие и снятие шлейфов сигнализации, либо только на взятие, либо только на снятие. С помощью пароля оператора возможно перевести прибор в режим проверки, а с помощью пароля администратора вводить новые пароли пользователей и изменять или удалять старые.

4. Двадцать индикаторов состояния шлейфов сигнализации, пять индикаторов состояния выходов и функциональные индикаторы «Работа», «Пожар», «Неисправность», «Тревога».

Рисунок 3. Автономное использование "Сигнала-20М"

Неадресная пожарная сигнализация в ИСО ОРИОН

На рисунке 4 приведён пример организации неадресной системы пожарной сигнализации с использованием приборов ИСО «Орион». К каждому из приборов возможно подключить пороговые пожарные датчики различных типов (дымовые, тепловые, пламени, ручные). Шлейфы сигнализации каждого из приборов являются свободно программируемыми, т.е. для любого шлейфа можно задать типы 1, 2 и 3, а также настроить индивидуально для каждого шлейфа другие конфигурационные параметры. Каждый прибор имеет релейные выходы, с помощью которых можно управлять различными исполнительными устройствами – световыми и звуковыми оповещателями, а также передавать сигнал о тревоге на пульт централизованного наблюдения. Для этих же целей можно использовать контрольно-пусковой блок «С2000-КПБ». Дополнительно в системе установлен блок индикации «С2000-БИ», который предназначен для отображения состояния зон приборов на посту наблюдения. Управление состоянием зон, а также просмотр событий системы осуществляется с сетевого контроллера – пульта «С2000-М».Зачастую пульт также используется и для расширения системы пожарной сигнализации - для подключения дополнительных приёмно-контрольных приборов или релейных модулей. То есть, для увеличения производительности системы и её наращивания. Причём наращивание системы происходит без её структурных изменений, а лишь добавлением в неё новых устройств.

Рисунок 4. Неадресная система пожарной сигнализации

Адресно-пороговая система пожарной сигнализации с использованием приборов ИСО «Орион

Для построения адресно-пороговой пожарной сигнализации в ИСО «Орион» применяются:

Приёмно-контрольный прибор «Сигнал-10» с адресно-пороговым режимом шлейфов сигнализации

Дымовой оптико-электронный порогово-адресный извещатель «ДИП-34ПА»

Тепловой максимально-дифференциальный порогово-адресный извещатель «С2000-ИП-ПА»

Ручной порогово-адресный извещатель «ИПР 513-3ПА»

При подключении указанных извещателей к прибору «Сигнал-10» шлейфам прибора необходимо присвоить тип 14 – «Пожарный адресно-пороговый». В один адресно-пороговый шлейф может подключаться до 10 адресных извещателей, каждый из которых способен сообщать по запросу прибора своё текущее состояние. Прибор производит периодический опрос адресных извещателей, обеспечивая контроль их работоспособности и идентификации неисправного или тревожного извещателя. «Сигнал-10» воспринимает следующие типы извещений от адресных извещателей: «Норма», «Запылён, требуется обслуживание», «Неисправность», «Пожар», «Ручной пожар», «Тест», «Отключение». Каждый адресный извещатель рассматривается как дополнительная адресная зона прибора. При работе прибора совместно с сетевым контроллером каждую адресную зону можно снять с охраны и взять на охрану. При взятии на охрану или снятии с охраны порогово-адресного шлейфа автоматически снимаются или берутся те адресные зоны, которые принадлежат шлейфу. При этом адресные зоны, не имеющие привязки к шлейфу, при взятии или снятии порогово-адресного шлейфа не изменяют своего состояния.

При настройке прибора «Сигнал-10» существует возможность заранее указать адреса тех извещателей, которые будут включены в порогово-адресный шлейф. Для этого используется параметр «Начальная привязка ШС к адресам». Если отсутствует привязка адресной зоны извещателя к шлейфу, эта зона не участвует в формировании обобщённого состояния шлейфа, на неё не распространяются команды при взятии/снятии шлейфа.

Адресно-пороговый шлейф может находиться в следующих состояниях (состояния приведены в порядке приоритета):

  • «Пожар» - хотя бы одна адресная зона находится в состоянии «Ручной пожар», две или более адресных зоны находятся в состоянии «Пожар», либо истекла задержка перехода в тревогу/пожар;
  • «Внимание» - хотя бы одна адресная зона находится в состоянии «Пожар»;
  • «Неисправность» - одна из адресных зон находится в состоянии «Неисправность»;
  • «Отключен» - одна из адресных зон находится в состоянии «Отключен»;
  • «Невзятие» - в момент взятия на охрану адресная зона находится в состоянии, отличном от состояния «Норма»;
  • «Запылён, требуется обслуживание» - одна из адресных зон находится в состоянии «Запылён»;
  • «Снят с охраны» («Снят») – одна из адресных зон снята с охраны;
  • «На охране» («Взят») – все адресные зоны в норме и на охране.

Если в адресно-пороговом шлейфе зафиксировано состояние «Пожар» одной адресной зоны, шлейф переходит в состояние «Внимание». Если зафиксировано состояние «Ручной пожар» или «Пожар» у двух адресных зон, шлейф переходит в режим «Пожар». Переход из режима «Внимание» в режим «Пожар» возможен и по тайм-ауту, равному значению параметра «Задержка перехода в пожар» Если значение параметра «Задержка перехода в пожар» равно нулю, шлейф переходит в режим «Пожар» по срабатыванию одного автоматического адресного извещателя. Если значение «Задержка перехода в пожар» равно 255 (бесконечная задержка), шлейф переходит в режим «Пожар» только по срабатыванию двух автоматических адресных извещателей или одного ручного.

Если в течение 10 секунд прибор не получает ответа от извещателя, его адресной зоне присваивается состояние «Отключен». В этом случае отпадает необходимость использования разрыва шлейфа при изъятии извещателя из розетки, и сохраняется работоспособность всех остальных извещателей. Для порогово-адресного шлейфа не требуется оконечный резистор, и может использоваться произвольная топология шлейфа: шина, кольцо, звезда, а также любое их сочетание.

При организации адресно-пороговой системы охранной сигнализации для работы выходов можно применять тактики работы, аналогичные тактикам, использующимся в неадресной системе (см. выше). На рисунке 5 приведён пример организации адресно-пороговой системы пожарной сигнализации с использованием прибора «Сигнал-10».

Рисунок 5. Адресно-пороговая ПС с использованием "Сигнал-10"

Адресно-аналоговая система пожарной сигнализации с использованием приборов ИСО «Орион»

Адресно-аналоговая пожарная сигнализация в ИСО «Орион» строится с помощью следующих устройств:

  • Контроллер двухпроводной линии связи «С2000-КДЛ»;
  • Пожарный дымовой оптико-электронный адресно-аналоговый извещатель «ДИП-34А»;
  • Пожарный тепловой максимально-дифференциальный адресно-аналоговый «С2000-ИП»
  • Пожарный ручной адресный извещатель «ИПР 513-3А»
  • Блоки разветвительно-изолирующие «БРИЗ», «БРИЗ» исп. 01. Устройства предназначены для изолирования короткозамкнутых участков с последующим автоматическим восстановлением после снятия короткого замыкания. «БРИЗ» устанавливается в линию как отдельное устройство, «БРИЗ» исп. 01 встраивается в базу пожарных извещателей «С2000-ИП» и «ДИП-34А»
  • Адресные расширители «С2000-АР1», «С2000-АР2», «С2000-АР8». Устройства предназначены для подключения неадресных четырёхпроводных извещателей. Таким образом, к адресной системе можно подключить обычные пороговые извещатели.

Контроллер двухпроводной линии связи фактически имеет один шлейф сигнализации, к которому можно подключать до 127 адресных устройств. Адресными устройствами могут являться пожарные извещатели, адресные расширители или релейные модули. Каждое адресное устройство занимает один адрес в памяти контроллера. Адресные расширители занимают столько адресов в памяти контроллера, сколько шлейфов можно к ним подключить («С2000-АР1» - 1 адрес, «С2000-АР2» - 2 адреса, «С2000-АР8 – 8 адресов). Адресные релейные модули также занимают в памяти контроллера 2 адреса. Таким образом количество защищаемых помещений определяется адресной ёмкостью контроллера. Например, с одним «С2000-КДЛ» можно использовать 127 дымовых извещателей, либо 17 дымовых извещателей и 60 адресных релейных модулей. При срабатывании адресных извещателей или при нарушении шлейфов адресных расширителей контроллер выдаёт тревожное извещение по интерфейсу RS-485 на пульт управления «С2000М».

Для каждого адресного устройства в контроллере необходимо задать тип зоны. Тип зоны указывает контроллеру тактику работы зоны и класс включаемых в зону извещателей.

Тип 2 – "Пожарный комбинированный". В зону данного типа включаются адресные расширители с включенными в них пороговыми извещателями. . При этом у адресных расширителей будут распознаваться такие состояния, как "Норма", "Пожар", "Обрыв" и "Короткое замыкание".

Тип 3. Пожарный тепловой. В зону данного типа можно включать адресные пожарные ручные извещатели «ИПР-513-3А», а также адресные расширители с включенными в них пороговыми извещателями. Также в зону этого типа можно включить извещатель «С2000-ИП», однако при этом извещатель теряет свою аналоговые качества.

Возможные состояния зоны:

  • "Взято" – зона контролируется полностью;
  • "Снято" – зона в норме, если отсутствуют неисправности;
  • "Невзятие" – контролируемый параметр АУ был не в норме на момент взятия на охрану;
  • "Задержка взятия" – зона находится в состоянии задержки взятия на охрану;
  • "Пожар" – адресный тепловой извещатель зафиксировал изменение или превышение значения температуры, соответствующие условию перехода в режим "Пожар" (максимально-дифференциальный режим); адресный ручной извещатель переведён в состояние "Пожар" (разбитие стекла). Для шлейфов адресных расширителей существуют определённые значения сопротивления шлейфа, соответствующие этому состоянию;
  • "Короткое замыкание" – Для шлейфов адресных расширителей существуют определённые значения сопротивления шлейфа, соответствующие этому состоянию;
  • "Неисправность пожарного оборудования" – неисправен измерительный канал адресного теплового извещателя.

Тип 8. Дымовой адресно-аналоговый. В зону данного типа можно включать пожарные дымовые оптико-электронные адресно-аналоговые извещатели «ДИП-34А». Контроллер в дежурном режиме работы ДПЛС запрашивает числовые значения, соответствующие уровню концентрации дыма, измеряемой извещателем. Для каждой зоны задаются пороги предварительного оповещения «Внимание» и оповещения «Пожар» . Пороги срабатывания задаются отдельно для временных зон «НОЧЬ» и «ДЕНЬ» .

Периодически контроллер запрашивает значение запылённости дымовой камеры, полученное значение сравнивается с порогом «Запылён» , задаваемого отдельно для каждой зоны.

Возможные состояния зоны:

  • «Взято» – зона контролируется, пороги «Пожар», «Внимание» и «Запылён» не превышены;
  • «Снято» – контролируется только порог «Запылён» и неисправности;
  • «Неисправность пожарного оборудования» – неисправен измерительный канал адресного извещателя;
  • «Требуется обслуживание» – превышен внутренний порог автокомпенсации запылённости дымовой камеры адресного извещателя или порог «Запылён».

Тип 9. «Тепловой адресно-аналоговый» . В зону данного типа можно включать пожарные тепловые максимально-дифференциальные адресно-аналоговые извещатели «С2000-ИП». Контроллер в дежурном режиме работы ДПЛС запрашивает числовые значения, соответствующие температуре, измеряемой извещателем. Для каждой зоны задаются температурные пороги предварительного оповещения «Внимание» и оповещения «Пожар» .

Возможные состояния зоны:

  • «Взято» – зона контролируется, пороги «Пожар» и «Внимание» не превышены;
  • «Снято» – контролируются только неисправности;
  • «Задержка взятия» – зона находится в состоянии задержки взятия на охрану;
  • «Невзятие» – на момент взятия на охрану превышен один из порогов «Пожар», «Внимание» или «Запылён» либо присутствует неисправность;
  • «Внимание» – превышен порог «Внимание»;
  • «Пожар» – превышен порог «Пожар»;
  • «Неисправность пожарного оборудования» – неисправен измерительный канал адресного извещателя.

Для шлейфов можно настроить также и дополнительные параметры:

  • Автоперевзятие из тревоги - позволяет осуществлять автоматический переход из состояний «Тревога», «Пожар» и «Внимание» в состояние «Взято» при восстановлении нарушения зоны. При этом для перехода в состояние «Взято» зона должна находиться в норме в течение времени не меньше, чем задано параметром «Время восстановления».
  • Без права снятия – служит для возможности постоянно контроля зоны, то есть зону с таким параметром нельзя снять шлейф с охраны ни при каких условиях.

При организации адресно-аналоговой системы пожарной сигнализации в качестве релейных модулей можно применять устройства «С2000-СП2». Это адресные релейные модули, которые также подключаются к «С2000-КДЛ» по двухпроводной линии связи.

Для реле «С2000-СП2» можно применять тактики работы, аналогичные тактикам, использующимся в неадресной системе (см. выше).

Контроллер «С2000-КДЛ» также имеет цепь для подключения считывателей. Можно подключать различные считыватели, работающие по интерфейсу Touch Memory или Wiegand. Со считывателей возможно управлять состоянием зон контроллера. Помимо этого, на приборе имеются функциональные индикаторы состояния режима работы, линии ДПЛС и индикатор обмена по интерфейсу RS-485. На рисунке 6 приведён пример организации системы адресно-аналоговой пожарной сигнализации под управлением пульта «С2000М».

Рисунок 6. Адресно-аналоговая система пожарной сигнализации с использованием "С2000-КДЛ"


Взрывозащищённые решения на базе адресно-аналоговой системы пожарной сигнализации

При необходимости оборудования пожарной сигнализацией объекта, имеющего взрывоопасные зоны, совместно с адресно-аналоговой системой, построенной на основе контроллера «С2000-КДЛ» возможно использовать искробезопасные барьеры «БРШС-ex» (рисунок 7).

Рисунок 7. Взрывозащищённые решения на базе адресно-аналоговой системы ПС

Данный блок обеспечивает защиту на уровне искробезопасной электрической цепи. Этот способ защиты основан на принципе ограничения предельной энергии, накапливаемой или выделяемой электрической цепью в аварийном режиме, или рассеивания мощности до уровня значительно ниже минимальной энергии или температуры воспламенения. То есть ограничиваются значения напряжения и тока, которые могут попасть в опасную зону в случае возникновения неисправности. Искробезопасность блока обеспечивается гальванической развязкой и соответствующим выбором значений электрических зазоров и путей утечки между искробезопасными и связанными с ними искроопасными цепями, ограничением напряжения и тока до искробезопасных значений в выходных цепях за счет применения залитых компаундом барьеров искрозащиты на стабилитронах и токоограничивающих устройствах, обеспечением электрических зазоров, путей утечки и неповреждаемости элементов искрозащиты в том числе и за счет герметизации (заливки) их компаундом.

БРШС обеспечивает:

  • приём извещений от подключенных извещателей по двум искробезопасным шлейфам посредством контроля значений их сопротивлений;
  • электропитание внешних устройств от двух встроенных искробезопасных источников питания;
  • ретрансляцию тревожных извещений контроллеру двухпроводной линии связи.

Знак Х, стоящий после маркировки взрывозащиты, означает, что к присоединительным устройствам «БРШС-Ех» с маркировкой «искробезопасные цепи» допускается подключение только взрывозащищенного электрооборудования с видом взрывозащиты «искробезопасная электрическая цепь i», имеющего сертификат соответствия и разрешение на применение Федеральной службы по экологическому, технологическому и атомному надзору во взрывоопасных зонах. БРШС занимает два адреса в адресном пространстве контроллера «С2000-КДЛ».

К «БРШС-Ех» возможно подключать любые пороговые извещатели специального исполнения. На сегодняшний день компанией ЗАО НВП «Болид» поставляется ряд датчиков для установки внутри взрывоопасной зоны (взрывозащищённое исполнение):

  • Фотон-18 –охранный пассивный оптико-электронный извещатель;
  • Фотон-Ш-Ex – охранный инфракрасный пассивный оптико-электронный извещатель-«занавес»;
  • Стекло-Ех – охранный акустический извещатель;
  • Шорох-Ex –охранный поверхностный вибрационный извещатель;
  • МК-Ех – охранный магнитоконтактный извещатель;
  • СТЗ-Ех – сигнализатор затопления;
  • ИПД-Ех – дымовой оптико-электронный извещатель;
  • ИПДЛ-Ех - дымовой оптико-электронный линейный извещатель;
  • ИПП-Ех – инфракрасный извещатель пламени;
  • ИПР-Ех- ручной извещатель

Дополнительные возможности ПС при использовании программного обеспечения

В некоторых случаях при построении пожарной сигнализации используется персональный компьютер с предустановленным на нём специализированным программным обеспечением. Программное обеспечение может расширять функционал пульта «С2000М», а именно – использоваться для организации автоматизированного рабочего места диспетчерского поста, ведения журнала событий и тревог, указания причин тревог, для сбора статистики по адресным пожарным извещателям, а также для построения различных отчётов.

Для организации автоматизированных рабочих мест в ИСО «Орион» может использоваться следующее программное обеспечение: АРМ «С2000», АРМ «Орион ПРО».

АРМ «С2000» позволяет реализовать простейший функционал – мониторинг событий системы. Это ПО можно применять в случае необходимости мониторинга нескольких автономных приборов с поста наблюдения и протоколирования событий. При этом управление пожарной сигнализацией производится непосредственно с органов управления приборов («Сигнал-20М») или со считывателей («С2000-4», «Сигнал-10»).

ПК с АРМ «Орион ПРО» позволяют реализовать следующие функции:

Накопление событий ОС в базе данных (по сработкам ПС, реакциям оператора на эти сработки и т.п.);

Создание базы данных для охраняемого объекта – добавление в неё шлейфов, разделов, реле, расстановка их на планах помещений;

Создание прав доступа для управления объектами ПС (шлейфами, разделами), присваивание их дежурным операторам;

Размещение на графических планах помещений логических объектов ПС (шлейфов, областей разделов, реле)

Опрос и управление подключёнными к ПК приёмно-контрольными приборами, в том числе и пультами. То есть с компьютера можно одновременно опрашивать и управлять несколькими подсистемами, каждая из которых работает под управлением пульта;

Настройка автоматических реакций системы на различные события;

Отображение на графических планах помещений состояния охраняемого объекта, управление логическими объектами ПС (шлейфами, разделами);

Регистрация и обработка возникающих в системе пожарных тревог с указанием причин, служебных отметок, а также их архивирование;

Предоставление информации о состоянии объектов ПС в виде карточки объекта;

Формирование и выдача отчётов по различным событиям ПС;

Отображение камер охранного телевидения, а также управление состоянием этих камер.

Физически компьютер с программным обеспечением подключается к ИСО «Орион» через преобразователь интерфейсов по одному и вариантов, показанных на рисунке 8. Здесь же приведено количество рабочих мест, которые могут быть одновременно задействованы в системе (программные модули АРМ).

Рисунок 8. Подключение АРМ к приборам ИСО «Орион»

Закрепление задач автоматической пожарной сигнализации за программными модулями изображено на рисунке 9. Стоит отметить, что приборы ИСО «Орион» взаимодействуют с тем компьютером системы, на котором установлен программный модуль «Оперативная задача». Программные модули можно устанавливать на компьютеры как угодно - каждый модуль на отдельном компьютере, комбинация каких-либо модулей на компьютере, либо установка всех модулей на один компьютер.

Рисунок 9. Функционал модулей программного обеспечения

Информационная система пожарной безопасности - ИСПБ - единый инструмент прогнозирования, планирования и контроля выполнения всех регламентных мероприятий по поддержанию противопожарной безопасности объекта.

    Система предназначена для:

  • специалистов предприятий по ПБ , где технологический процесс обуславливает наличие факторов взрыво-, пожаро-, радиационной и химической опасности;
  • начальников пожарных расчетов .

Преимущества применения ИСПБ

Разработка ИСПБ предполагает создание информационной 3D модели (3D ИМ), включающей в себя помещения, системы и элементы, необходимые для целей анализа пожарной опасности. Использование 3D ИМ позволяет проанализировать пространственную взаимосвязь между всеми элементами объекта в совокупности с данными и обеспечивает реализацию функций системы.

Решение прикладных задач с помощью ИСПБ

Регулярный мониторинг текущей ситуации на подконтрольных объектах

Наблюдение за эксплуатацией промышленных объектов реализуется с помощью технологии автоматизированной идентификации объектов . Объекты мониторинга маркируются уникальными идентификаторами (штрих-, QR-кодами или радиометками), которые считываются эксплуатационным персоналом с помощью мобильных устройств.

Мобильный клиент позволяет фиксировать контролируемые при обходе параметры (например, сроки проверки). Вносимые в систему данные автоматически попадают в единое электронное хранилище. На их основе проводится планирование последующих обходов, проверок субподрядными организациями и других регламентных мероприятий.

Маркировка огнетушителей QR-кодом

Маркировка огнетушителей QR-кодом

Технология автоматизированной идентификации помогает:

  • снизить возможности возникновения следующих рисков:
    • невыполнение регламентных работ и осмотров оборудования, фальсификации отчетов - для считывания штрих-кода сотрудник обязан подойти к объекту мониторинга и считать код, и только после этого система позволит ему внести данные;
    • потери информации - благодаря ее сбору сразу в электронном виде непосредственно на месте мониторинга;
    • недостаточное качество выполнения работ - благодаря обязательной регистрации исполнителя в системе и персональной ответственности каждого сотрудника за произведенное им действие и мгновенному доведению данных до сведения руководителя через 3D ИМ.
  • обеспечить удобный доступ к эксплуатационной информации благодаря:
    • организации оперативного получения данных в любой точке предприятия через мобильные устройства;
    • систематизации и хранению эксплуатационных данных в электронном виде в единой информационной системе;
    • визуализации данных на 3D моделях, ГИС , технологических схемах.
  • сократить время и повысить удобство выполнения регламентных мероприятий. Мобильные устройства позволяют хранить и получать информацию как о текущем состоянии объектов предприятия, так и об истории изменения контролируемых параметров, а также другие данные, необходимые эксплуатационному персоналу, вплоть до маршрутных карт, инструкций и изображений объектов.
  • своевременно устранять неисправности, благодаря чему предотвращать пожары, за счет визуализации состояния объектов в информационной системе и сигнализации в случае возникновения критических ситуаций.

Подготовка планов ликвидации пожаров за счет моделирования их развития и визуализации в динамике

При возникновении пожара необходимо действовать как можно быстрее. Именно поэтому важно заблаговременно смоделировать варианты его протекания и составить подробные планы действий для всех участников.

ИСПБ дает возможность проанализировать распространение пожара в зависимости от места возникновения и заданного времени и визуализировать ситуацию на 3D моделях, ГИС, технологических схемах. Такая имитационная модель позволяет составить и проанализировать разные маршруты распространения пожара. При расчете учитывается пожарная нагрузка (либо условное время ее выгорания) и огнестойкость строительных конструкций. Результаты этого расчета являются основой для дальнейшего проектирования пожарных зон.

При интеграции с расчетными системами становится возможным моделирование вариантов развития аварийных ситуаций с учетом различных факторов: метеоусловий, конфигурации зданий и сооружений и т. д.

Возгорание в помещении

Возгорание в помещении

Смоделированная ситуация спустя 30 минут

Смоделированная ситуация
спустя 30 минут

Отработка действий при пожаре на 3D тренажерах

3D тренажер представляет собой программный комплекс для изучения специалистами информации о конфигурации предприятия , расположении пожарных выходов, гидрантов и порядка необходимых действий при пожаре. При этом обучаемый пользуется сценариями ситуаций, средствами визуализации и управления ими. 3D представление также может быть дополнено другими вариантами визуализации - фото, видео, сферическими панорамами объектов и так далее.

Виртуальные тренажеры часто являются единственным приемлемым средством обучения, так как ошибки при обучении на реальных объектах могут привести к тяжелым последствиям, а устранение их последствий - к большим финансовым затратам.

Оперативное информирование пожарных расчетов о ситуации

Визуализация маршрута эвакуации на 3D модели

ИСПБ позволяет оперативно предоставить визуализированную на 3D моделях, ГИС и технологических схемах информацию о месте пожара, возможных маршрутах подъезда пожарной техники и о расположении пожарных гидрантов, а также показывает маршруты продвижения пожарных расчетов до очага возгорания.

Возможность быстро оценить ситуацию на 3D модели способствует скорейшей ликвидации аварий и минимизации их последствий, обеспечивает быструю и слаженную работу пожарной бригады.

Базовые функциональные возможности ИСПБ

  • Сбор и хранение информации в электронном виде о:
    • зданиях и сооружениях
    • помещениях и их характеристиках
    • состоянии путей эвакуации
    • конструкциях и элементах, включая их огнестойкость
    • пожарной нагрузке
    • внутренних и наружных системах пожарной безопасности, их элементах и характеристиках
    • стационарных и первичных средствах пожаротушения
    • нарушениях правил ПБ
  • Анализ:
    • учтенных данных
    • пожарной опасности промышленной площадки
    • допустимости конфигурации пожарных зон
  • Планирование:
    • мероприятий ПБ
    • проверок надзорными органами
    • других регламентных мероприятий
  • Визуализация на 3D модели/ГИС/технологических схемах:
    • огнестойкости конструкций и огнезащиты
    • распространения пожара
    • маршрутов эвакуации персонала и движения пожарного расчета
  • Интеграция:
    • ИСПБ легко интегрируется с любыми информационными системами, уже работающими на предприятии

Реализация

Пример реализации доступа к данным посредством 3D модели в НЕОСИНТЕЗ

ИСПБ реализуется на российской PLM/PDM-платформе НЕОСИНТЕЗ *, обеспечивающей управление инженерными данными на всех стадиях жизненного цикла (ЖЦ) инфраструктурного объекта. В основе системы лежит датацентрический подход, позволяющий сформировать в НЕОСИНТЕЗ полную информационную модель промышленного объекта. ИМ объединяет в едином актуальном и структурированном электронном хранилище всю информацию, необходимую для управления объектом.

Заказчик: Ленинградская АЭС (Госкорпорация «Росатом»)

Стоимость

Основные факторы, влияющие на стоимость внедрения ИСПБ:

  • Масштаб объекта: количество типов элементов и самих элементов 3D ИМ («НЕОЛАНТ» осуществляет оценку на основе имеющихся ПСД и 3D моделей).
  • Качество и полнота ПСД, на основе которой необходимо разработать 3D ИМ.
  • Наличие и качество 3D моделей, влияющее на необходимость дополнительных работ по подготовке 3D моделей с целью объединения в единую 3D ИМ.
  • Необходимость создания исполнительной 3D ИМ или достаточно 3D ИМ «как спроектировано».
  • Внесение исходных данных: заказчиком самостоятельно или силами исполнителя.
  • Наличие требований по использованию конкретных технологий ИМ.
  • Реализация дополнительных прикладных функций.

Работа пожарной сигнализации обеспечивается разнообразными техническими средствами. Она предназначена для выявления наличия возгорания, извещения о возникновении пожара, получения информации и управления автоматическими установками пожаротушения. Пожарная сигнализация бывает пороговой, адресно-опросной, адресно-аналоговой. Адресно-аналоговая система пожарной сигнализации (ААСПС) на сегодняшний день является одним из самых надежных, эффективных и перспективных защитных устройств.

ААСПС представлена на рынке отечественными и зарубежными производителями. Ее устройство считается уникальным, поскольку сочетает в себе новейшие компьютерные и электронные достижения. Как целостный комплекс, такая система является довольно сложным механизмом. В практике также применяется адресная пожарная сигнализация.

Что представляет собой адресная система противопожарной сигнализации?

Адресная система пожарной сигнализации (АСПС) применяется на различных объектах. Как уже говорилось, эта система уступает по техническим параметрам ААСПС, однако, она также является достаточно распространенной, так как имеет весьма приемлемую цену. В состав адресной защитной линии входит множество датчиков, которые постоянно передают информацию на единый пульт управления. Благодаря централизованному управлению можно осуществлять непрерывный контроль над работой подсистемы в целом.

При этом в случае неисправности какой-либо части механизма, целостная защитная линия продолжит бесперебойную работу.

Адресные системы пожарной сигнализации работают по очень простому принципу. Установленные датчики незамедлительно реагируют на задымление или резкое повышение температуры. Информация от датчиков поступает непосредственно на пульт управления. Лицо, ответственное за пожарную безопасность и имеющее доступ к центральному пульту, после получения такой информации обязано предпринять необходимые действия по пожаротушению. На сегодняшний день потребители все же отдают предпочтение более гибкой, надежной и многофункциональной адресно-аналоговой системе.

На картинке – компонента адресно-аналоговой системы пожарной сигнализации

Компонентный состав и функциональные особенности адресно-аналоговых устройств

Составными компонентами любой системы являются:

  • Устройства обнаружения пожара (сенсорные датчики и оповещатели);
  • Контрольно-приемные приборы;
  • Периферийное оборудование;
  • Устройство централизованного управления системой (компьютер, оснащенный специализированным программным обеспечением или пульт управления).

Противопожарные защитные системы обладают следующим набором функций:

  • Выявление очага возгорания;
  • Передача и обработка необходимой информации;
  • Запись полученной информации в протокол;
  • Создание и управление тревожными сигналами;
  • Управление механизмами автоматического пожаротушения и дымоудаления.

Технические параметры систем пожарной сигнализации

Адресная аналоговая система оповещения о пожаре позволяет определить точное место возникновения очага возгорания. ААСПС характеризуют технические параметры, которые определяют принцип и качество работы оборудования:

  • Адресная емкость системы (возможность установки до 10000 датчиков и до 2000 модулей, что позволяет организовать сетевую работу);
  • Возможность сетевой работы (взаимодействие до 500 приборов для осуществления обмена информацией в сети);
  • Информационное содержание прибора (возможность организации до 1500 адресно-аналоговых колец, подключенных к одному прибору);
  • Наличие строки уравнений (возможность создания до 1000 строковых уравнений для управления реле);
  • Разнообразие структуры шлейфов (кольцевые, радиальные, древовидные);
  • Множество типов модулей и датчиков в системе (20-30);
  • Краткость и информативность системы на пользовательском уровне;
  • Возможность интеграции с однотипными системами;
  • Наличие дополнительных источников питания (встроенных аккумуляторов);
  • Возможность интеграции ААСПС со СКУД.

Какие преимущества адресно-аналоговых систем?

ААСПС включает в себя новейшие компьютерные, электронные и технические достижения. Установка подобной системы защиты имеет ряд преимуществ:

  • Отсутствие необходимости в установке различных тепловых устройств извещения с указанием предельных порогов температур;
  • Установленные механизмы извещения о пожаре имеют высокую работоспособность в тяжелых условиях;
  • Приемно-контрольный прибор обладает многофункциональностью и не требует установки дополнительных механизмов извещения;
  • Быстрое выявление очага возгорания в связи с применением нескольких параллельных алгоритмов действий по обработке поступающей информации;
  • Благодаря многозадачности контроллера приемно-контрольного оборудования, выполняется быстрый запуск автоматических механизмов пожаротушения;
  • Наличие уменьшенного количества электронных элементов;
  • В оборудовании применяются микроконтроллеры, которые отличаются высокой надежностью;
  • Простота проектирования, прошивки и запуска защитных линий в работу;
  • Завышенная цена оборудования достаточно быстро окупается в процессе эксплуатации.

Адресно-аналоговые подсистемы полностью совмещаются с компьютерными технологиями и оснащены выходом во всемирную сеть. В случае возникновения сбоя, с помощью сети информация может передаваться на центральный пульт охраны или МЧС. Содержание системы и ее техническое обслуживание зависит только от человеческого фактора. В связи с кладкой медных кабелей по линии и их специализированной изоляцией, обеспечивается высокая работоспособность, даже при температуре 100º. Это означает, что при возникновении пожара, система сможет работать и передавать данные, а также управлять процессом автоматического пожаротушения.

На видео – больше информации об адресно-аналоговой системе сигнализации:

Системы безопасности Bolid

Наличие ОПС Болид на любом объекте позволяет получать, обрабатывать и передавать информацию о пожаре. Эта защитная линия представлена сложнейшим техническим комплексом, который позволяет своевременно определить возникновение пожара. Данное устройство объединяет в себе следующие составляющие элементы:

  • Коммуникационные линии;
  • Инженерные объекты;
  • Подсистемы безопасности (с их помощью можно осуществлять контроль доступом, управлять подсистемами оповещения, пожаротушения и т. п.).

Сигнализации Болид бывают аналоговыми, адресно-пороговыми, адресно-аналоговыми и комбинированными. Функциональность такой защитной линии обеспечивается исключительно техническим оборудованием. Пожарные датчики и устройства извещения позволяют выявить возгорание. Тревожные кнопки и датчики охраны определяют незаконный доступ на объект. Периферийные устройства наряду с приемно-контрольными механизмами обеспечивают регистрацию и обработку информации.

Каждое устройство призвано выполнять индивидуальные задачи.

ОПС Болид позволяет давать команды по управлению установками автоматического пожаротушения, линий оповещения и иного оборудования. Помимо основного набора функций, ОПС имеет дополнительные, например: управление и контроль над инженерными и коммуникационными подсистемами. К охранно-пожарной сигнализации предъявляются следующие требования:

  • Круглосуточное наблюдение за охраняемым периметром;
  • Выявление точного места незаконного доступа на охраняемый объект;
  • Предоставление простой и понятной информации о наличии возгорания или незаконного доступа;
  • Выявление очага возгорания в кратчайший промежуток времени;
  • Указание точного месторасположения очага возгорания;
  • Точная работа целостного комплекса и отсутствие возможности ложного срабатывания;
  • Контролирование исправности и непрерывной работы датчиков;
  • Отслеживание попыток преднамеренного выведения ОПС из строя.

Болид могут легко интегрироваться и в составе целостного комплекса выполнять ряд задач, в том числе.

В статье рассмотрен современный уровень информационно-коммуникационного обеспечения подразделений федеральной противопожарной службы МЧС России, а также дана краткая характеристика последних разработок в области автоматизации и информатизации деятельности пожарной охраны

Александр

Начальник научно-исследовательского центра моделирования чрезвычайных ситуаций на критически важных объектах (Ситуационный центр) (НИЦ МЧС КВО (СЦ)) ФГБУ ВНИИПО МЧС России


Присадков

Главный научный сотрудник отдела моделирования пожаров и нестандартного проектирования научно-исследовательского центра автоматических установок обнаружения и тушения пожаров (НИЦ ППиПЧСП) ФГБУ ВНИИПО МЧС России, д.т.н., профессор

Современная обстановка в области защиты населения и территорий от чрезвычайных ситуаций и угроз природного и техногенного характера характеризуется высокой степенью сосредоточения угроз, интенсивностью динамики развития и изменений в структуре как объектов, создающих угрозы, так и объектов, призванных для ликвидации таких угроз. В этих условиях информационно-коммуникационное обеспечение является одной из основных составляющих эффективной системы управления и взаимодействия сил и средств, вовлекаемых в процесс ликвидации угроз и последствий пожаров и чрезвычайных ситуаций (ЧС).

Внедрение современных технологий информационного обеспечения

В настоящее время информационно-коммуникационные технологии (ИКТ) открывают широкие перспективы для эффективного решения различных задач во всех областях науки, техники, государственного управления, оборонной сферы. Чрезвычайно развиты сети обмена информацией, средства накопления, хранения и обработки информации, средства визуального представления различной информации, средства математического моделирования чрезвычайных ситуаций.

Практически все современные ИКТ находят применение в МЧС России для создания условий безопасного функционирования объектов общественного и промышленного назначения, обеспечения пожарной безопасности, повышения эффективности мероприятий по ликвидации последствий пожаров и ЧС 1 .

Одним из характерных направлений работы МЧС России уже на протяжении ряда лет является внедрение передовых технологий информационного обеспечения и автоматизации деятельности подразделений Федеральной противопожарной службы. В рамках научно-исследовательских и опытно-конструкторских работ создаются как новые компьютерные программы и программно-аппаратные комплексы, так и масштабные автоматизированные системы по управлению пожарно-спасательными формированиями, прогнозированию опасных факторов пожаров и ЧС, мониторингу потенциально опасных и критически важных объектов. Как правило, в этих разработках воплощаются современные технические принципы обработки и обмена информацией, обеспечения качественной связи, построения целостных широкомасштабных систем управления.


Необходимость использования этих средств многократно подтверждена практикой тушения пожаров и ликвидации последствий чрезвычайных ситуаций. Использование средств автоматизации в конечном счете снижает риск травматизма и гибели людей, уровень материальных потерь за счет оптимизации процесса управления деятельностью пожарно-спасательных формирований на всех стадиях, начиная от процесса заполнения карточки вызова и заканчивая сложными алгоритмами межрегионального взаимодействия сил и средств пожарной охраны.

Развитие ИКТ в пожарной охране

У истоков разработки и внедрения компьютерных средств автоматизации в пожарную охрану стоял коллектив ВНИИПО МВД СССР. Уже с конца 70-х годов ХХ века в институте создавались программы для моделирования пожаров, алгоритмы оценки эффективности деятельности пожарной охраны, методики и алгоритмы оценки состояния пожарной безопасности как для отдельных объектов народного хозяйства, так и для целых регионов нашей страны. Эти программы и алгоритмы реализовывались в вычислительном центре института, а некоторые из них, наиболее масштабные и ресурсоемкие, – в вычислительном центре АН СССР. Результаты вычислений использовались для научного обоснования методических рекомендаций по противопожарной защите объектов, планирования деятельности пожарной охраны, изучения физических процессов, протекающих при пожарах.

По мере развития вычислительной техники появилась возможность использования ее для решения локальных задач в области пожарной безопасности. Одной из первых разработок института в этой области является имитационная модель процессов возникновения, развития и тушения пожаров, созданная в 1985 г. Эта разработка представляла собой программу, написанную на устаревшем на сегодняшний день языке ПЛ/1, и была предназначена для ЭВМ серии ЕС – одной из первых серий отечественных ЭВМ. Программа решала задачи анализа эффективности функционирования системы предотвращения пожаров и противопожарной защиты, обоснования вариантов обеспечения пожарной безопасности.

Наиболее заметной тенденцией в области автоматизации и информатизации деятельности пожарной охраны на сегодняшний день является создание крупных автоматизированных систем мониторинга состояния объектов и управления силами и средствами пожарной охраны. Автоматизация процессов мониторинга и управления в пожарной охране уверенно показывает свою эффективность, начиная с внедрения первых автоматизированных рабочих мест диспетчеров пожарных частей. Разработка отдельных программ и программных систем на базе ПЭВМ для использования непосредственно в органах управления и подразделениях пожарной охраны началась в 1987 г. и с тех пор не исчерпала актуальности и перспектив своего развития. Надлежащий технический уровень программных продуктов достигается за счет тщательной проработки математических моделей деятельности подразделений пожарной охраны, обобщения практики работы, последующего их объединения и реализации в виде программно-аппаратных комплексов и программно-технических средств информатизации 2 .

Практика работы пожарной охраны показывает необходимость наращивания объемов информационного обеспечения, расширения масштабов внедрения автоматизированных систем до звеньев РСЧС начального уровня, возможно, более широкого внедрения ГИС-технологий. Это объясняется усложнением инфраструктуры городов, а также отдельных гражданских и промышленных объектов, появлением новых веществ, материалов и технологий. Работа пожарно-спасательных подразделений при этом сопряжена с обработкой большого количества информации, необходимой для правильной оценки возможного развития пожаров и оптимального выбора сил и средств для его ликвидации.

На современном этапе развитие информационно-коммуникационных технологий пожарной охраны получило следующие основные направления:

  1. Обеспечение защищенности критически важных для национальной безопасности Российской Федерации объектов (КВО).
  2. Мониторинг противопожарного состояния объектов с массовым пребыванием людей.
  3. Автоматизация поддержки принятия решений и управления пожарно-спасательными формированиями с применением геоинформационных технологий.

Защита КВО и объектов с массовым пребыванием людей

Защищенность КВО является одним из приоритетных направлений в деятельности МЧС России. Помимо разработки технических средств предупреждения и ликвидации пожаров и ЧС на КВО и организационно-методических положений значительная роль в обеспечении защищенности КВО отводится современным информационным и компьютерным технологиям. В настоящее время разрабатываются перспективные программно-аппаратные комплексы управления силами и средствами пожарно-спасательных подразделений, мониторинга уровня готовности и качественного состояния систем противопожарной защиты объектов, сбора и обработки данных об инфраструктурах объектов и характерах производств.

Необходимость выработки систематизированного подхода к вопросам мониторинга систем обеспечения противопожарной защиты объектов с массовым пребыванием людей обусловлена возрастающей сложностью и расширяющейся функциональностью эксплуатируемых и строящихся зданий и сооружений, значительным увеличением количества людей, одновременно находящихся на территории объектов.


Экономические механизмы заставляют собственников изыскивать все новые и новые формы привлечения людей в различные учреждения, делать все возможное для увеличения времени пребывания граждан на территориях своих объектов. Естественно, при таком положении дел значительно возрастает пожарный риск. Обязанность МЧС РФ – принятие мер к минимизации этого риска.

Практика работы в сфере защиты объектов с массовым пребыванием людей показывает, что их интегрированные системы безопасности сами нуждаются в контроле, внешнем управлении и защите. Безусловно, производители систем безопасности обеспечивают контроль их работоспособности. Вместе с тем, как известно, крупный пожар легче предотвратить, чем ликвидировать. МЧС РФ, несмотря ни на какие гарантии со стороны производителей средств обеспечения безопасности, не снимает с себя обязанности обеспечения минимального пожарного риска.

Свое воплощение современные информационно-коммуникационные технологии находили в конкретных разработках, выполняемых, в частности, в рамках Федеральной целевой программы "Пожарная безопасность в Российской Федерации на период до 2012 г.", и продолжают реализовываться в рамках Федеральной целевой программы "Пожарная безопасность в Российской Федерации на период до 2017 г." Научно-исследовательские организации МЧС России занимаются изучением эффективности информационно-коммуникационных технологий. По результатам этой работы принимаются решения относительно наделения разрабатываемых программно-технических средств теми или иными возможностями.

Наиболее характерным для этих разработок свойством является широкое применение геоинформационных технологий и технологий сбора и обработки информации от удаленных датчиков с использованием технологий сетевых коммуникаций. Важным и необходимым условием применения этих технологий является их доступность и надежность, многократно проверенная в различных системах, используемых в МЧС России и других министерствах и ведомствах.


Еще одним важным свойством разрабатываемых программно-технических средств является их модульная структура, которая обеспечивает их универсальность и возможность быстрой адаптации к применению на любых уровнях единой системы РСЧС и при необходимости в смежных областях. Модульность систем реализуется за счет применения независимых аппаратных устройств различного назначения, имеющих интерфейсы единого стандарта, применения технологии взаимодействия программных модулей через программные стандартные интерфейсы, применение современных серверов баз данных. Так, представленные ниже разработки обладают всеми необходимыми возможностями для использованиях их в системе "112". Учитывая их изначальное предназначение, потребуется проведение работ по наделению их соответствующими новым задачам функциями, что может быть проведено в короткий срок. Данные системы уже проходят опытную эксплуатацию, которая показывает положительные результаты, что еще более приближает их к внедрению в новых сферах, таких как система "112".

Современные технологии мониторинга

`В ФГБУ ВНИИПО МЧС России создана техническая возможность интеграции большого количества информационных ресурсов в едином центре управления, что является оптимальным решением с точки зрения оперативности анализа обстановки и принятия решений в ходе ликвидации пожаров и ЧС. Она реализуется программно-аппаратными комплексами "Стрелец-Мониторинг", "Радиоволна", АГИСППРиОУ3. Указанные технические комплексы служат для своевременного оповещения людей о пожаре, автоматизированной передачи информации о параметрах возгорания в диспетчерские службы пожарной охраны и аварийно-спасательных сил, управления эвакуацией людей, оперативного управления действиями пожарно- и аварийно-спасательных формирований.

Программно-аппаратный комплекс "Стрелец-Мониторинг" с 2010 г. успешно внедряется в подразделениях МЧС России.

ПАК "Стрелец-Мониторинг" предназначен для:

  • применения в автоматизированной системе мониторинга, обработки и передачи данных о параметрах возгорания, угрозах и рисках развития крупных пожаров в сложных зданиях и сооружениях с массовым пребыванием людей;
  • обеспечения автоматизированного вызова сил пожаротушения;
  • обеспечения сил пожаротушения и системы управления эвакуацией актуальной информацией о ситуации на объекте, в т.ч. отображения распространения пожара на плане объекта с точностью до извещателя с целью своевременного определения правильных путей эвакуации;
  • взаимодействия с внешними автоматизированными системами;
  • раннего обнаружения неисправностей аппаратуры пожарной сигнализации на объекте с целью своевременного принятия мер по их ликвидации.

Комплекс позволяет контролировать и управлять работой различных систем пожарной сигнализации и автоматического пожаротушения из единого центра управления, организовывать работу многоуровневых диспетчерских служб.

Новым этапом в развитии технологии мониторинга является создание системы "Радиоволна". Данная система предназначена для организации сбора по радиоканалу информации с датчиков пожарной сигнализации и датчиков технологических процессов, которые благодаря применению технологии маршрутизации и ретрансляции сигналов могут быть размещены на значительном удалении от центра управления. В настоящее время идет опытная эксплуатация данной системы.

Современные технологии управления пожарно-спасательными формированиями основаны на точном позиционировании местоположения личного состава и техники и привязке отображаемой информации к карте местности. Эти задачи решаются автоматизированной геоинформационной системой поддержки принятия решений и оперативного управления АГИСППРиОУ.

Система обеспечивает отображение карт и планов местности и объектов с привязкой к географическим координатам, наложение на них информации о местонахождении людей и техники и другой графической информации, использующейся в работе органов управления различного уровня, оперативно-диспетчерских служб и штабов по ликвидации пожаров и ЧС. В состав системы входят расчетные модули, с помощью которых осуществляется прогнозирование распространения опасных факторов пожаров и техногенных ЧС с отображением результатов расчетов на карте местности. Система проходит опытную эксплуатацию.

Заключение

Характерные показатели деятельности пожарной охраны – это время реагирования подразделений пожарной охраны на вызовы и время локализации и ликвидации пожаров, риск травматизма и гибели людей при пожарах, материальные потери от пожаров. Эксплуатация комплекса "Стрелец-Мониторинг" позволяет сделать вывод о появлении тенденции к снижению вышеуказанных показателей. То же самое наблюдается и в зонах опытной эксплуатации других систем – "Радиоволна" и АГИСППРиОУ. ВНИИПО МЧС России принимает активное участие в формировании Федеральной целевой программы "Пожарная безопасность в РФ на период до 2017 г.", в том числе в части применения информационных технологий в пожарной охране. В частности, предложено провести разработку программно-аппаратного комплекса автоматизации и связи, который позволит распространить действие комплексных информационных систем МЧС России до звеньев РСЧС начального уровня и подразделений, действующих в отрыве от мест дислокации. Комплекс предполагается оснастить современными средствами связи, навигации, вычислительной техникой, средствами мониторинга химико-биологической обстановки на месте пожара или ЧС при сохранении у него массо-габаритных параметров носимого комплекса.

___________________________________________
1 Постановление Правительства Российской Федерации от 30 декабря 2003 г. № 794 "О единой государственной системе предупреждения и ликвидации чрезвычайных ситуаций".
2 Копылов Н.П., Хасанов И.Р., Варламкин А.В. Новое направление в работе ФГУ ВНИИПО – поддержка управленческих решений и моделирование чрезвычайных ситуаций на критически важных объектах федерального уровня // Пожарная безопасность. – 2007. – № 2. С. 9–22.

Полезная модель относится к устройствам автоматики, а точнее к автоматизированным системам противопожарной защиты, обеспечивающим решение задач пожарной безопасности объектов.

Задачей настоящей полезной модели является повышение эффективности функционирования автоматизированной системы противопожарной защиты.

Техническим результатом, достигаемым при осуществлении заявляемой полезной модели, является повышение эффективности функционирования системы за счет применения автоматических пожарных извещателей пламени, аппаратно и программно сопряженных с видеокамерами, зоны обнаружения и обзора которых, соответственно, совпадают.В систему введены также в составе модуля автономного пожаротушения локальные автономные средства пожаротушения, информационно связанные с контроллером для передачи сообщений о своем срабатывании.

Из уровня техники известны автоматизированные системы противопожарной защиты (АСПЗ), представляющие собой комплекс технических средств, предназначенный для защиты людей и имущества от воздействия опасных факторов пожара и (или) ограничение последствий воздействия опасных факторов пожара на объект .

Известна, например, система "Орион" . Система содержит модули охранно-пожарной сигнализации, видеонаблюдения и контроля доступа, управления пожаротушением и инженерными системами здания, преобразователи интерфейсов и автоматизированное рабочее место оператора.

Недостаток такой системы - невысокая достоверность функционирования в условиях промышленного объекта с большим уровнем помех. Ложные срабатывания приводят к запуску установок пожаротушения, эвакуации людей, что приводит к материальным потерям не только из-за расхода огнетушащего вещества, но и за счет остановки производства, затрат на ликвидацию последствий срабатывания установок пожаротушения.

Для повышения достоверности АСПЗ на современном уровне техники вводят дублирование пожарных извещателей, повторный запрос информации от средств обнаружения пожара, визуальную проверку наличия пожара службами охраны, что существенно увеличивает время реагирования и, следовательно, эффективность функционирования АСПЗ.

Для снижения времени анализа и принятия решения, т е. повышения эффективности АСПЗ используют визуальный контроль состояния объекта путем интеграции средств обнаружения пожара с системой видеонаблюдения. Современные системы видеонаблюдения в составе АСПЗ могут быть снабжены также программными модулями распознавания ситуаций, в частности, признаков аварии и пожара, а также блоками для тренировки и контроля оператора.

Такой АСПЗ, наиболее близкой к заявляемой, является система .

Блок-схема устройства-прототипа изображена на фиг.1.

Система содержит модуль цифрового видеонаблюдения 1, блок информационных и исполнительных элементов 2, контроллер 3, автоматизированное рабочее место оператора 4, блок анализа команд 5, блок контроля действий оператора 6, блок управления 7, блок памяти видеосюжетов 8, блок информационных и исполнительных элементов 2 включает модуль охранной сигнализации 9, модуль пожарной сигнализации 10, модуль контроля и управления доступом 11, модуль водяного пожаротушения 12, модуль оповещения людей о пожаре и управления эвакуацией 13, автоматизированное рабочее место оператора включает компьютер-сервер 14 с подключенными к нему мониторами 15.

Модуль цифрового видеонаблюдения 1 подключен с помощью первого канала передачи данных к контроллеру 3, блок информационных и исполнительных элементов 2 подключен с помощью второго канала передачи данных к контроллеру 3, автоматизированное рабочее место оператора 4 подключено с помощью третьего канала передачи данных к контроллеру 3, блок анализа 5 команд подключен с помощью четвертого канала передачи данных к контроллеру 3, первый выход блока управления 7 подключен к входу блока памяти видеосюжетов 8, второй выход блока управления 7 подключен к первому входу блока анализа команд 5, выход блока контроля действий оператора 6 подключен ко второму входу блока анализа 5 команд, блок анализа 5 команд и блок памяти видеосюжетов 8 с помощью пятого канала передачи данных подключены к рабочему месту оператора 4.

Недостатком прототипа является трудность практической реализации сопряжения обзора видеокамер и зон обнаружения пожарных извещателей. Кроме того, время визуального анализа ситуации может быть значительным и недостаточно эффективным для ряда технологических объектов, например, шкафов с вычислительной техникой и устройств управления. Пожар на таких объектах из-за несвоевременного обнаружения может привести к значительным материальным и иным потерям.

Задачей настоящей полезной модели является повышение эффективности автоматизированной системы противопожарной защиты.

Техническим результатом, достигаемым при осуществлении заявляемой полезной модели, является повышение эффективности функционирования системы за счет введения автоматических пожарных извещателей пламени, аппаратно и программно сопряженных с видеокамерами, зоны обнаружения и обзора которых, соответственно, совпадают. В систему введены также в составе модуля автономного пожаротушения локальные автономные средства пожаротушения, информационно связанные с контроллером для передачи сообщений о своем срабатывании.

Указанная техническая задача решена за счет того, что в известное устройство-прототип , содержащее модуль цифрового видеонаблюдения, контроллер, автоматизированное рабочее место оператора, модуль оповещения людей о пожаре и управления эвакуацией, модуль водяного пожаротушения, соединенные между собой общим каналом приема-передачи данных, блок контроля и управления, модуль пожарной сигнализации, выход которого подключен к первому входу контроллера, с целью повышении эффективности функционирования введены пожарные извещатели пламени со встроенной видеокамерой, выход которых подключен ко второму входу контроллера, модуль питания и управления, модуль автономного пожаротушения, выход которого подключен к третьему входу контроллера, выход блока контроля и управления подключен к четвертому входу контроллера, первый и второй выходы контроллера подключены к соответствующим входам модуля питания и управления, первый и второй выходы которого подключены к соответствующим первому и второму входам модуля водяного пожаротушения.

Модуль пожарной сигнализации содержит пожарные извещатели, выход которых подключен к прибору приемно-контрольному пожарному, выход которого является выходом модуля пожарной сигнализации.

Модуль водяного пожаротушения содержит установку пенотушения, установку орошения, блок управления подачей воды к лафетным стволам, блок управления водяной завесой, насосную станцию пожаротушения, выход которой подключен к первым входам установки пенотушения, установки орошения, блока управления подачей воды к лафетным стволам, блока управления водяной завесой, объединенные вторые входы установки орошения, блока управления подачей воды к лафетным стволам, блока управления водяной завесой являются вторым входом модуля водяного пожаротушения, второй вход установки пенотушения является первым входом модуля водяного пожаротушения, вход насосной станции пожаротушения является входом модуля водяного пожаротушения, подключенным к общему каналу приема-передачи данных.

Модуль питания и управления содержит блок управления пенотушением и блок управления водяным пожаротушением, входы которых являются соответственно первым и вторым входами модуля питания и управления, а выходы этих блоков - соответственно первым и вторым выходами модуля питания и управления.

На фиг.2 изображена блок-схема заявляемой автоматизированной системы противопожарной защиты.

Система содержит модуль цифрового видеонаблюдения 1, блок контроля и управления 2, модуль пожарной сигнализации 3, пожарные извещатели пламени 4 со встроенной видеокамерой, контроллер 5, модуль питания и управления 6, автоматизированное рабочее место оператора 7, модуль автономного пожаротушения 8, модуль водяного пожаротушения 9, модуль оповещения людей о пожаре и управления эвакуацией 10.

Модуль пожарной сигнализации 3 содержит прибор приемно-контрольный 11 и пожарные извещатели 12. Модуль питания и управления 6 содержит блок управления пенотушением 13 и блок управления водяным пожаротушением 14. Модуль водяного пожаротушения 9 содержит установку пенотушения 15, установку орошения 16, блок управления подачей воды к лафетным стволам 17, блок управления водяной завесой 18 и насосную станцию пожаротушения 19.

Модуль цифрового видеонаблюдения 1, контроллер 5, автоматизированное рабочее место оператора 7, модуль оповещения людей о пожаре и управления эвакуацией 10, модуль водяного пожаротушения 9 соединены между собой общим каналом приема-передачи информации, выход модуля пожарной сигнализации 2 подключен к первому входу контроллера 5, выход пожарных извещателей пламени 4 со встроенной видеокамерой подключен ко второму входу контроллера 5, выход модуля автономного пожаротушения 8 подключен к третьему входу контроллера 5, выход блока контроля и управления 2 подключен к четвертому входу контроллера 5, первый и второй выходы контроллера 5 подключены к соответствующим первому и второму входам модуля питания и управления 6, первый и второй выходы которого подключены к соответствующим первому и второму входам модуля водяного пожаротушения 9.

В модуле пожарной сигнализации 3 пожарные извещатели 12 подключены к прибору приемно-контрольному 11, выход которого является выходом модуля пожарной сигнализации 3.

В модуле питания и управления 6 входы блока управления пенотушением 13 и блока управления водяным пожаротушением 14 являются соответственно первым и вторым входами модуля питания и управления 6, а выходы этих блоков - соответственно первым и вторым выходами модуля питания и управления 6.

В модуле водяного пожаротушения 9 выход насосной станции пожаротушения 19 подключен к первым входам установки пенотушения 15, установки орошения 16, блока управления подачей воды к лафетным стволам 17, блока управления водяной завесой 18, объединенные вторые входы установки орошения 16, блока управления подачей воды к лафетным стволам 17, блока управления водяной завесой 18 являются вторым входом модуля водяного пожаротушения 9, второй вход установки пенотушения 15 является первым входом модуля водяного пожаротушения 9, вход насосной станции пожаротушения 19 является входом модуля водяного пожаротушения 9, подключенным к общему каналу приема-передачи данных.

Для достижения технического результата при осуществлении полезной модели могут быть использованы следующие варианты технической реализации отдельных блоков.

Модуль цифрового видеонаблюдения 1, модуль контроля и управления 2, модуль пожарной сигнализации 3, контроллер 5, автоматизированное рабочее место оператора 7, модуль оповещения людей о пожаре и управления эвакуацией 10 могут быть выполнены с использованием известных технических решений идентично системе - прототипу .

Модуль питания и управления 6, модуль водяного пожаротушения 9 могут быть выполнены из типовых серийно выпускаемых блоков, назначение и работа которых описана в .

Пожарные извещатели 4 со встроенной видеокамерой представляет собой серийно выпускаемые устройства, например двухдиапазонный извещатель пожарный пламени ИП 329/330 "СИНКРОСС" функциями видеоконтроля .

Модуль 8 автономного пожаротушения представляет собой комплекс автономных установок локального, например, газового пожаротушения, формирующих выходной электрический сигнал о срабатывании. В качестве таких установок могут быть использованы, например АУП 01-Ф, серийно выпускаемые ОАО "Приборный завод "Тензор" .

Применяемый для связи между модулями канал приема-передачи данных может использовать стандартный протокол обмена данными, например RS485.

Система работает следующим образом:

В нормальных условиях на мониторах автоматизированного рабочего места оператора 5 по данным пожарных извещателей 4, 12 отображается состояние объекта, основные режимы работы модулей, а также изображения участков объекта в зоне действия видеокамер модуля цифрового видеонаблюдения 1.

При появлении на объекте признаков пожара, они обнаруживаются соответствующими извещателями модуля 3 пожарной сигнализации, извещателями пламени 4 со встроенной видеокамерой, и информация о пожаре с помощью котроллера 5 отображается в виде светового сигнала на панели блока контроля и управления 2 и в виде изображения - на мониторе автоматизированного рабочего места оператора 7. Оператор имеет возможность проверить правильность сформированного извещения о пожаре извещателем пламени 4 в результате покадрового просмотра истории ситуации, повлекшей его срабатывание. Эта функция в извещателе 4 реализована без применения дополнительных линий для передачи видеоданных. В случае подтверждения факта возникновения пожара оператор формирует команды управления на включение средств пожаротушения модуля водяного пожаротушения 9 с помощью блока питании и управления 6. Кроме этого, формируются команды на включения модуля 10 оповещения людей о пожаре и управления эвакуацией. Таким образом, значительно сокращается время реагирования на пожароопасную ситуацию, возникающую на объекте.

Аналогичная команда может быть сформирована с помощью блока контроля и управления 2, находящегося непосредственно на технологическом объекте. Контроллер 5, блоки управления пенотушением 13 и водяным пожаротушением 14, содержащие силовое электрооборудование, как правило, расположены в специальном помещении в металлических шкафах. Для обеспечения пожарной безопасности в них используются автономные средства локального газового пожаротушения, входящие в состав модуля 8 автономного пожаротушения. В случае возникновения пожара в шкафах автоматики и управления средства локального газового пожаротушения включаются автоматически, при этом через контроллер 5 информация о их срабатывании поступает оператору для принятия им дополнительных мер по ликвидации пожара. Для сформированного таким образом модуля 8 пожаротушения обеспечивается полностью автономная работа и одновременная интеграция его в автоматизированную систему противопожарной защиты. При этом в случае его срабатывания практически отсутствуют выбросы, вредные для людей и оборудования.

Таким образом, предлагаемая автоматизированная система полностью решает задачи пожарной безопасности промышленного объекта. При этом обеспечивается повышенная эффективность ее функционирования за счет уменьшения времени реагирования на пожароопасную ситуацию, как на технологическом объекте, так и в самом техническом оборудовании системы противопожарной защиты.

ИСТОЧНИКИ ИНФОРМАЦИИ:

1. Закон Российской Федерации от 22 июля 2008 г. 123-ФЗ "Технический регламент о требованиях пожарной безопасности".

2. Кирюхина Т.Г., Членов А.Н. Технические средства безопасности. Часть 1. Охранная и охранно-пожарная сигнализация. Системы видеоконтроля. Интегрированные системы. Системы контроля и управления доступом - М.: НОУ "Такир", 2002 - 215 с.

3. Патент РФ на полезную модель 105052 МПК G0B 13/00. - 2011104664/08; заявл. 10.02.2011; опубл. 27.05.2011. Бюл. 15. - 2 с.: ил.

4. Бабуров В.П., Бабурин В.В., Фомин В.И., Смирнов В.И. Производственная и пожарная автоматика. Ч. 2. Автоматические установки пожаротушения: Учебник. - М.: Академия ГПС МЧС России, 2007. - 283 с.

5. Пожарный извещатель пламени ИП 329/330 "СИНКРОСС" http://www.sinkross.rn/static/ip329.html.

6. Автономная установка газового пожаротушения АУП 01-Ф http://www/tenzor.net.

1. Автоматизированная система противопожарной защиты, содержащая модуль цифрового видеонаблюдения, контроллер, автоматизированное рабочее место оператора, модуль оповещения людей о пожаре и управления эвакуацией, модуль водяного пожаротушения, соединенные между собой общим каналом приема-передачи данных, блок контроля и управления, модуль пожарной сигнализации, выход которого подключен к первому входу контроллера, отличающаяся тем, что в нее введены пожарные извещатели пламени со встроенной видеокамерой, выход которых подключен ко второму входу контроллера, модуль питания и управления, модуль автономного пожаротушения, выход которого подключен к третьему входу контроллера, выход блока контроля и управления подключен к четвертому входу контроллера, первый и второй выходы контроллера подключены к соответствующим входам модуля питания и управления, первый и второй выходы которого подключены к соответствующим первому и второму входам модуля водяного пожаротушения.