Генератор ван де граафа практическое применение. Ускорители заряженных частиц

Генератор Ван де Граафа является одним из самых известных генераторов высокого напряжения, который позволяет визуализировать поведение электронов. Устройство не нашло практического применения, и обычно используется как развлекательный прибор, показывающий принцип действия различных физических процессов. Генератор изобретен в 1929 году и был назван в честь своего открывателя.

Как действует генератор Ван де Граафа

Данное устройство может иметь два варианта исполнения: горизонтальное и вертикальное. Оба работают по одинаковому принципу и имеют внутри аналогичный набор деталей. Чаще всего применяется вертикальная установка, поскольку она позволяет добиться лучшего обзора при генерировании зарядов.

Генератор состоит из 5 основных элементов:
  • Ремешок из диэлектрической ленты.
  • Металлический шкив.
  • Шкив из диэлектрического материала.
  • Металлическая сфера.
  • Диэлектрический корпус с подставкой.

Металлический токопроводящий шкив находится в нижней части стойки генератора, а диэлектрический вверху. Между ними натянут ремешок из резины или шелка. Нижний шкив имеет заземление. В близи него находится электрод в виде щетки, на который подается напряжение. У верхнего шкива устанавливается второй электрод щетка, который подсоединен к сфере на верху генератора. Обе щетки трутся о диэлектрическую ленту.

Принцип работы генератора довольно простой. Его можно понять, даже имея пробелы в знаниях основных законов физики. Поскольку нижний щеточный электрод находится под высоким напряжением, а шкив, который закреплен рядом, выполнен из металла, то в воздушном пространстве между ними создаются положительно заряженные ионы. Они притягиваются к шкиву и налипают на электрическую ленту, которая вращается и поднимает ионы вверх к сфере, также выполняющей роль электрода. Верхние щетки снимают ионы, и отправляют их на металлическую сферу. Благодаря своей форме она накапливает положительно заряженные частицы. Вращающаяся лента постоянно доставляет все новые и новые ионы, пока не создастся их достаточного скопления для повышения потенциала на электроде.

Практическое использование

Генератор Ван де Граафа практически не нашел применения для выполнения полезных функций. Однако, его можно использовать для исследования поведения атомов. Многие ядерные лаборатории имеют среди своего технического оборудования и генератор Ван де Граафа, с помощью которого проводится ускорение частиц, что необходимо для начала ядерных реакций.

Подавляющее большинство существующих генераторов, работающих по данному принципу, используется в качестве учебного пособия, позволяющего демонстрировать процесс электростатики. Нередко генератор используется в развлекательных шоу. С его помощью имитируют миниатюрные молнии. Кроме того, вокруг сферы устройства создается поле, способное приподнимать легкие предметы. Самым известным и зрелищным способом демонстрации является отпускание над генератором небольшого кусочка фольги, который благодаря малому весу и токопроводимости удерживается на весу полем устройства. Он кружит вокруг сферы на протяжении продолжительного времени, особенно если имеет хорошую балансировку. Со временем траектория его полета искажается, и он прилипает к генератору.

Мощный генератор Ван де Граафа способен создавать крупные молнии, поэтому зрелище от использования такого прибора действительно завораживает. В связи с этим не удивительно, что на подобные представления приходят посетители, несмотря на то, что данные устройства существуют уже почти 100 лет. Вблизи генератора начиняют гореть осветительные приборы, неподключенные к сети.

Коронным трюком с использованием генератора является поднятие волос на голове. Нужно предварительно встать на резиновый коврик, после чего одной рукой прикоснуться к шару устройства.

Как пользоваться генератором

Применение генератора требует соблюдение определенных правил. Их нарушение может вызывать неприятные последствия. Получение разряда с его сферы по ощущениям похоже на удар молнии. Конечно, это опасно, но только в том случае если применяется генератор, который создает действительно большие напряжения.

Перед применением устройства его нужно очистить от постоянно прилипающей пыли, которая обычно покрывает диэлектрическую ленту и шкивы. Специально для этого в генераторах предусматривается возможность снятия сферы. Если грязь не захочет стираться, ее можно просто смыть, но после этого устанавливать детали обратно можно только после их высыхания.

Перед включением напряжения, генератор нужно заземлить, после чего запустить привод для обеспечения вращения ленты.

Правила предосторожности

В случае включения генератора в сетевую розетку необходимо, чтобы она имела заземление. Категорически запрещено прикасаться к поверхности устройства, за исключением нахождения ног на диэлектрическом коврике.

Запрещено приближаться к работающему генератору в случае использования кардиостимулятора. Также нужно учитывать, что прибор может навредить современному техническому оборудованию. В связи с этим, перед экспериментами с генератором нужно отложить в сторону мобильный телефон и электронные часы. Включенная вблизи от генератора компьютерная техника часто испытывает помехи, поэтому начинает показывать изображение на экране с дефектами. Это продолжается на протяжении всего периода, пока работает генератор.

Технические характеристики

Первый прототип генератора, который был успешно запущен, генерировал напряжение 80 КВ. Это высокий показатель, но является практически ничтожным против современных достижений. Установки, которые используются сегодня, способны генерировать 20 млн. вольт.

Самый мощный генератор Ван де Граафа построенный в истории выдавал напряжение в 20 МВ. Именно с его помощью были открыты суперформированные ядра.

Серийно выпускаются компактные генераторы, предназначенные для использования в кабинетах физики как наглядное учебное пособие. Такие устройства значительно более безопасные, и не выдают мощные разряды. Для проведения шоу по созданию молний обычно применяются генераторы, напряжение которых на выходе составляет до 100 кВ. Они питаются от обычной сети переменного тока на 220В. Высота таких устройств составляет 40-60 см, а вес редко превышает 7 кг.

Самостоятельное изготовление

Генератор Ван де Граафа очень часто изготовляется самостоятельно любителями физических экспериментов. Сделать его совсем несложно, но конечно самоделка не питается от сети переменного тока, поэтому совершенно безопасна. Нижняя щетка прибора подключается к блоку питания зарядного устройства обыкновенного мобильного телефона. В качестве диэлектрического ремешка для натяжения между роликами применяется изолента. Вместо токопроводящей сферы устанавливается обыкновенная алюминиевая банка из-под газировки.

Подобный примитивный генератор хотя и не может генерировать зрелищные молнии, но вполне способен при работе приподнимать фольгу, заставлять уклоняться в сторону тонкую струю воды из-под крана, и питать мелкие светодиоды, от чего они светятся.

Это генератор высокого напряжения, механизм работы его базируется на электризации движущейся диэлектрической ленты. Впервые был создан в 1929 г. в США физиком Робертом Ван де Граафом и давал разность потенциалов до 80 Квольт. В 1931 он же разработал устройства, вырабатывающее 1 млн, а два года спустя – 7 млн вольт.

Известно, что при трении разных материалов друг об друга можно получить электрический заряд, который притягивать всякие мелкие бумажки, пыль и даже отклонять струю воды. Например, используем канализационную ПВХ-трубу и носок, работает не хуже знаменитой эбонитовой палочки. Любое вещество состоит из положительно заряженных ядер атомов и отрицательно заряженных электронов, которые вращаются вокруг них. Обычно в веществе положительного и отрицательного заряда поровну, поэтому суммарный равен нулю, такое тело не заряжено. Но когда носок касается трубы, то электроны переходят с носка на нее, потому что электроны лучше притягиваются к её молекулам.

Трение – это способ привести в контакт как можно больше молекул, поэтому во время эксперимента лучше еще нажимать на носок силой. Но не все осознают, что таким простым способом достигается напряжение в 1000 В, чтобы убедиться в этом, рекомендовано проделать эксперимент в абсолютной темноте, например, заперевшись в комнате без окон. И пронаблюдать вспышки разрядов, возникающие при трении носка об трубу.


Генератор Ван де Граафа тоже получает заряд за счет соприкосновения двух материалов друг с другом, однако он умеет получать куда большее напряжение. При устроен он довольно просто. В нижней части генератора закреплен двигатель, он нужен, чтобы вращать специальную ленту, на оси двигателя нужно закрепить что-то, что при соприкосновении заряжать ленту. Перепробовали целую кучу материалов надевать на ось, а также несколько вариантов лент. В качестве ленты лучше всего работал медицинский бинт Мартенса, а на ось в итоге надели кусочки все той же ПВХ-трубы, которая хорошо притягивает электроны, заряжаясь отрицательно. А положительно зарядившаяся лента, вращаясь, несет свой заряд наверх, и он накапливаться на металлическом шаре все больше и больше. Если хочется, чтобы шар стал не плюсом, а минусом, просто просовываем свои пальцы в трубу, кожа при трении отдает электроны. Напряжение на шаре накапливается действительно большое, судя по размеру пробивающих молний 100000 В набирается. Крутые генераторы, созданные по технологии Ван де Граафа, умеют получать миллионы вольт и используют в физике, чтобы ускорять частицы до больших энергий.

Почему лента всегда только приносит заряд на шар, и никогда его оттуда не уносит? Чтобы ответить на вопрос, нужно разобраться в одном важном свойстве проводников, ведь шар в отличие от ленты специально сделан из металла, хорошо проводящего материала. Объяснение для обывателя, прошаренные чуваки сами прочитают про теорему Гаусса и экранировку.

Предположим, есть кусок металла, и внутрь него каким-то образом попал заряд, пусть это кучка отрицательных электронов, однако, если это металл, то не пройдет и доли секунды, как там уже не будет, потому что это кучка электронов, они все друг от друга отталкиваются. Быстро весь избыточный заряд окажется размазанным по внешней стенке металла очень-очень тонким слоем, т.е. всегда скапливается на внешней поверхности проводников. Поэтому лента и не может взять заряд с шара, внутри его просто нет. Это и есть основной принцип работы генератора изобретателя Ван де Граафа. Вся фишка в том, что подносим ленту изнутри шара, а не снаружи.

Шар сделали из двух салатниц, купленных в Икея. Внутри втулка из велосипеда, на которой держится, свободно вращаясь, лента. Заряд с ленты на шар попадает либо через втулку, либо с помощью дополнительного провода, поднесенного максимально близко к ленте. В конце он разделен на множество мелких острых проводников. Дело в том, что через воздух на острие намного лучше стекает заряд. Половник, в который бьет молния, заземлен через корпус самодельного генератора.

Генератор Ван де Граафа способен выдавать электростатические потенциалы в сотни тысяч вольт. Такие установки имеются во многих лабораториях и политехнических музеях, где их используют в самых различных опытах, связанных с электричеством. Правда, там используются генераторы высотой в два человеческих роста. Мы же попробуем построить компактную настольную установку.

Назван генератор по имени голландского физика Р. Дж. Ван де Граафа, который в 1931 году сконструировал его для своих опытов по электростатике. С той поры установки, сыплющие искрами, можно найти даже в школьном кабинете физики, и называются они иногда электрофорными машинами. Мы же с вами попробуем сделать своими руками примерно такой генератор, как его задумывал сам Ван де Грааф.

Для конструкции генератора Ван де Граафа потребуется:

  • пустая металлическая банка из-под газировки;
  • небольшой гвоздик;
  • кольцевая резинка шириной примерно 0,5 см и диаметром 8 - 10 см;
  • стеклянный электрический предохранитель размерами 5×20 мм;
  • электродвигатель постоянного тока (например, от игрушки);
  • зажим "крокодильчик";
  • держатель батареи;
  • чашка из пенополистирола или бумажный стаканчик;
  • клеящий термопистолет или тюбик клея для пластика;
  • два отрезка медного электрического провода;
  • два отрезка 3/4-дюймовой сантехнической трубы из ПВХ;
  • 3/4-дюймовая муфта из ПВХ;
  • Т-образный 3/4-дюймовый сантехнический тройник из ПВХ;
  • изолента и деревянная подставка.

Может показаться, что установка сложна, но если вы посмотрите на иллюстрации, то увидите, что смонтировать ее можно всего за один вечер. Главное - припасти все необходимые детали.

Монтаж генератора

Монтаж начните с деревянного основания. К нему приклейте 5 - 7-сантиметровый отрезок пластиковой трубы диаметром 3/4 дюйма. На этом фундаменте и будет монтироваться ваш генератор с тем расчетом, чтобы в случае надобности его можно было легко снять, если, например, надо заменить в нем резиновую ленту или внести изменения в конструкцию.

В одно из колен сантехнического тройника вставляется электродвигатель. Поскольку моторчик, как правило, небольшого диаметра, то его надо обернуть бумагой или изолентой, чтобы корпус входил в трубу с некоторым усилием. На вал двигателя натяните кусочек пластиковой трубки соответствующего диаметра.

Далее, просверлите небольшое отверстие в боковой части Т-образной трубки. Через него введите внутрь конец многожильного провода, "разлохмаченного" в виде кисточки или щетки таким образом, чтобы, расположив его вблизи резиновой ленты, можно было снимать с нее электростатический заряд.

Закрепить провод на месте можно с помощью скотча или изоленты. Кольцевую резинку накиньте внизу на шкив, а оставшуюся часть вытащите наверх, как показано на иллюстрации.

Далее, отрежьте от 3/4-дюймовой сантехнической трубы цилиндр 5 - 7-сантиметровой длины. Его надо будет закрепить в верхней части Т-образного разъема, как показано на рисунке. Протяните резинку до самого верха и закрепите положение гвоздиком.

При этом надо иметь в виду, что длина трубы должна быть такой, чтобы резинка не была растянута слишком сильно. Иначе из-за повышенного трения двигатель будет работать с излишней нагрузкой.

Отрежьте от пенополистироловой чашки нижнюю часть высотой 1,5 - 2 см, переверните ее вверх дном и вырежьте в дне отверстие с таким расчетом, чтобы оно плотно садилось на 3/4-дюймовую трубу.

Теперь просверлите три отверстия в верхней части муфты. Два из этих отверстий должны быть диаметрально противоположны друг другу, так чтобы через них прошел небольшой гвоздь, который будет выступать в качестве мостика для резинки. Третье отверстие расположено между двумя другими с таким расчетом, чтобы продетая в него проволочная кисточка-щетка, как и нижняя щетка, почти касалась резинки в натянутом состоянии.

Щетка вставляется в муфту, а сама муфта надевается на 3/4-дюймовую трубу, выше "воротника" из чашки. Резинка заправляется в муфту и удерживается на месте гвоздиком, как и раньше. Кстати, отдельные проводки "кисточки" надо скрутить почти по всей длине между собой, чтобы отдельные проводки не распались.

Теперь осталось поставить на место стеклянную трубочку. Проще всего взять ее от электрического предохранителя, какие используются в радиоприборах. Аккуратно нагрейте паяльником металлический колпачок на одном из концов предохранителя и снимите его плоскогубцами с трубки. Так же поступите с другим колпачком.

Затем вытащите конец гвоздика из одного отверстия в муфте и наденьте на него стеклянную трубку с таким расчетом, чтобы резинка оказалась на трубке. Снова введите гвоздь во второе отверстие.

Приклейте пенополистироловый "воротник" к трубе. Лучше всего сделать это с помощью термопистолета, так как клей при этом быстро застывает и не растворяет пластмассу.

Но, в принципе, то же самое можно сделать и при помощи иного подходящего клея для пластика.

Теперь вы готовы к установке алюминиевой банки. Она хороша для высокого напряжения потому, что имеет закругленные края, что минимизирует "коронный разряд". Остается лишь острым ножом аккуратно вырезать верхнюю крышку, загладить обрезанные края, например, с помощью отвертки и, перевернув банку вверх дном, насадить ее на полистироловый воротник, пропустив внутрь свободный конец верхней проволочной "кисточки"-щетки.

Последний шаг - подключение двигателя к батарейке с помощью проводов. При этом вольтаж питания должен соответствовать тому, на которое рассчитан взятый вами электромотор.

Если кисточки-щетки в верхней и нижней частях банки установлены правильно - очень близко к резинке, но не касаются ее, вы должны почувствовать легкий электрический укол, как только поднесете палец близко к алюминиевой банке.

Запуск и настройка генератора Ван де Граафа

Если вы не обнаружили признаков высокого электростатического напряжения при работающем двигателе (нет искр, банка не притягивает к себе бумажных полосок), то вам придется заняться наладкой генератора.

Для начала попробуйте другой тип резинки. Некоторые виды резины имеют некую проводимость, а потому и не могут дать высокого потенциала.

Убедитесь, что все детали установки чисты. Грязь и жир тоже могут сделать вашу установку неработающей.

Проверьте: надежно ли верхняя щетка контактирует с металлом банки. Некоторые банки имеют внутри пластиковое покрытие. Тогда лучше взять другую банку.

Проверьте, нет ли острых концов, выходящих за пределы установки. Они могут стать источником коронного разряда, и напряжение накапливаться не будет.

Убедитесь, что щетки не касаются самой резиновой ленты. Между ними должен быть некоторый зазор.

Схема генератора Ван де Граафа : 1 - вал электромотора; 2 - стеклянная трубка; 3 - гвоздик; 4 - проволочная щетка; 5 - сфера; 6 - резинка; 7 - проволочная щетка.

Проверьте правильность всего монтажа, сравнив то, что сделано нами, с принципиальной схемой установки.

После того как генератор налажен, посоветуйтесь с учителем физики, какие интересные опыты можно поставить с помощью сделанного вами генератора. Например, если навесить на алюминиевую банку при выключенном генераторе гроздь бумажных полосок, то по мере увеличения напряжения они образуют некий экзотический "букет".

А можно с помощью генератора Ван де Граафа попробовать получать электреты - вечные источники электрического напряжения, которые используются, например, в микроскопах.

Протонов и ионов высоких энергий. Ускорение частиц происходит за счет их взаимодействия с электростатическими или электромагнитными полями. В медицине ускорители заряженных частиц используют для лучевой терапии и в радиобиологических исследованиях. В зависимости от способа ускорения ускорители заряженных частиц делят на электростатические (например, генератор Ван-де-Граафа), линейные резонансные, индукционные (см. Бетатрон) и циклические (циклотрон).

В электростатическом генераторе Ван-де-Граафа высокое напряжение создается за счет накопления на поверхности полой проводящей сферы электрического заряда, который подается на нее от электрического генератора с помощью движущейся бесконечной ленты. Ускорение заряженных частиц происходит в вакуумной трубе.

Роберт Ванн де Грааф во время демонстрации своего генератора в 1922 г

Электростатический генератор (Ван-де-Граафа) - ускоритель заряженных частиц. Состоит из источника высокого напряжения (собственно электростатический генератор) и ускорительной трубки. Первая удачная конструкция подобной установки была предложена в 1929 г. Ван-де-Граафом (R. J. Van de Graaff). Принцип действия электростатического генератора заключается в следующем.

Электрические заряды от генератора наносятся на диэлектрическую движущуюся ленту.

С этой ленты заряды переносятся системой щеток на внутреннюю поверхность полой металлической изолированной сферы - кондуктора (рис.). Таким образом, на сферу может быть перенесен достаточно большой заряд, максимальная величина которого определяется возникновением разряда с нее во внешнее пространство. С увеличением размеров сферы напряжение повышается. В настоящее время для увеличения напряжения при минимальных размерах установки электростатический генератор помещают в бак с газом, имеющим высокую электрическую прочность (азот, фреон, углекислый газ), под давлением до 20 атм.

Электростатический генератор может быть использован для ускорения как электронов (см.), так и тяжелых частиц - протонов (см.). Предельная энергия ускоренных частиц достигает 10 Мэв. Электростатические генераторы нашли широкое применение в физике, технике и медицине. В медицине используются электростатические генераторы с электронным пучком (см. Электронное излучение) как источник жесткого тормозного излучения (см.), возникающего при попадании электронов высокой энергии на мишень из тяжелого элемента. См. также Ускорители заряженных частиц.


Электростатический генератор Ван-де-Граафа:
1 - высоковольтный электрод (кондуктор);
2 - ионный или электронный источник;
3 - многосекционная ускорительная трубка;
4 - изолирующая колонка;
5 - система дефокусировки электронного луча;
6 - тонкая алюминиевая фольга;
7 - конвейер;
8 и 10 - зарядные и съемные острия;
9 - двигающаяся «бесконечная» лента.

ГЕНЕРАТОР ВАН ДЕ ГРААФА

ГЕНЕРАТОР ВАН ДЕ ГРААФА , устройство, генерирующее высокое напряжение с помощью концентрации электрических зарядов на внешней стороне полого ПРОВОДНИКА. Построенный Джоном КОКРОФТОМ и Эрнестом УОЛТОНОМ УСКОРИТЕЛЬ Кокрофта-Уолтона вырабатывал высокое напряжение с помощью группы заряженных КОНДЕНСАТОРОВ, соединенных последовательно. Американский физик Роберт Ван де Грааф (1901-67) усовершенствовал эту конструкцию, распыляя положительные или отрицательные заряды по непрерывно движущейся ленте, которая переносила их в большую полую металлическую сферу, где накапливалось напряжение. Таким образом задействованное напряжение около 50 000 вольт вырастало до 1 млн. электрон-вольт. Сегодня генератор Ван де Граафа используется в основном для «впрыскивания» частиц в более мощные линейные ускорители. см. также ЛОУРЕНС .

С помощью генератора Ван де Граафа (В) можно получить очии, высокое напряжение. Еспи тою имеющее избыток положительных ионов, поместить внутрь резср вуара, на его внутренней стороне собираются электроны,а на внешней - такое же число поло жительно заряженных ионов (А) Если заряженное тело коснется внутренней стороны, все свобод ные электроны перетекут на него, сделав его нейтральным. Внешняя сторона резервуара при этом еще удерживает положительные ионы В генераторе Ван де Граафа поло жительные ионы распыляются от соответствующего источника (1) на бесконечную ленту, которая несет их внутрь металлической сферы. Лента соединяется с внутренней поверхностью стенки с помощью проводника в форме гребня(2) Это позволяет электронам стекать на ленту. Таким образом на внеш ней стороне сферы собираются положительные ионы (3) Эффект может быть усилен соединением двух генераторов, как показано на (С).


Научно-технический энциклопедический словарь .

Смотреть что такое "ГЕНЕРАТОР ВАН ДЕ ГРААФА" в других словарях:

    Миниатюрный генератор Ван де Граафа … Википедия

    генератор Ван-де-Граафа - Van de Grafo generatorius statusas T sritis fizika atitikmenys: angl. belt type generator; Van de Graaff generator vok. Bandengenerator, m; Van de Graaff Generator, m rus. генератор Ван де Граафа, m; ленточный генератор, m pranc. accélérateur Van … Fizikos terminų žodynas

    - … Википедия

    - … Википедия

    - … Википедия

    - (см. ЭЛЕКТРОСТАТИЧЕСКИЙ ГЕНЕРАТОР). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983. ВАН ДЕ ГРААФА ГЕНЕРАТОР … Физическая энциклопедия

    ВАН ДЕ ГРААФА ГЕНЕРАТОР, см. в ст. Электростатический генератор (см. ЭЛЕКТРОСТАТИЧЕСКИЙ ГЕНЕРАТОР) … Энциклопедический словарь

    См. в ст. Электростатический генератор … Большой Энциклопедический словарь

    Ван де Граафа ускоритель, см. Электростатический ускоритель … Большая советская энциклопедия

    - [по имени амер. физика Р. Дж. Ван де Граафа (R. J. Van de Graaf; p. 1901)] электростатич. генератор пост. высокого напряжения до 20 MB и допустимой силой тока нагрузки до 1 мА. Используется в линейных ускорителях, а также в слаботочной… … Большой энциклопедический политехнический словарь

Книги

  • Набор "Японские опыты. Статическое электричество" (ВВ 1164/196407) , Оказывается, электричество бывает разным. В одних случаях оно течет, а в других накапливается. И если о течении электричества по проводам мы узнаем, когда включаем электроприборы, то как… Категория: