Углекислый газ как интегральный показатель загрязнения воздуха. Источники загрязнения воздуха закрытых помещений

Основные источники загрязнения воздушной среды помещений условно можно разделить на четыре группы:

1. Вещества, поступающие в помещение с загрязненным воздухом. Основным источником загрязнения воздуха в помещениях является бытовая пыль. Она представляет собой мельчайшие частицы различных веществ, способных парить в воздухе. Пыль еще и адсорбирует многие химические соединения. Степень проникновения атмосферных загрязнений внутрь здания для разных химических веществ различна. При сравнении концентрации двуокиси азота, окиси азота, окиси углерода и пыли в жилых зданиях и в атмосферном воздухе обнаружено, что эти вещества находятся на уровне или ниже концентраций их в наружном воздухе. Концентрации двуокиси серы, озона и свинца обычно внутри ниже, чем снаружи. Концентрации ацетальдегида, ацетона, бензола, толуола, ксилола, фенола, ряда предельных углеводородов в воздушной среде помещений превышали концентра­ции в атмосферном воздухе более чем в 10 раз.

2. Продукты деструкции полимерных материалов.

3. Антропотоксины.

4. Продукты сгорания бытового газа и бытовой деятельности.

Одним из наиболее распространенных источников загрязнения воздушной среды закрытых помещений является курение. Сигаретный дым в доме - прямая угроза здоровью. Он содержит тяжелые металлы, окись углерода, окись азота, сернистый ангидрид, сти­рол, ксилол, бензол, этилбензол, никотин, формальде­гид, фенол, около 16 канцерогенных веществ.

Другой возможный источник загрязнения воздуха в квартире - это отстойники в водопроводно-канализационной сети. Мусоропровод также таит в себе опасность для здоровья, особенно если приемные люки установлены на кухне или в прихожей.

Показатели санитарного состояния воздуха помещений:

· Окисляемость(количество О2 необходимое для окисления органических соединений воздуха)

Критерии оценки санитарного состояния воздуха закрытых помещений .



1. ОБЩАЯ МИКРОБНАЯ ЗАГРЯЗНЕННОСТЬ.в 1м3 воздуха.

2. КОЛИЧЕСТВО САНИТАРНО-ПОКАЗАТЕЛЬНЫХ МИКРОБОВ ВОЗДУХА.В 250 ЛИТРАХ ВОЗДУХА.

Cанитарно-показательными микробами воздуха закрытых помещений являются:

1) золотистый стафилококк

2) a-зеленящий стрептококк

3) b-гемолитический стрептококк

Эти бактерии являются показателями орально-капельного загрязнения. Они имеют общий путь выделения в окружающую среду с патогенными микроорганизмами, передающимися воздушно-капельным путём. Сроки выживания их в окружающей среде не отличаются от сроков, характерных для большинства возбудителей воздушно-капельных инфекций.

Методы делятся на седиментационные и аспирационные.

Углекислый газ является косвенным показателем загрязнения, т.к.:

Антропотоксины в воздухе помещений. Санитарно-гигиеническое значение содержания углекислого газа.

В процессе своей жизнедеятельности человек выделяет около 400 химических соединений. Воздушная среда невентилируемых помещений ухудшается пропорционально числу лиц и времени их пребывания в помещении. Химический анализ воздуха помещений позволил идентифицировать в них ряд токсических веществ, распределение которых по классам опасности представляется следующим образом:

второй класс опасности - высоко опасные вещества (диметиламин, сероводород, двуокись азота, окись этилена, бензол и др.);

третий класс опасности - малоопасные вещества (уксусная кислота, фенол, метилстирол, толуол, метанол, винилацетат и др.).

Даже двухчасовое пребывание в этих условиях отрицательно сказывается на умственной работоспособности. При большом скоплении людей в помещении (классы, аудитории) воздух становится тяжелым.

Значение СО2: косвенный показатель загрязнения воздушной среды закрытых помещений, где основной источник – человек.

Углекислый газ является косвенным показателем загрязнения, т.к.:

1. СО2 наилучшим образом характеризует человека как источника загрязнений воздуха закрытых помещений.

2. Существует корреляционная зависимость между накоплением СО2 и денатурацией воздушной среды (изменение физического, химического и микробного составов)

3. Существуют экспресс-методы определения СО2(доступные, надежные, дешевые).

Полимерные материалы и бытовой газ как источники загрязнения воздуха жилых и общественных зданий. Особенности действия загрязнителей воздушной среды на организм. Меры профилактики.

В настоящее время только в строительстве используется около 100 наименований полимерных материалов. Практически все полимерные материалы выделяют в воздушную среду те или иные токсические химические вещества, оказывающие вредное влияние на здоровье человека.

Стеклопластики на основе различных смесей, применяемые в строительстве, звуко - и теплоизоляции выделяют в воздушную среду значительные количества ацетона, метакриловой кислоты, толуола, бутанола, формальдегида, фенола и стирола. Лакокрасочные покрытия и клейсодержащие вещества также являются источниками загрязнения воздушной среды закрытых помещений.

Многие виды красивых синтетических отделочных материалов - пленок, клеенок, ламенатов и пр. - выделяют набор вредных веществ, например, метанол, дибутилфталат и др. Ковровые изделия из химических волокон выделяют в значительных концентрациях стирол, изофенол, сернистый ангидрид. Средства бытовой химии - моющие, чистящие средства, ядохимикаты для борьбы с насекомыми, грызунами, пестициды, разного рода клеи, средства автокосметики, полирующие вещества, лаки, краски и многие другие - способны вызвать различные заболевания у людей, особенно, если запасы таких веществ хранятся в плохо проветриваемом помещении.

Атмосферные загрязнения могут быть причиной возникновения неинфекционных заболеваний у человека, кроме того, они способны ухудшать санитарные условия жизни людей и причинять экономический ущерб.

Биологическое действие атмосферных загрязнений

Атмосферные загрязнения могут оказывать острое и хроническое воздействие.

Мероприятия по санитарной охране атмосферного воздуха

1. Законодательные

Существует большое количество нормативных документов, регламентирующих охрану атмосферного воздуха. В Федеральном законе «Об охране окружающей среды» говорится, что каждый гражданин имеет право на благоприятную окружающую среду, на ее защиту от негативного воздействия, вызванного хозяйственной и иной деятельностью. Закон «Об охране атмосферного воздуха» регламентирует разработку и проведение мероприятий по ликвидации и предупреждению загрязнения воздуха – строительство газоочистных и пылеулавливающих устройств на промышленных предприятиях и предприятиях теплоэнергетики.

2. Технологические

Технологические мероприятия являются основными мероприятиями по охране атмосферного воздуха, так как только они позволяют снизить или полностью исключить выброс вредных веществ в атмосферу на месте их образования. Данные мероприятия непосредственно направлены на источник выбросов.

3. Санитарно-технические.. Целью санитарно-технических мероприятий является извлечение или нейтрализация компонентов выбросов, находящихся в газообразной, жидкой или твердой форме, от организованных стационарных источников. Для этого используются различные газопылеулавливающие установки.

4. Архитектурно-планировочные

К данной группе мероприятий относятся:

Функциональное зонирование территории города, то есть выделение функциональных зон – промышленной, зоны внешнего транспорта, пригородной, коммунальной

Рациональная планировка территории

Запрещение строительства предприятий, загрязняющих воздух, в жилой зоне населенного пункта и размещение их в промышленной зоне с учетом господствующего направления ветра на данной территории;

Создание санитарно-защитных зон. СЗЗ – это территория вокруг промышленного предприятия или другого объекта, являющегося источником загрязнения окружающей среды, размеры которой обеспечивают снижение уровней воздействия производственных вредностей в жилой зоне до предельно допустимых значений.

Рациональная застройка улиц, устройство транспортных развязок на основных автомагистралях с сооружением тоннелей;

Озеленение территории города. Зеленые насаждения играют роль своеобразных фильтров, влияют на рассеивание промышленных выбросов в атмосфере, изменяя ветровой режим и циркуляцию воздушных масс.

Выбор для строительства предприятия земельного участка с учетом рельефа местности, аэроклиматических условий и других факторов.

5. Административные

Рациональное распределение транспортных потоков по их интенсивности, составу, времени и направлению движения;

Ограничение движения в пределах жилой зоны города большегрузного автотранспорта;

Наблюдение за состоянием дорожных покрытий и своевременностью их ремонта и уборки;

Система контроля технического состояния транспортных средств.

52. Особенности состава и свойства атм. Воздуха, производственных, жилых и обществ-х зданий. Атмосферный воздух имеет химические, физические и механические свойства , которые оказывают на организм человека как благоприятное, так и неблагоприятное воздействие.

· Химические свойства обусловлены нормальным газовым составом воздуха и вредными газообразными примесями;

· К физическим свойствам воздуха относятся:

Атмосферное давление,

Температура,

Влажность,

Подвижность,

Электрическое состояние,

Солнечная радиация,

Электромагнитные волны

от физических свойств воздуха зависят климат и погода ;

· Механические свойства воздуха зависят от содержания в нём примесей твёрдых частий в виде

И присутствия микроорганизмов.

Воздушная среда неоднородна по физическим параметрам и вредным примесям , что связано с условиями ее формирования и за­грязнения .

Следует различать:

1. Чистый атмосферный воздух;

2. Атмосферный воздух промышленых регионов;

3. воздух помещений жилых и общественных зданий;

4. воздух помещений промышлен­ных предприятий.

Эти виды воздуха отличаются друг от друга по составу и свойствам, а значит и по влиянию на организм человека

I.атмосферный воздух

Физические свойства атмосферного воздуха:

Температура,

Влаж­ность,

Подвижность,

Атмосферное давление,

Электрическое состояние

· Физические свойства атмосферного воздуха нестабильны и связаны с климатическими особенно­стями географического региона .· Наличие в воздухе газообразных твердых примесей (пыль и сажа ) зависит от характера выбросов в атмосферу, условий разбавления и процессов самоочищения.

На концентрацию вредных веществ в атмосфере влияют:

1. скорость и направление господствующих ветров,

2. температура, влажность воз­духа,

3. осадки, солнечная радиация,

4. количество, качество и высота вы­бросов в атмосферу.

Свойства воздуха жилых и общественных зданий более стабильны- в этих зданиях поддерживается оптимальный микроклимат за счет вентиляции и отопления. Газообразные примеси связаны с выделением в воздух продуктов жизнедеятельности людей, выделением токсических веществ из материалов и предметов обихода, выполненных из полимерных материалов, продуктов горения бытового газа и др. На свойства воздуха промышленных помещений существенное влияние оказывают особенности технологического процесса. В некоторых случаях физические свойства воздуха приобретают самостоятельное значение вредного профессионального фактора, а загрязнение воздуха токсичными веществами может привести к профессиональным болезням.

53. Солнечная радиация -испускаемый солнцем интегральный поток излучения. В гигиеническом отношении особый интерес представляет оптическая часть солнечного света, которая занимает диапазон от 280-2800 нм. Более длинные волны -- радиоволны, более короткие - гамма-лучи. И онизирующее излучение не доходят до поверхности Земли, потому что задерживаются в верхних слоях атмосферы, в озоновом слое.

Интенсивность солнечной радиации зависит в первую очередь от высоты стояния солнца над горизонтом. Если солнце находится в зените, то путь который проходит солнечные лучи будет значительно короче, чем их путь если солнце находится у горизонта. За счет увеличения пути интенсивность солнечной радиации меняется. Интенсивность солнечной радиации зависит также от того под каким углом падают солнечные лучи, от этого зависит и освещаемая территория (при увеличении угла падения площадь освещения увеличивается). Таким образом, та же солнечная радиация приходится на большую поверхность, поэтому интенсивность уменьшается. Интенсивность солнечной радиации зависит от массы воздуха через который проходит солнечные лучи. Интенсивность солнечной радиации в горах будет выше чем над уровнем моря, потому что слой воздуха через который проходят солнечные лучи будет меньше чем над уровнем моря. Особое значение представляет влияние на интенсивность солнечной радиации состояние атмосферы,ее загрязнение. Если атмосфера загрязнена, то интенсивность солнечной радиации снижается (в городе интенсивность солнечной радиации в среднем на 12% меньше чем в сельской местности). Напряжение солнечной радиации имеет суточный и годовой фон, то есть напряжение солнечной радиации меняется в течении суток, и зависит также от времени года. Наибольшая интенсивность солнечной радиации отмечается летом, меньшая -- зимой. По своему биологическому действию солнечная радиация неоднородна: оказывается каждая длина волны оказывает различное действие на организм человека. В связи с этим солнечный спектр условно разделен на 3 участка:

1. ультрафиолетовые лучи, от 280 до 400 нм

2. видимый спектр от 400 до 760 нм

3. инфракрасные лучи от 760 до 2800 нм.

При суточном и годовом годе солнечной радиации состав и интенсивность отдельных спектров подвергается изменениям. Наибольшим изменениям подвергаются лучи УФ спектра.

Солнечная радиация является мощным оздоровительным и профилактическим фактором.

54 .Колличественная и качественная характеристика солнечной радиации. Вследствие поглощения, отражения и рассеяния лучистой энергии в мировом пространстве на поверхности Земли солнечный спектр ограничен,особенно в ее коротковолновой части. Если на границе земной атмосферы УФ часть-5%, видимая-52%, инфракрасная- 43%, то у поверхности Земли состав солнечной радиации иной: УФ часть-1%, видимая-40%, инфракрасная-59%. Это объясняется различной степенью чистоты атмосферного воздуха, большим разнообразием погодных условий, наличием облаков и тд. На большой высоте толща атмосферы,проходимая солнечными лучами, уменьшается, снижается степень их поглощения атмосферой, интенсивность солнечной радиации увеличивается. В зависимости от высоты стояния Солнца над горизонтом изменяется соотношение прямой солнечной радиации и рассеянной, что имеет существенное значение в оценке эффекта ее биологического действия.

55.Гигиеническая характеристика ультрафиолетовой части солнечной радиации . Это наиболее активная в биологическом плане часть солнечного спектра. Она также неоднородна. В связи с этим различают длиноволновые и коротковолновые УФ. УФ способствуют загару. При поступлении УФ на кожу в ней образуются 2 группы веществ: 1) специфические вещества, к ним относятся витамин Д, 2) неспецифические вещества -- гистамин, ацетилхолин, аденозин, то есть это продукты расщепления белков. Загарное или эритемное действие сводится к фотохимическому эффекту -- гистамин и другие биологически активные вещества способствуют расширению сосудов. Особенность этой эритемы -- она возникает несразу. Эритема имеет четко ограниченные границы. Ультрофиолетовая эритема всегда приводит к загару более или менее выраженному, в зависимости от количества пигмента в коже. Механизм загарного действия еще недостаточно изучен. Считается что сначала возникает эритема, выделяются неспецифические вещества типа гистамина, продукты тканевого распада организм переводит в меланин, в результате чего кожа приобретает своеобразный оттенок. Загар, таким образом является проверкой защитных свойств организма (больной человек не загорает, загорает медленно).

Самый благоприятный загар возникает под воздействием УФЛ с длиной волны примерно 320 нм, то есть при воздействии длиноволновой части УФ-спектра. На юге в основном преобладают коротковолновые, а на севере -- длиноволновые УФЛ. Коротковолновые лучи наиболее подвержены рассеянию. А рассеивание лучше всего происходит в чистой атмосфере и в северном регионе. Таким образом, наиболее полезный загар на севере -- он более длительный, более темный. УФЛ являются очень мощным фактором профилактики рахита. При недостатке УФЛ у детей развивается рахит, у взрослых -- остепороз или остеомаляция. Обычно с этим сталкиваются на Крайнем Севере или у групп рабочих работающих под землей. В Ленинградской области с середины ноября до середины февраля практически отсутствует УФ часть спектра, что способствует развитию солнечного голодания. Для профилактики солнечного голодания используется искусственный загар. При действии УФ в воздухе происходит образование озона, за концентрацией которого необходим контроль.

УФЛ оказывают бактерицидное действие. Оно используется для обеззараживания больших палат, пищевых продуктов, воды.

Определяется интенсивность УФ радиации фотохимическим методом по количеству разложившийся под действием УФ щавелевой кислоты в кварцевых пробирках (обыкновенное стекло УФЛ не пропускает). Интенсивность УФ радиации определяется и прибором ультрафиолетметром. В медицинских целях ультрафиолет измеряется в биодозах.

56. Физиолого-гигиеническое значение ультрафиолетового излучения. Мероприятия по профилактике УФ нед-ти. См 55.

Профилактика УФ-недостаточности

1. Архитектурно-планировочные мероприятия.

При проектировании и строительстве жилых зданий, детских, лечебно-профилактических и других учреждений необходимо учитывать инсоляционный режим.

2. Гелиотерапия (солнечные ванны). Может организовываться на пляжах, в соляриях. Солнечные ванны могут быть суммарными (общими и местными), ослабленными, тренирующими. Суммарные ванны используют для здоровых, закаленных детей. Общие солнечные ванны могут быть ослабленными за счет применения решетчатых тентов, марли.

3. Использование искусственных источников.

57. Биологическое действие ультрафиолетовых лучей (УФЛ) весьма и весьма разнообразно. Оно может носить как положительный, так и деструктивный характер. Наиболее опасны эффекты воздействия коротковолнового УФЛ (10-200 нм), подавляющая часть которых задерживается в верхних слоях атмосферы, в частности, в озоновом ее слое. Однако опасность поражения УФЛ имеет место при длительном пребывании человека на Солнце, а также в производственных условиях при работе с искусственными источниками УФЛ (электросварка), проведении физиопроцедур (лечебное, профилактическое ультрафиолетовое облучение). Повышение дозы УФЛ приводят к денатурации белка, чем, в первую очередь, обусловлено развитие катаракты, что требует при работе с УФЛ защиты зрительного анализатора. Деструктивный эффект УФЛ используется в практической деятельности человека. В частности, губительное действие их на микробные клетки (бактерицидный эффект при длине волн 180–280 нм, максимальный – при 254 нм) широко применяется для санации воздуха, поддержание антимикробного режима в помещениях лечебно-профилактических учреждений, обеззараживания воды. Способность различных сред люминесцировать под воздействием УФЛ используется в аналитической химии. Например, люминесцентный метод используется для определения витаминов в продовольственном сырье и продуктах питания.

Положительные аспекты действия УФЛ заключаются в следующем:

· УФЛ стимулируют выработку антител, фагоцитоз, накопление агглютининов в крови, повышая естественный иммунитет, резистентность организма к воздействию неблагоприятных факторов окружающей среды

· УФЛ обусловливают пигментообразование (длины волн в районе 340 нм) и эритемообразование

· УФЛ играют значительную роль в обеспечении организма витамином D3

В климатологии по уровню УФЛ выделяют «зону дефицита» (широта выше 57,5°), «зону комфорта» (42,5–57,5°), «зону избытка» (менее 42,5°), что необходимо учитывать при гигиеническом воспитании населения, проведении профилактических мероприятий.

С дефицитом УФЛ в первую очередь связано развитие синдрома светового голодания, который может наблюдаться у людей, живущих в «зоне дефицита», в городах с загрязненной атмосферой, работающих под землей, мало бывающих на открытом воздухе.

Для защиты от ультрафиолетового излучения применяются коллективные и индивидуальные способы и средства:экранирование источников излучения и рабочих мест; удаление обслуживающего персонала от источников ультрафиолетового излучения (защита расстоянием – дистанционное управление); рациональное размещение рабочих мест; специальная окраска помещений; СИЗ и предохранительные средства (пасты, мази).Для экранирования рабочих мест применяют ширмы, щитки или специальные кабины. Стены и ширмы окрашивают в светлые тона (серый, желтый, голубой), применяют цинковые и титановые белила для поглощения ультрафиолетового излучения.К средствам индивидуальной защиты от ультрафиолетовых излучений относятся: термозащитная спецодежда; рукавицы; спецобувь; защитные каски; защитные очки и щитки со светофильтрами в зависимости от выполняемой работы.Для защиты кожи от ультрафиолетового излучения применяются мази с содержанием веществ, служащих светофильтрами для этих излучений (салол, салицилово-метиловый эфир и др.).

Под вентиляцией (от лат.ventilatio - проветривание) понимается замена воздуха в помещении. В необходимых случаях при этом проводится: кондиционирование воздуха (фильтрация, подогрев или охлаждение, увлажнение или осушение), ионизация и т.д. Вентиляция обеспечивает благоприятные для здоровья санитарно-гигиенические условия (температуру, влажность, скорость движения воздуха и чистоту воздуха) воздушной среды в помещении, благоприятные для здоровья и самочувствия человека, отвечающие требованиям санитарных норм, технологических процессов, строительных конструкций зданий и т.д.

Основное назначение вентиляции - удаление продуктов жизнедеятельности людей и подача свежего воздуха в помещение.

Вентиляция, может быть естественной и искусственной.

При естественной вентиляции смена воздуха происходит за счет удаленных масс теплового и холодного воздуха или за счет движения наружного воздуха.

Когда необходимые метеорологические условия и состав воздуха в помещениях не могут быть обеспечены вентиляцией с естественным побуждением, эти помещения должны быть оборудованы вентиляцией с механическим побуждением. Искусственная вентиляция воздуха делится на приточную, вытяжную и комбинированную (приточно-вытяжную). С помощью приточной вентиляции в помещения принудительно подается наружный воздух, который разбавляет загрязнения и в результате подпора вытесняет его. При вытяжной вентиляции загрязненный воздух по воздуховоду поступает наружу и вследствие небольшого разрежения свежий воздух поступает через вентиляционные отверстия. Комбинированная система вентиляции представляет собой сочетание приточной и вытяжной и является наиболее эффективной.

Приточная вентиляции применяется большей частью в жилых и общественных помещениях, вытяжная вентиляция - в помещениях, имеющих источники загрязнения воздуха (санитарно-бытовые, изоляторы, буфетные), а комбинированные - в наиболее изолированных помещениях.

Система искусственной вентиляции состоит из набора элементов, включающих воздухозаборные устройства, вентиляторы, фильтры, воздуховоды, воздухораспределители, воздуховыбрасывающие шахты.

Таблица 3.1 - Классификация систем вентиляции

Признак Виды
По способу создания давления и перемещения воздуха С естественным и искусственным (механическим) побуждением
По назначению Приточная и вытяжная
По способу организации воздухообмена Общеобменные, Местные, аварийные, противодымные
По месту действия Общая и местная

Оценка эффективности вентиляции может быть сделана на основании:

1) санитарного обследования вентиляционной системы и режима ее эксплуатации;

2) расчета фактического объема вентиляции и кратности воздухообмена по формулам или данным замеров;

3) объективного исследования воздушной среды и микроклимата вентилируемых помещений;

4) субъективных ощущений человека.

При гигиенической оценке воздушного комфорта имеет значение воздушный куб. Воздушный куб определяется площадью помещения и высотой.

Наиболее удобным критерием оценки химического состава воздуха является концентрация в нем углекислого газа; его предельно допустимая концентрация (ПДК) равна 0,1 % или 1 ‰.

Необходимый объем вентиляции - количество воздуха в м, которое надо подать в помещение на 1 человека в час, чтобы содержание СО 2 не превысило допустимого уровня (0,1 %).

Взрослый человек при легкой физической работе производит в течение 1 мин. 18 дыхательных движений с объемом каждого дыхания 0,5 л и, следовательно, в течение одного часа выдыхает 540 л воздуха (18*0,5*60=540 л). Так как в выдыхаемом воздухе содержится 4 % С0 2 , общее количество выдыхаемого СО 2 за 1 час составит 21,6 л.

Необходимый объем вентиляции рассчитывается по формуле:

L - объем вентиляции в м 3 /час;

k - количество литров углекислого газа, выдыхаемого одним человеком в час при спокойной работе (для взрослого - в среднем 22,6 л, для школьника примерно столько литров, сколько лет школьнику);

р - предельно допустимая концентрация углекислого газа, т.е. 1 ‰;

q - концентрация углекислого газа в атмосфере (0,4 ‰).

Для взрослого человека объем вентиляции в час равен, в среднем, 37,7 м 3 ; для первоклассника он равен 10-12 м 3 , для выпускника школы - 25-30 м 3 . Это тот объем воздуха, который нужен для нормального газообмена, хорошего самочувствия и высокой работоспособности в течение часа.

Необходимая кратность воздухообмена - сколько раз за 1 час должен полностью обновиться (смениться) воздух, чтобы на протяжении часа он соответствовал нормативам.

K - кратность воздухообмена, раз;

L - объем вентиляции в час, м 3 /час;

V - объем помещения, м 3 .

В жилых помещениях кратность воздухообмена должна быть не менее 2.

Чистота воздуха закрытых помещений оценивается не только по содержанию в нем СО 2 , но и пыли, микроорганизмов (микробное число, санитарно-показательные микроорганизмы), углеводородов и др.

В выдыхаемом воздухе, найдено более 200 различных соединений, главным образом органических продуктов метаболизма (табл. 5.1). Интегральным количественным показателем содержания этих соединений в воздухе может быть так называемая окисляемость воздуха , т.е. количество миллиграммов 02, которая необходима для окисления недоокисленных веществ ВИЧ воздуха (г / м3). Окисляемость выдыхаемого здоровым человеком, в норме составляет 15-20 мг / л. Воздух жилых помещений считается чистым, если окисляемость не превышает 5 .мг / л, умеренно загрязненным - при окисляемости 6-9 мг / л, загрязненным - если окисляемость составляет 10 мг / л и более.

Таблица 5.1

Специальные исследования (IL Никберг, 1987) показали, что количество отдельных ингредиентов (двуокиси углерода, аммиака), а также суммарное количество недоокисленных веществ в выдыхаемом воздухе (то есть, его окисляемость) существенно зависят от состояния здоровья человека, характера заболевания и степени его тяжести, курение табака, особенности обменных процессов и т.п.

Среди химических составляющих воздуха в помещении большое гигиеническое значение имеет двуокись углерода (СO 2 ). Этот газ относится к физиологически активных соединений, является возбудителем дыхательного центра и антагонистом O2, не имеет запаха и цвета, плохо растворяется в воде, вдвое тяжелее воздуха. В крови нормальный парциальное давление СО2 составляет 10 мм, а это на 8-10 мм.рт.ст, выше, чем в вдыхаемом воздухе, в котором его концентрация составляет 3,5-4,5%.

В зависимости от концентрации СО, в выдыхаемом воздухе, реакция организма человека может быть разной. Если концентрация СО2 менее 0,1%, человек чувствует себя нормально, субъективные или объективные нарушения отсутствуют. Именно эту концентрацию (0,1%) установлено как предельно допустимую для воздуха жилых помещений. ПДК диоксида углерода в воздухе лечебных учреждений равна 0,07%.

Если концентрация СО2 колеблется в пределах 0,1-0,5%. Ухудшается условно-рефлекторная деятельность (увеличивается время латентного периода реакции на зрительный или слуховой раздражитель), появляется ощущение дискомфорта, могут быть обнаружены некоторые изменения на ЭКГ.

При вдыхании воздуха, в котором концентрация СО, более 0,5% (0,5-1%), появляются первые проявления ацидоза, изменения электролитных свойств крови (увеличивается содержание Na, уменьшается содержание К в эритроцитах). Однако физическая и умственная деятельность существенно не ухудшаются, поэтому пребывание людей при такой концентрации иногда разрешается (на подводных лодках и т.п.).

Если концентрация СО2 увеличивается до 2% - нарастает ацидоз, снижается работоспособность, появляются признаки гипоксии. При таких условиях на производстве можно работать только в течение ограниченного времени - до 3-4 часов.

Если концентрация СО2 более 2% (2-7%), наблюдаются четкие субъективные и объективные проявления токсического воздействия СО2 в виде наркотического действия, неадекватного психического возбуждения, возникает тахипноэ, головные боли, головокружение, одышка. При таких условиях длительное пребывание в помещениях недопустимо (оно может быть вынужденным только в случае аварийных ситуаций, продолжаться до 60 минут и сопровождаться строгим медицинским контролем).

Пребывание в помещении с концентрацией СО2 в воздухе более 7% быстро приводит к потере сознания и смерти.

Доминирующим по токсичности компонентом среди основных источников загрязнения воздуха жилых помещений является окись углерода (СО).

Окись углерода СО представляет собой продукт неполного сгорания топлива и входит в состав всех горючих смесей. Окись углерода, проникая через легочные альвеолы в кровь, образует с гемоглобином карбоксигемоглобин. А это вызывает глубокие количественные и качественные изменения процессов транспорта кислорода к тканям, усиливает гипоксические состояния, негативно влияет на биохимические процессы организма, может привести к хроническим и острым отравлениям. Острые отравления окисью углерода в свободной атмосфере и в жилых помещениях обычно не наблюдаются. Хронические отравления возможны при концентрации, превышающей 20-30 мг / м3. Для них характерно: появление головной боли, снижение памяти, повышение утомляемости, нарушения сна и др. Предельно допустимая средняя суточная концентрация окиси углерода в атмосфере составляет 1 мг / м 3, а максимальная разовая - 3 мг / м 3.

В воздухе жилых помещений окись углерода может появляться при печном отоплении, особенно при преждевременно закрытой дымовой трубе. В современных газифицированных кухнях и ванных комнатах в результате утечки газа из сети или его неполном сгорании во время эксплуатации. На производстве окись углерода может образовываться и накапливаться в рабочих помещениях в результате технологических процессов. В табачном даме содержится около 0,5-1,0% окиси углерода. По данным ИЛ. Даценко и Р. Д. Габовича (1999г.), В газифицированных квартирах содержание СО в воздухе не только кухонь, но и в жилых комнатах может превышать предельно допустимый для атмосферного воздуха (10 мг / м3).

Источником загрязнения СО атмосферы служат выбросы промышленных предприятий, выхлопные газы автотранспорта и др. В обычном даме содержится около 3% окиси углерода в выхлопных газах при нормальном режиме работы двигателя - 7,7%. На городских улицах с интенсивным движением автомобилей и в домах, расположенных на этих улицах, при открытых окнах концентрация окиси углерода повышается до 10-20 мг / м3.

В связи с широким внедрением в народное хозяйство двигателей внутреннего сгорания, развитием автомобильного движения, авиации, использованием в сельском хозяйстве разного рода самоходных машин борьбе с загрязнением воздуха окисью углерода уделяется большое внимание.

Классификация химических факторов производственной среды:

а) по агрегатному состоянию: газы, пары, аэрозоли и смеси;

б) по происхождению (химическими классами): органические, неорганические, элементоорганическими и др.;

в) по характеру воздействия на организм человека: общетоксические, раздражающие, сенсибилизирующие, канцерогенные, мутагенные, влияющие на репродуктивную функцию, эмбриотоксические и тератогенные;

г) в зависимости от поражения органов и систем: яда политропный, нейротропного, нефротоксического и кардиотоксического влияния, а также яды крови

д) по степени токсичности: чрезвычайно токсичны, высокотоксичные, умеренно токсичные и малотоксичные;

е) по степени воздействия на организм в целом: чрезвычайно опасные (1-й класс), высокоопасные (2-й класс), умеренно опасные (3-й класс) и малоопасные (4-й класс).

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

“Санкт-Петербургский Торгово-Экономический Институт”

кафедра технологии и организации питания

Реферат на тему: гигиена воздуха

Санкт-Петербург

Гигиена воздуха.

Физические свойства воздуха

Химический состав воздуха и его санитарное значение.

Механические примеси.

Санитарно-гигиенические нормы допустимых уровней ионизации воздуха (СанПиН от 16 июня 2003 года)

Государственный и ведомственный контроль за соблюдением санитарных норм и правил.

Микрофлора воздуха.

Загрязнение воздушной и окружающей среды.

Охрана окружающей среды.

Состояние качества атмосферного воздуха и характеристики источников загрязнения атмосферы.

Нам не страшен СО 2.

Требования к вентиляции и отоплению

Список использованной литературы:

Воздушная среда состоит из газообразных веществ, не­обходимых для жизнедеятельности человека. Она обеспе­чивает механизмы теплообмена и функции органов чело­века, ориентирующих его в пространстве (зрение, слух, обо­няние), а также служит природным резервуаром, в котором обезвреживаются газообразные продукты обмена веществ живых организмов и отходы промышленного производства. Наряду с этим воздушная среда при значительном измене­нии ее естественных физических и химических свойств, бактериологическом и пылевом загрязнении может служить причиной различных заболеваний человека. Источниками загрязнения воздушной среды являются токсические отхо­ды промышленных производств, выхлопные газы автотранспорта, ядохимикаты, используемые в сельском хо­зяйстве, и др. Особую опасность при этом представляют ток­сические туманы (смоги), связанные с накоплением в воз­духе, например, сернистого газа, что приводит к острым и хроническим массовым отравлениям.

При гигиенической оценке воздушной среды рассматри­вают требования к атмосферному воздуху и воздуху за­крытых помещений. Учитывают его физические свойства, химический и бактериальный состав, наличие механичес­ких примесей.

Физические свойства воздуха

К физическим свойствам воздуха относятся: темпера­тура, влажность, подвижность, барометрическое давление, электрическое состояние, интенсивность солнечной радиа­ции, ионизирующая радиоактивность. Каждый из этих фак­торов имеет самостоятельное значение, однако на организм они оказывают комплексное влияние.

При характеристике гигиенических показателей воз­душной среды особое значение придают комплексу физи­ческих факторов, определяемых как климат. Они играют решающую роль в регуляции теплообмена человека. К ним относят температуру, относительную влажность и скорость движения воздуха.

При гигиенической оценке воздуха закрытых помеще­ний факторы, характеризующие климат, объединяют поня­тием микроклимат помещений.

Теплообмен человека состоит из двух процессов: теплопродукции и теплоотдачи. Теплопродукция про­исходит за счет окисления пищевых веществ и освобожде­ния тепла при мышечных сокращениях. Некоторая часть тепла поступает в организм извне за счет солнечной энер­гии, нагретых предметов и горячей пищи. Теплоотдача осуществляется проведением, или конвекцией (за счет разницы температур тела и воздуха), излучением, или ра­диацией (за счет разницы температур тела и предметов), и испарением (с поверхности кожи, через легкие и дыхатель­ные пути). В состоянии покоя и комфорта теплопотери человека составляют: конвекцией - около 30%, излучени­ем - 45, испарением - 25%.

Человек обладает способностью регулировать интен­сивность теплопродукции и теплоотдачи, благодаря чему температура его тела остается, как правило, постоянной. Однако при значительных изменениях метеорологических факторов среды состояние теплового равновесия может на­рушаться и вызвать в организме патологические сдвиги - перегрев или переохлаждение.

Оптимальный микроклимат - это такие показатели микроклимата, которые при длительном воздействии на человека обеспечивают сохранение нормального теплово­го состояния организма без напряжения механизмов тер­морегуляции и обеспечивают ощущение теплового ком­форта.

Оптимальные для человека значения метеорологичес­ких условий в производственных условиях различаются в зависимости от категории работ по степени тяжести, т. е. в зависимости от общих энергозатрат организма (в ккал/ч) и периода года. Например, при физических работах средней тяжести (категория II) с расходом энергии в пределах 151-250 ккал/ч (175-290 Вт) оптимальные значения микро­климата в холодный период года (среднесуточная темпе­ратура наружного воздуха равна или ниже 10°С) характери­зуются следующими показателями: температура 17-20"С, относительная влажность 40-60%, скорость движения воз­духа 0,2 м/с.

Благодаря механизмам терморегуляции человек от­носительно легко переносит значительные отклонения тем­пературы воздуха от комфортной и даже способен пере­нести кратковременное воздействие воздуха температурой 100 в С и выше.

При повышении температуры воздуха компенсаторные реакции организма приводят к некоторому снижению теп­лопродукции и усилению отдачи тепла с поверхности кожи. Если повышение температуры воздуха сопровождается откло­нением от нормы и других метеорологических факторов (влажность, движение воздуха, интенсивность теплового излучения), то нарушение терморегуляции наступает зна­чительно быстрей. Так, при нормальной относительной влажности воздуха (40%) нарушение терморегуляции орга­низма наступает при температуре воздуха свыше 40 "С, а при относительной влажности 80-90 % - уже при 31-32 "С. В условиях высоких температур и высокой влажности воз­духа человек освобождается от избытка тепла преимущест­венно за счет испарения влаги с поверхности кожи. Напри мер, потеря влаги в условиях горячего цеха может дости­гать у работника примерно 10 л в сутки. Вместе с потом из организма удаляются соли, водорастворимые витамины В и С. Потеря хлоридов и воды при обильном потоотделении ведет к обезвоживанию тканей, угнетению желудочной сек­реции. Кроме того, усиливаются процессы торможения в центральной нервной системе, отмечается ослабление вни­мания, нарушение координации движений, что увеличивает производственный травматизм. Особенно тяжело человек переносит повышенные температуры и влажность непод­вижного воздуха. В этих условиях подавляются в организ­ме все механизмы теплоотдачи.

Резкое перегревание организма может привести к раз­витию теплового удара, проявляющегося в виде слабости, головокружения, шума в ушах, сердцебиения, а в тяжелых случаях - повышения температуры, нервно-психического возбуждения или потери сознания. Следует отметить, что присутствие нагретых поверхностей усиливает состояние перегрева организма за счет особенностей биологического действия радиационного тепла. В соответствии с законами теплоизлучения (Кирхгофа, Стефана-Больцмана, Вина) теп­ловое излучение нагретого предмета происходит более ин­тенсивно, чем повышение его температуры, а спектральный состав излучения по мере нагревания предмета сдвигается в сторону более коротких волн и, следовательно, обуслов­ливает более глубокое проникающее действие тепла на организм.

В производственных цехах предприятий общественного питания важнейшей гигиенической задачей является профилактика перегрева организма. С этой целью предус­матриваются удаление избыточного тепла с помощью общей и местной вентиляции, применение совершенных конструк­ций тепловых аппаратов, использование рациональной спец­одежды.

Низкие температуры воздуха (особенно в сочетании с высокой влажностью и подвижностью) могут привести к заболеваниям, связанным с переохлаждением организма. В этих условиях понижается температура кожи, снижается со­кратительная способность мышц, особенно рук, что сказы­вается на работоспособности человека. При глубоком ох­лаждении ослабляются реакции на болевые раздражители в результате наркотического действия холода, понижается сопротивляемость организма к инфекционным заболеваниям. Например, местное охлаждение рук при длительной разгрузке мороженого мяса, рыбы, мытье овощей холодной водой приводит к нарушению кровообращения, что являет­ся простудным фактором.

В связи с этим на предприятиях очень важно соблюдать гигиенические мероприятия, предупреждающие переохлаж­дение организма: устройство местной вентиляции, исклю­чающее холодные потоки воздуха (сквозняки) в рабочей зоне, организацию отогрева рук при длительной работе с холодными предметами, проектирование утепленных там­буров и т. д.

Влажность воздуха влияет на организм человека в комплексе с температурой воздуха.

С целью профилактики как перегрева, так и переохлаж­дения в производственных помещениях особое значение придается нормированию допустимых показателей темпе­ратуры, относительной влажности и скорости движения воз­духа в рабочей зоне в зависимости от категорий работ по тяжести и периода года (табл. 1).

Следует помнить, что для обеспечения допустимых по­казателей микроклимата следует применять в холодный период средства защиты рабочих мест от охлаждения из-за остекления оконных проемов, а в теплый период года - от попадания в рабочую зону прямых солнечных лучей.

Из числа вышеуказанных физических свойств воздуш­ной среды важным гигиеническим показателем является характер и степень ее ионизации.

Под ионизацией воздуха понимают превращение ней­тральных газов молекул и атомов в ионы, несущие положи­тельный и отрицательный заряды. Ионизация происходит путем перераспределения электронов между атомами и мо­лекулами газов под влиянием радиоактивного излучения земли и космического излучения.

помещений:

2. углекислый газ

3. угарный газ

4. сернистый газ

5. Предельно допустимое содержание углекислого газа в воздухе

помещений составляет:

6. Воды, наиболее часто подвергающиеся бактериальному загрязнению:

1. грунтовые

2. поверхностные

3. межпластовые напорные

4. межпластовые не напорные

7. Зона санитарной охраны водоисточника:

1. территория, на которой запрещено строительство предприятий

2. территория около водоисточника

3. территория, на которой установлен специальный режим, направленный на охрану водоисточника от загрязнений

4. территория населенного пункта

8. Централизованное водоснабжение:

1. подвоз воды автотранспортом

2. подача воды по водопроводу

3. забор воды из колодца

4. забор воды непосредственно из родника

9. Общая жесткость воды обусловлена содержанием:

2. йода, фтора

3. кальция, магния

4. сульфатов, хлоридов

10. Повышенное содержание фтора в почве и воде может привести к:

1. флюорозу

2. кариесу

3. эндемическому зобу

4. метгемоглобинемии

11. Заболевание, причина которого связана с недостатком йода во внешней среде и в том числе в воде:

1. гигиантизм

2. эндемический зоб

3. флюороз

4. эндемический энцефалит

12. Недостаток, какого микроэлемента в воде вызывает кариес зубов:

13. Избыток химических соединений в воде, вызывающих расстройство

желудочно-кишечного тракта:

2. сульфатов

3. нитратов

4. хлоридов

14. Заболевание, к возможному возникновению которого предрасполагает

повышенная жесткость воды:

1. хронический колит

2. панкреатит

3. мочекаменная болезнь

4. хронический холецистит

15. Заболевание, передающееся через воду:

1. дифтерия

2. газовая гангрена

16. Из перечисленных заболеваний к эндемическим относят:

1. флюороз

3. дизентерия

17. Дезинфекция воды – это:

3. коагуляция воды

4. фильтрация воды

18. Предупреждение загрязнения почвы твердыми и жидкими отбросами достигается:

4. организации субботников один раз в год

Часть 2

Инструкция: Дополните ответ.

Питание, являющееся элементом комплексного лечения больных, называется _____________________.

Питание, компенсирующее неблагоприятное действие факторов внешней и производственной среды, называется _____________________.

24. Укажите основной источник белка в пище _____________________.

25. Укажите основной источник углеводов в пище _____________________.

26. Рахит может развиваться при недостатке в организме витамина _____________________.

27. Кровоточивость десен и низкая заживляемость ран связаны с дефицитом витамина_____________________.

Часть 3.

Инструкция: Решите задачу.

28. У пациента отмечаются признаки недостаточности витамина А. Перечислите эти признаки.

29. В производственных условиях рассматривался вопрос по внедрению мероприятий, наиболее эффективных с точки зрения снижения действия неблагоприятных факторов производственной среды на природу и человека. Укажите эти мероприятия.

30. В отношении медицинских работников технологические и технические мероприятия по снижения неблагоприятного действия на организм оказываются малоэффективными. Укажите, какие мероприятия применяются в отношении медицинских работников.

Вариант № 2

Часть 1

Инструкция: Выберите один правильный ответ.

1. Повышенное содержание фтора в почве и воде может привести к:

1. флюорозу

2. кариесу

3. эндемическому зобу

4. метгемоглобинемии

2. Заболевание, причина которого связана с недостатком йода во внешней среде и в том числе в воде:

1. гигиантизм

2. эндемический зоб

3. флюороз

4. эндемический энцефалит

3. Недостаток, какого микроэлемента в воде вызывает кариес зубов:

4. Избыток химических соединений в воде, вызывающих расстройство

желудочно-кишечного тракта:

2. сульфатов

3. нитратов

4. хлоридов

5. Заболевание, к возможному возникновению которого предрасполагает

повышенная жесткость воды:

1. хронический колит

2. панкреатит

3. мочекаменная болезнь

4. хронический холецистит

6. Заболевание, передающееся через воду:

1. дифтерия

2. газовая гангрена

7. Из перечисленных заболеваний к эндемическим относят:

1. флюороз

3. дизентерия

8. Дезинфекция воды – это:

1. уничтожение патогенных микроорганизмов и вирусов

2. освобождение воды от мути и взвеси

3. коагуляция воды

4. фильтрация воды

9. Предупреждение загрязнения почвы твердыми и жидкими отбросами достигается:

1. складированием мусора на определенной территории домовладения

2. сбором отбросов в ямах, вырытых на территориях домовладения

3. санитарной очисткой населенных мест

4. организации субботников один раз в год

10. Наука, изучающая влияние факторов окружающей среды на организм

человека, называется:

1. биология

2. гигиена

3. санитария

4. экология

11. Воздействие человеческой деятельности на природу:

1. абиотическое

2. биотическое