Сотовый поликарбонат отечественного производства. Карбонат натрия технический Сотовый поликарбонат технология

Благодаря универсальным техническим характеристикам, таким как легкость, прочность, коррозийная стойкость, поликарбонаты являются очень востребованным материалом в различных отраслях промышленности: в производстве автомобилей, электротехнической, электронной промышленности, в производстве предметов бытового потребления и т.д. Составляя серьезную конкуренцию металлу и стеклу, за счет увеличения потребления конструкционных материалов доля литого и сотового поликарбонатов на мировом рынке с каждым годом завоевывает все новые позиции.

Поликарбонат это материал, обладающий следующими свойствами: устойчив к морозам, способен выдержать кратковременный нагрев до 153 ºС, а также циклические перепады температур от +100ºС до -253ºС.

Производство поликарбоната - сложный технологический процесс, в основе которого лежит использование двухатомного фенола и угольной кислоты.

Поликарбонат является линейным полиэфиром этих двух составляющих компонентов. В зависимости от природы, поликарбонаты разделяются на алифатические, жирноароматические и ароматические. Практическое значение имеет лишь ароматический поликарбонат. Поликарбонаты относятся к разряду аморфных, инженерных пластиков, а изготовленные на их основе композиции - к специальным полимерам.

Достоинства поликарбоната

Широкий диапазон использования литого и сотового поликарбоната обусловлен универсальными термическими, оптическими и механическими свойствами данного материала. Так, поликарбонат обладает высокой прочностью и жесткостью в сочетании с довольно высокой стойкостью к различным ударным воздействиям, в том числе и при повышенной или пониженной температуре.

Поликарбонат - морозостойкий, оптически прозрачный материал, способный выдерживать кратковременный нагрев до 153ºС и циклические перепады температур от +100ºС до -253ºС. Поликарбонат устойчив к агрессивному воздействию окислителей, растворов солей, кислот, но не обладает устойчивостью к действию щелочей, органических растворителей и концентрированных кислот.

Вернуться к оглавлению

Современные технологии изготовления поликарбоната

Процесс создания поликарбоната базируется на использовании одной из следующих технологий: поликонденсации, переэтерификации или межфазной поликонденсации.

Поликонденсация - это метод синтеза полимеров, базирующийся на реакциях замещения мономеров и/или олигомеров, которые, взаимодействуя между собой, образовывают побочные низкомолекулярные соединения.

Переэтерификация диарилкарбонатов проводится с ароматическими диоксисоединениями (так называемый нефосгенный способ). В качестве диоксисоединения выступает 2,2-бис-(4-оксифенил) пропан (диан, бисфенол А).

В промышленном производстве поликарбоната в настоящее время используется способ, базирующийся на межфазной поликонденсации. Согласно данному методу производится взаимодействие динатриевой соли бисфенола А с фосгеном в присутствии оснований. Протекающие при взаимодействии процессы практически необратимы. Данная технология используется для производства 80% поликарбоната в мире.

Наша отечественная технология также применяет метод межфазной поликонденсации фосгена с бисфенолом А. Очевидными недостатками данного метода является высокая токсичность реагента, склонность к образованию побочных продуктов и необходимость последующей очистки образующегося полимера от изначально применяемых реагентов и побочных компонентов.

Производство полимеров на основе новейших технологий ориентировано на нефосгенный метод выпуска, который базируется на процессах взаимодействия диметилового эфира угольной кислоты (ДМУК) и дифенилолпропана. Подобное решение позволяет перевести технологическую процедуру получения ПК из фазы жидкого состояния в расплав, исключить экологически опасный фосген и существенно увеличить объемы производства.

Бесфосгенный метод по всем параметрам, кроме энергетических расходов, превосходит традиционные технологии. Но пока и он не лишен некоторых недостатков, в число которых входит побочное выделение анизола, не имеющего на данном этапе полезного применения в том объеме, который образуется в ходе нефосгенной реакции. Мировое потребление анизола в настоящее время составляет до 7 тыс. тонн, поэтому излишки материала отправляются на сжигание. Еще одним существенным минусом нефосгенной технологии является невозможность получения ряда марок поликарбоната - высокомолекулярного поликарбоната и сополимеров на основе поликарбоната.

Поликарбонатный гранулят, как известно, является основой для производства листов поликарбоната, в число которых входит и сотовый поликарбонат. Этот материал представляет собой листы ячеистой структуры, выполненные из полимера в виде сот, которые состоят из двух слоев, соединенных посредством внутренних ребер жесткости между собой. Сотовый поликарбонат - легкий, устойчивый к коррозийным процессам, ударопрочный материал с хорошими теплоизоляционными и светопрозрачными свойствами.

На рынке, помимо обычного сотового поликарбоната, можно встретить и более долговечный его аналог - полимер, покрытый специальным защитным слоем, устойчивым к ультрафиолетовому излучению. Благодаря своим универсальным свойствам сотовый поликарбонат очень востребован в строительстве и сельском хозяйстве. В зависимости от толщины, он выступает в качестве прекрасного материала для оборудования навесов, арок, крыш, витрин, перегородок, бассейнов, теплиц, балконов, автобусных остановок, вокзалов, стадионов и т.д., поэтому в число целевых потребителей материала входят автостоянки, муниципалитет, рекламные и дизайнерские компании, АЗС, подрядчики, тепличные хозяйства и сельскохозяйственные предприятия.

Сотовый поликарбонат — это листы ячеистой структуры, которые изготовлены из полимерного материала. Иными словами, этот материал представляет собой пластиковый лист, который состоит из 2-ух слоев, соединенных друг с другом внутренними ребрами жесткости, выполненными в форме сот. Сотовый поликарбонат обладает хорошими теплоизоляционными, светопрозрачными качествами, он очень легкий, чрезвычайно ударопрочный и не подвергается в процессе эксплуатации коррозии.

Здесь мы поговорим про производство поликарбоната сотового, оборудование для него и технологию изготовления.

Область применения

Чаще всего сотовый поликарбонат сегодня используется в строительной сфере и сельском хозяйстве. Он может не иметь специального защитного покрытия от ультрафиолетовых лучей, что делает его менее долговечным или же иметь специальный дополнительный слой, который является устойчивым к ультрафиолетовому излучению. На отечественном рынке сотовый поликарбонат сегодня пользуется очень высоким спросом, потому, что имеет великое множество направлений применения.

Этот материал успешно и широко применяется для оборудования навесов и крыш, создания арок и перегородок, устройства теплиц, витрин, бассейнов и балконов, а также применяется в процессе строительства стадионов, автобусных остановок и даже вокзалов и т.п. Исходя от толщины материала, которая варьируется от 4 миллиметров до 32 миллиметров, сотовый поликарбонат можно успешно использовать для самых различных целей.

Необходимое оборудование

В качестве оборудования для производства сотового поликарбоната используется экструзионная линия. Некоторые линии имеют дополнительную функцию в виде нанесения защитного слоя от ультрафиолетовых лучей.

Цена экструзионной линии на фото — 11 000 000 рублей. Технические характеристики: толщина листа — 4-16 мм, ширина — до 2100 мм, скорость изготовления — 5 метров в минуту.

Плюсом такого оборудования является еще и то, что на них еще вы можете производить сотовые листы не только из поликарбоната, но и из полипропилена, которые используются для производства упаковок, применяемых в замен картонных.

Технология производства

Сотовые поликарбонатные листы являются аморфным инженерным пластиком, который содержит в своей основе угольную кислоту и 2-хатомный фенол. Производится этот материал из поликарбонатных гранул посредством их прохождения через определенные технологические процессы.

Процесс производства состоит из следующих этапов:

1. Подготовка гранул поликарбоната

В зависимости от цвета гранул (т.е. прозрачные они или цветные) получают и цвет исходного материала сотовых поликарбонатных листов. Гранулы закупают у производителей — они поступают на производство многослойных и прочных мешках, которые прекрасно защищают сырье от влаги. После этого они взвешиваются, сортируются, тщательно очищаются от пыли и подаются для непосредственного производства листов на плавление.

2. Плавление сырья

В специальной камере, в которой происходит плавление, гранулы обычного поликарбоната из твердого состояния переходят в жидкое, в процессе чего к ним добавляются специальные компоненты, которые в значительной степени улучшают характеристики продукции, в результате чего получается однородная, тщательно перемешанная масса.

3. Формирование листов

Далее в процессе экструзии полученная в камере плавления масса формируется в определенную необходимую структуру – монолитную или сотовую. И прозрачный, и цветной сотовый поликарбонат на конвеер поступает в форме тонких пластин, которые скреплены прочными ребрами жесткости.

Видео данного процесса:

4. Остывание и нарезка

По истечению некоторого времени, которое необходимо для остывания материала, листы сотового поликарбоната подвергается нарезке на определенные размеры, после чего складируется или поступает на транспортировку.

Относится к классу синтетических полимеров - линейный полиэфир угольной кислоты и двухатомных фенолов. Они образуются из соответствующего фенола и фосгена в присутствии оснований или при нагревании диалкилкарбоната с двухатомным фенолом при 180-300 0С.

Поликарбонаты - бесцветная прозрачная масса с температурой размягчения 180-300 0С (в зависимости от метода получения) и молекулярной массой 50000-500000. Имеют высокую теплостойкость - до 153 0С. Термостойкие марки (PC-HT), представляющие собой сополимеры, выдерживают температуру до 160-205 0С. Обладает высокой жесткостью в сочетании с очень высокой стойкостью к ударным воздействиям в том числе при повышенной и пониженной температуре. Выдерживает циклические перепады температур от -253 до +100 0С. Базовые марки имеют высокий коэффициент трения. Рекомендуется для точных деталей. Имеет высокую размерную стабильность, незначительное водопоглощение. Нетоксичен. Подвергается стерилизации. Имеет отличные диэлектрические свойства. Допускает пайку контактов. Обладает хорошими оптическими свойствами. Чувствителен к остаточным напряжениям. Детали с высокими остаточными напряжениями легко растрескиваются при действии бензина, масел. Требует хорошей сушки перед переработкой.

Поликарбонат обладает высокой химической устойчивостью к большинству неинертных веществ, что дает возможность применять его в агрессивных средах без изменения его химического состава и свойств. К таким веществам относятся минеральные кислоты даже высоких концентраций, соли, насыщенные углеводороды и спирты, включая метанол. Но следует также учитывать, что ряд химических соединений оказывают на материал ПК разрушающее действие (среди полимеров не много таких, которые стойко выдерживают контакт с ними). Этими веществами являются щелочи, амины, альдегиды, кетоны и хлорированные углеводороды (метиленхлорид используют для склеивания поликарбоната). Материал частично растворим в ароматических углеводородах и сложных эфирах.

Несмотря на кажущуюся устойчивость поликарбоната к таким химическим соединениям, при повышенных температурах и в напряженном состоянии листового материала (изгиб, например) они будут действовать как трещинообразователи. Это явление повлечет за собой нарушение оптических свойств поликарбоната. Причем максимальное трещинообразование будет наблюдаться в местах наибольших изгибных напряжений.

Еще одной отличительной чертой поликарбоната является высокая проницаемость для газов и паров. Когда требуются барьерные свойства (например, при ламинировании и применении декоративных виниловых пленок средней и большой толщины от 100 до 200 мкм), необходимо на поверхность поликарбоната предварительно нанести специальное покрытие.

Не имеет аналогов по механическим свойствам среди применяемых в настоящее время полимерных материалов. Он сочетает такие свойства, как высокая термостойкость, уникальная ударопрочность и высокая прозрачность. Его свойства мало зависят от изменений температуры, а критические температуры, при которых этот материал становится хрупким, находятся вне диапазона возможных отрицательных температур эксплуатации.

Характеристики марочного ассортимента
(минимальные и максимальные значения для промышленных марок)

Наименование показателей (при 23 0С)

Поликарбонат (ПК)

ПК+40% стекловолокна

ПК термостойкий ПК-НТ

Плотность, г/см3
Теплостойкость по Вика (50 0С/ч, 50 Н), 0С
Предел текучести при растяжении (50мм/мин), МПа
Предел прочности при растяжении (50мм/мин), МПа
Модуль упругости при растяжении (1мм/мин), МПа
Относительное удлинение при растяжении (50мм/мин), %
Ударная вязкость по Шарпи (образец с надрезом), кДж/м2
Твердость при вдавливании шарика (358 Н, 30 с), МПа
Удельное поверхностное электрическое сопротивление, Ом
Водопоглощение (24 ч, влажн. 50%), %
Коэффициент светопропускания для прозрачных марок (3 мм), %

Выдающимся свойством ПК пленки является ее размерная стабильность, она совершенно непригодна в качестве усадочной пленки; нагревание пленки до 150 °С (т.е. выше точки размягчения) в течение 10 мин. дает усадку всего 2%. ПК легко сваривается как импульсным, так и ультразвуковым способами, а также обычной сваркой горячими электродами. Пленку легко формовать в изделия, при этом возможны большие степени вытяжки с хорошим воспроизведением деталей форм. Хорошую печать можно получить разными методами (шелкографии, флексографии, гравировки).

Промышленные способы получения

Основными промышленными способами получения поликарбонатов являются:

фосгенирование бисфенолов в органическом растворителе в присутствии третичных органических оснований, связывающих соляную кислоту - побочный продукт реакции (способ поликонденсации в растворе);

фосгенирование бисфенолов, растворенных в водном растворе щелочи, на поверхности раздела фаз в присутствии каталитических количеств третичных аминов (способ межфазной поликонденсации);

Содержание статьи

ЩЕЛОЧЕЙ ПРОИЗВОДСТВО, содовая промышленность, производство кальцинированной соды (карбоната натрия Na 2 CO 3) и ряда аналогичных продуктов. В широком смысле слово «щелочь» относится к большому числу химических соединений, хорошо растворимых в воде и создающих в водном растворе высокую концентрацию гидроксид-ионов, например аммиаку, гидроксиду аммония и гашеной извести (гидроксиду кальция), которые были побочными продуктами устаревшего технологического процесса производства синтетической кальцинированной соды. Щелочи – растворимые активные вещества из более широкого класса оснований.

Кальцинированная сода.

Технический карбонат натрия Na 2 CO 3 (кальцинированную соду) применяют главным образом в производстве стекла и химикатов. Около половины кальцинированной соды идет на изготовление стекла, около четверти – химикатов, 13% – мыла и моющих средств, 11% употребляется на такие цели, как изготовление целлюлозы и бумаги, рафинирование металлов и нефти, дубление кожи и очистка воды, а остальное поступает в продажу.

Природные месторождения.

Кальцинированная сода встречается в природе в больших количествах, главным образом в соляных пластах и отложениях троны (минерала состава Na 2 CO 3 Ч NaHCO 3 Ч 2H 2 O). На Земле известны более 60 таких месторождений.

Процесс Сольве.

Осуществленный в конце 1860-х годов двумя бельгийцами, братьями Эрнестом и Альфредом Сольве, аммиачный способ получения кальцинированной соды основан на реакции взаимодействия гидрокарбоната аммония с хлоридом натрия, в результате которой получаются хлорид аммония и гидрокарбонат натрия. На практике процесс проводят, вводя в почти насыщенный раствор хлорида натрия сначала аммиак, а потом диоксид углерода. Гидрокарбонат натрия выпадает в осадок, когда диоксид углерода вводится в раствор:

Прокаливая отфильтрованный гидрокарбонат натрия, получают карбонат натрия и диоксид углерода, который используют повторно:

Экономичность процесса Сольве связана с тем, что аммиак регенерируется путем обработки раствора хлорида аммония оксидом кальция, который получают из карбоната кальция путем нагрева (при этом одновременно образуется также используемый в процессе диоксид углерода):

Хлорид кальция, образующийся в процессе извлечения аммиака, является важным побочным продуктом.

Электролизный процесс.

Карбонат натрия можно также получить посредством электролизного процесса. Водяной пар и диоксид углерода запускаются в катодное отделение установки с камерой диафрагменного типа для электролиза растворов солей, где, взаимодействуя с едким натром, они превращают его в карбонат натрия.

Щелок.

Наименование «щелок» (K 2 CO 3 , Na 2 CO 3 , NaOH) было присвоено продуктам, получаемым путем выщелачивания древесной золы. Она содержит приблизительно 70% карбоната калия (поташа), используемого в основном для изготовления мыла и стекла. Карбонат натрия (кальцинированная сода) – главный компонент золы некоторых растений (солянок). Путем обработки гашеной известью (гидроксидом кальция) карбонат натрия превращают в каустическую соду (гидроксид натрия), которая применяется для бытовых и промышленных целей под названием «щелок» или «каустик».

Поташ.

Хотя в химической промышленности поташем называют главным образом карбонат калия (K 2 CO 3), в сельском хозяйстве это наименование охватывает все соли калия, идущие на изготовление удобрений, но в основном хлорид калия (KCl) с небольшой примесью сульфата калия (K 2 SO 4).

Обычные способы получения поташа – электролизный процесс с участием гидроксида калия и более распространенный процесс на основе химического взаимодействия смеси хлорида калия и карбоната магния с диоксидом углерода. В результате этой реакции образуется нерастворимая двойная соль гидрокарбоната калия и карбоната магния, которая при нагревании разлагается на карбонаты калия и магния, воду и диоксид углерода.

Карбонат калия применяется в производстве стекла, солей калия, красителей и чернил. Карбонат калия – важный компонент специальных стекол, например оптических и лабораторных.

Карбонат кальция выпадает в осадок, а раствор гидроксида натрия отводится в коллектор.

Электролизные методы.

Когда концентрированный раствор хлорида натрия подвергается электролизу, образуются хлор и гидроксид натрия, но они реагируют друг с другом с образованием гипохлорита натрия – отбеливающего вещества. Этот продукт, в свою очередь, особенно в кислых растворах при повышенных температурах, окисляется в электролизной камере до перхлората натрия. Чтобы избежать этих нежелательных реакций, электролизный хлор должен быть пространственно отделен от гидроксида натрия.

В большинстве промышленных установок, используемых для получения электролизной каустической соды, это осуществляется с помощью диафрагмы, помещенной вблизи анода, на котором образуется хлор. Существуют установки двух типов: с погруженной или непогруженной диафрагмой. Камера установки с погруженной диафрагмой целиком заполняется электролитом. Соляной раствор втекает в анодное отделение, где из него выделяется хлор, а раствор каустической соды заполняет катодное отделение. В установке с непогруженной диафрагмой раствор каустической соды отводится из катодного отделения по мере образования, так что камера оказывается пустой. В некоторых установках с непогруженной диафрагмой в пустое катодное отделение напускается водяной пар, чтобы облегчить удаление каустической соды и поднять температуру.

В диафрагменных установках получается раствор, содержащий как каустическую соду, так и соль. Большая часть соли выкристаллизовывается, когда концентрация каустической соды в растворе доводится до стандартного значения 50%. Такой «стандартный» электролизный раствор содержит 1% хлорида натрия. Продукт электролиза пригоден для многих применений, например для производства мыла и чистящих препаратов. Однако для производства искусственного волокна и пленки требуется каустическая сода высокой степени очистки, содержащая менее 1% хлорида натрия (соли). «Стандартный» жидкий каустик можно надлежащим образом очистить методами кристаллизации и осаждения.

Непрерывное разделение хлора и каустика можно также осуществить в установке с ртутным катодом. Металлический натрий образует с ртутью амальгаму, которая отводится во вторую камеру, где натрий выделяется и реагирует с водой, образуя каустик и водород. Хотя концентрация и чистота соляного раствора для установки с ртутным катодом более важны, чем для установки с диафрагмой, в первой получается каустическая сода, пригодная для производства искусственного волокна. Ее концентрация в растворе составляет 50–70%. Более высокие затраты на установку с ртутным катодом оправдываются получаемой выгодой.

Применение.

Наиболее важные области потребления каустической соды (перечислены в порядке уменьшения потребляемого количества) – химическое производство; переработка нефти; производство искусственного волокна и пленки, целлюлозы и бумаги, алюминия, моющих средств и мыла; обработка тканей; рафинирование растительного масла; регенерация резины.

Цех по производству сотового карбоната является одним из прибыльных видов бизнеса, в конце статьи представлены расчеты, прибыльность и сроки окупаемости.

Сотовый поликарбонат - это выполненные из полимера листы ячеистой структуры, пластиковый лист состоит из двух слоев, которые соединены между собой выполненными в виде сот ребрами жесткости. Материал характеризуется ударопрочностью, антикоррозийной устойчивостью, отличными теплоизоляционными и светопрозрачными свойствами.

Материал пользуется высоким спросом в строительной и сельскохозяйственной сферах, применяется для обустройства крыш, вокзалов, перегородок, навесов, арок, теплиц, бассейнов, витрин, балконов, стадионов, остановок транспорта и т.д.

Помещение

Для организация цеха по производству сотового карбоната подойдет любое производственное помещение площадью от 1500 кв.м. Помещение должно отапливаться, подъездные пути необходимы для удобной погрузки и разгрузки продукции и сырья. В цеху должна быть предусмотрена раздевалка, где рабочие могли бы сменить одежду.

В зависимости от объема производства рекомендуется также предусмотреть складское помещение площадью 2000-3000 кв.м., при выборе следует ориентироваться на удаленные от центра места и наличие удобных подъездных путей. Стоимость аренды производственного и складского помещений варьируется в пределах 1-1,5 млн. руб.

Персонал

Для обслуживания одной производственной линии достаточно 4 операторов, работающих в две смены и 1 технолога. Для поддержания помещения в надлежащем состоянии потребуется нанять 2 уборщика, на склад 1-2 сотрудника. Для ведения отчетности потребуется 1 бухгалтер, в первое время он может работать в удаленном режиме. На должность директора назначается учредитель предприятия. На зарплату оператора следует запланировать 30 000 руб., технологу - 40 000, уборщику -15 000, бухгалтеру - 20000, сотрудник склада- 20 000.

Оборудование и технология производства

Производство поликарбоната является достаточно сложным с технологической точки зрения процессом. Изготовленные из угольной кислоты и двухатомного фенола гранулы используются в качестве сырья, листы из поликарбоната получаются в результате их переработки. Гранулы могут быть цветные или прозрачные, именно от этого параметра зависит цвет листов.

Для производства поликарбоната используется специальное оборудование, позволяющее изготавливать листы шириной до 210 см и толщиной от 0,4 - 1,6 см. Линия полностью автоматизирована, оснащена всем необходимым, в том числе системами для сушки материала и печью для отжига готовой продукции.

В комплектацию линию входит также устройство, обеспечивающее покрытие листа защитными видами пленки. Максимальная производительность станка - 350 кг /ч, продукция производится со скоростью 5 метров в минуту.

Производственный процесс состоит из нескольких этапов. Взвешенные и отсортированные гранулы поступают на центрифугу, где происходит их очистка от примесей, после чего они направляются в плавильную камеру. В процессе плавления гранулы переходят в жидкое состояние, определенные свойства материалу придаются за счет добавления специальных компонентов.

Формирование листов из жидкой массы осуществляется в экструдере, на данном этапе продукции придается нужная структура - сотовая или монолитная.

Материал поступает на конвейер в виде тонких пластин, скрепленных прочными ребрами жесткости. Одновременно на листы наносятся защитная пленка, повышающая устойчивость материала к воздействию солнечных лучей. Полученные заготовки поступают под пресс, где им придается твердость и гладкость, готовые остывшие листы нарезаются в соответствии с заданными параметрами.

На финальном этапе проверяется соответствие листов стандартам качества, после чего продукция отправляется на склад или транспортируется.

Стоимость одной линии для производства поликарбоната составляет 10-12 млн. руб., на транспортировку, монтаж и пуско-наладочные работы потребуется еще 2 млн. На закупку сырья и добавки следует запланировать еще 3 млн. рублей.

Маркетинг:
Реклама (поиск клиентов)

Не стоит забывать, что продукцию необходимо реализовывать по выгодным ценам, большинство производители сотового поликарбоната размещают рекламу традиционными способами: на билбордах, в интернете и печатных изданиях. Большую прибыль может принести также части в специализированных мероприятиях с раздачей визиток с контактной информацией.

Сбыт продукции

Основными покупателями листов сотового поликарбоната являются автомобильные стоянки, заправки, тепличные хозяйства, строительные и сельскохозяйственные предприятия, спортивные комплексы, стадионы, торговые и выставочные центры, дизайнерские студии, рекламные агентства и т.д.

При высоких объемах производства рекомендуется заняться оптовыми поставками, для этого следует заключить договора с сельскохозяйственными и строительными предприятиями. Реализовывать продукцию можно также через строительные магазины и рынки, гипермаркеты, для повышения объемов продаж необходимо вкладываться в рекламу.

Финансовый план:
Инвестиции

Аренда помещения - 1-1,5 млн.
Оборудование - 10-12 млн.
Пусконаладочные работы, монтаж, доставка оборудования -2 млн. руб.
Персонал - 300 тыс.руб.
Сырье - 3 млн.руб.
Реклама - 400 тыс.руб.
Для организации цеха по производству сотового карбоната потребуется приблизительно 20 млн. руб.

Окупаемость
Срок окупаемости производства составляет приблизительно 2-2,5 года, при полной загруженности производства с самого начала -6 месяцев.