Способы преобразования электрической энергии в тепловую энергию. Преобразование тепловой энергии в электрическую с высоким КПД: способы и оборудование

В настоящее время в нашей стране большая часть электроэнергии производится на мощных электростанциях, на которых в электрическую энергию преобразуется какой-либо другой вид энергии.

В зависимости от вида энергии, которая преобразуется в электрическую, различают три основных типа электростанций: тепловые, гидро- и атомные электростанции.

На тепловых электростанциях источником энергии служит топливо: уголь, газ, нефть, мазут, горючие сланцы. Роторы электрических генераторов приводятся во вращение паровыми и газовыми турбинами или двигателями внутреннего сгорания. Наиболее экономичными являются крупные тепловые паротурбинные электростанции (ТЭС).

На тепловых паротурбинных электростанциях (рис. 3.35) в паровых котлах 1 химическая энергия топлива превращается в энергию пара 2. В турбинах 3 энергия пара преобразуется в механическую, а затем в генераторе 4, имеющем общий вал с турбиной, превращается в электрическую. От генератора энергия направляется на шины распределительного устройства станции. Отработанный пар из турбины поступает в конденсатор 5, который охлаждается проточной водой 6, и конденсат 7 в виде горячей дистиллированной воды возвращается в котел. Такие станции принято называть тепловыми конденсационными станциями.

Рис. 3.35

Тепловые конденсационные электростанции большой мощности обычно располагаются недалеко от источников топлива и крупных водоемов.

Коэффициент полезного действия ТЭС достигает 40%. Причем большая часть энергии теряется вместе с горячим отработанным паром. Специальные тепловые электростанции, так называемые теплоэлектроцентрали (ТЭЦ), позволяют значительную часть энергии отработавшего пара использовать для отопления и технологических процессов в промышленных предприятиях, а также для бытовых нужд (отопление, горячее водоснабжение). В результате КПД ТЭЦ достигает 60-70%. В настояш;ее время в нашей стране ТЭЦ дают около 40% всей производимой электроэнергии.

На гидроэлектростанциях (ГЭС) энергия движущейся воды в гидротурбине превращается в механическую, а затем в генераторе преобразуется в электрическую (рис. 3.36. Цифрами обозначены: 1 - генератор; 2 - трансформатор; 3 - турбина; 4 - лопатки направляющего аппарата). Мощность станции зависит от создаваемой плотиной разности уровней воды (напора) и от массы воды, проходящей через турбины в секунду (расхода воды). Гидроэлектростанции дают около 20% всей вырабатываемой в нашей стране электроэнергии.

Рис. 3.36

На атомных электростанциях (АЭС) технология производства электрической энергии почти такая же, как и на ТЭС. Разница состоит в том, что на АЭС энергию для преобразования воды в пар дает ядерный реактор.

Кроме мощных электростанций, находящихся в районах сосредоточения энергетических ресурсов (полноводные реки, природные запасы энергии в виде дешевых углей, торфа и т. д.), имеется группа станций местного значения. Они располагаются в непосредственной близости к потребителям. К ним относятся ТЭЦ, станции промышленных предприятий, городские, сельскохозяйственные, ветровые, передвижные и т. д.

Использование электроэнергии

Главным потребителем электроэнергии в нашей стране является промышленность, на долю которой приходится около 70% производимой электроэнергии. На фабриках и заводах, в шахтах и рудниках электродвигатели приводят в движение станки и различные механизмы. Около трети электроэнергии, потребляемой промышленностью, используется для технологических целей (электросварка, электрический нагрев и плавление металлов, электролиз и т. п.).

Исключительно важное значение имеет применение электрической энергии в сельском хозяйстве. Здесь электроэнергия используется для освещения, приведения в действие различных машин, а также аппаратов, применяемых для механической дойки, стрижки овец, пастеризации молока, приготовления кормов, на птицеводческих фермах и т. д. и т. п.

Современное строительство немыслимо без использования электроэнергии, прежде всего, для приведения в действие подъемных механизмов и для электросварки.

Крупным потребителем электрической энергии является транспорт: железнодорожный и городской (метро, троллейбус, трамвай).

Без электроэнергии не будет работать телефонная и телеграфная связь, радио,телевидение.

Электрическая энергия используется в автоматике и вычислительной технике. О применении электроэнергии для освещения жилищ, предприятий, учреждений, уличного освещения, а также в быту (электроплиты, холодильники, стиральные мап1ины, пылесосы, электробритвы и другие электробытовые приборы) знает каждый.

Преобразование механической энергии в электрическую

Эффект Толмена. Толмен обнаружил явление инерции электронов в металлах. При движении проводника с ускорением, мы можем наблюдать разность потенциалов на концах проводника.

Трибоэлектричество - возникновение электрических зарядов при трении двух разнородных тел. При трении химически одинаковых тел, положительный заряд получает более плотное из них. При трении двух диэлектриков положительно заряжается диэлектрик с большей диэлектрической проницаемостью. Вещества можно расположить в трибоэлектрические ряды, в которых предыдущее тело электризуется положительно, а последующее отрицательно.

Акусто-электрический эффект - возникновение постоянного тока ЭДС в проводящей среде (проводник, полупроводник) под действием бегущей ультразвуковой волны. Появление тока связано с передачей импульса от УЗ волны электронам. Применяется для измерения интенсивности УЗ в твердых телах, большую роль играет в изучении структуры вещества.

Пьезоэлектрический эффект наблюдается в анизотропных диэлектриках, преимущественно в кристаллах некоторых веществ, обладающих определенной, достаточно низкой симметрией. Внешние механические силы, воздействуя в определенных направлениях на пьезоэлектрический кристалл, вызывают в нем не только механические напряжения и деформации (как во всяком твердом теле), но и появление на его поверхностях связанных электрических зарядов разных знаков. При изменении направления механических сил на противоположное становятся противоположными знаки зарядов. Нашел широкое применение в датчиках давления, используются для измерения уровня вибраций, акустических антеннах, дефектоскопии, гидроакустики, мощные источники УЗ волн .

Преобразование тепловой энергии в электрическую и термоэлектрическую энергию

Пироэлектричество - возникновение электрических зарядов на поверхности пироэлектриков при их нагревании или охлаждении. Один конец пироэлектрика заряжается положительно, а другой отрицательно, при охлаждении наоборот. Пироэлектрики - диэлектрики, обладающие спонтанной поляризацией, используются в качестве индикаторов и приемников излучений.

Эффект Зеебека - термоэлектрический эффект, возникновение электродвижущей силы в электрической цепи, состоящей из последовательно соединённых разнородных проводников, контакты между которыми находятся при различных температурах. Можно использовать, как датчик термоэлектрический преобразователь.

Эффект Пельтье - эффект выделения или поглощения тепла при протекании электрического тока через соединение двух металлов, сплавов или полупроводников. Используется в термоэлектрических охлаждающих устройствах, термоэлектрических преобразователях.

Эффект Томсона - состоит в выделении или поглощении теплоты в проводнике с током, вдоль которого имеется градиент температуры, происходит помимо выделения джоулевой теплоты. Если вдоль проводника, по которому протекает ток, существует градиент температуры, причем направление тока соответствует движению электронов от горячего конца к холодному, то при переходе из более нагретого участка в более холодный электроны тормозятся и передают избыточную энергию окружающим атомам (выделяется теплота); при обратном направлении тока электроны, переходя из более холодного участка к более нагретому, ускоряются полем термоЭДС и пополняют свою энергию за счёт энергии окружающих атомов (теплота поглощается).

Эффект Нернста-Эттингсхаузена - возникновение электрического поля в металлах и полупроводниках при наличии градиента (перепада) температуры и перпендикулярного к нему внешнего магнитного поля. Относится к числу термомагнитных явлений .

Гальваномагнитные эффекты

Эффект Холла - возникновение поперечного электрического поля и разности потенциалов в проводнике или полупроводнике, по которым проходит электрический ток, при помещении их в магнитное поле, перпендикулярное к направлению тока. На основе данного эффекта создают датчики измерения магнитных полей.

Ядерные взаимодействия

Эффект Штарка. Расщепление спектральных линий атома в постоянном электрическом поле для атомов, имеющих ненулевые дипольные моменты, сдвиг линий пропорционален напряженности поля Е, т.е. в зависимости от направления поля частота будет или возрастать, или убывать; для неполярных диэлектриков сдвиг линий пропорционален ЕІ . Это объясняется тем, что молекула или атом приобретают дополнительную энергию вращения. Это явление может быть использовано в целях измерений; например, в измерениях, связанных с определением (влажность, состав, структура и т.д.).

Ядерный магнитный резонанс (ЯМР). Качественно аналогичен ЭПР, но отличается количественно. На основе ЯМР разработаны методы измерения напряженности магнитных полей (магнитометры), методы контроля хода химических реакций.

Тепловая энергия занимает особое место в человеческой деятельности, поскольку она используется во всех секторах экономики, сопровождает большинство промышленных процессов и жизнедеятельность людей. В большинстве случаев отработанное тепло теряется безвозвратно и без какой-либо экономической выгоды. Этот потерянный ресурс уже ничего не стоит, поэтому повторное его использование будет способствовать как уменьшению энергетического кризиса, так и защите окружающей среды. Поэтому новые способы преобразования тепловой в электрическую энергию и конверсия отработанного тепла в электричество сегодня как никогда актуальны.

Преобразование природных источников энергии в электричество, тепло или кинетическую энергию требует максимальной эффективности, особенно на газовых и угольных электростанциях, чтобы снизить объемы выбросов СО 2 . Существуют различные способы преобразование тепловой энергии в электрическую, зависящие от типов первичной энергии.

Среди ресурсов энергии уголь и природный газ используются для выработки электроэнергии путем сжигания (тепловая энергия), а уран путем ядерного деления (ядерной энергии), чтобы использовать энергию пара для вращения паровой турбины. Десять крупнейших стран производителей электроэнергии на 2017 год представлены на фото.

Таблица эффективности работы существующих систем преобразование тепловой энергии в электрическую.

Выбор метода преобразования тепловой энергии в электрическую и его экономическая целесообразность зависят от потребностей в энергоносителях, наличия природного топлива и достаточности площадки строительства. Вид генерации варьируется во всем мире, что приводит к широкому диапазону цен на электроэнергию.

Технологии преобразования тепловой энергии в электрическую, такие как ТЭС, АЭС, КЭС, ГТЭС, ТЭП, термоэлектрические генераторы, МГД-генераторы имеют разные преимущества и недостатки. Исследовательский институт электроэнергетики (EPRI) иллюстрирует плюсы и минусы технологий генерации на природных энергетических ресурсах, рассматривая такие критические факторы, как строительство и затраты на электроэнергию, на землю, требования к воде, выбросы CO 2 , отходы, доступность и гибкость.

Результаты EPRI подчеркивают, что при рассмотрении технологий производства электроэнергии нет единого подхода к решению всех проблем, но при этом все же больше преимуществ у природного газа, который является доступным для строительства, имеет низкую себестоимость электроэнергии, создает меньше выбросов, чем уголь. Однако не все страны имеют доступ к обильному и дешевому природному газу. В некоторых случаях доступ к природному газу находится под угрозой из-за геополитической напряженности, как это было в случае с Восточной Европой и некоторыми странами Западной Европы.

Технологии возобновляемых источников энергии, такие как солнечные фотоэлектрические модули производят эмиссионное электричество. Однако для них, как правило, требуется много земли, результаты их эффективности являются неустойчивыми и зависят от погоды. Уголь, основной источник тепла, является самым проблемным. Он лидирует по выбросам CO 2 , требует много чистой воды для охлаждения теплоносителя и занимает большую площадь под строительство станции.

Новые технологии направлены на снижение ряда проблем, связанных с технологиями производства электроэнергии. Например, газовые турбины, объединенные с резервным аккумулятором, обеспечивают резерв на случай непредвиденных обстоятельств без сжигания топлива, а периодически возникающие проблемы в области возобновляемых ресурсов могут быть смягчены за счет создания доступного крупномасштабного хранилища энергии. Таким образом, сегодня нет ни одного безупречного способа преобразования тепловой энергии в электрическую, который мог бы обеспечить надежную и экономически эффективную электроэнергию с минимальным воздействием на окружающую среду.

Тепловые электростанции

На ТЭС пар высокого давления и температуры, полученный от нагрева воды при сжигании твердого топлива (главным образом угля), вращает турбину, подключенную к генератору. Таким образом он преобразует свою кинетическую энергию в электрическую. Рабочие компоненты тепловой электростанции:

  1. Котел с газовой топкой.
  2. Паровая турбина.
  3. Генератор.
  4. Конденсатор.
  5. Охлаждающие башни.
  6. Циркуляционный водяной насос.
  7. Насос подачи воды в котел.
  8. Принудительные вытяжные вентиляторы.
  9. Сепараторы.

Типовая схема представлена ниже.

Паровой котел служит для преобразования воды в пар. Этот процесс осуществляется путем нагрева воды в трубах с нагревом от сжигания топлива. Процессы горения непрерывно проводятся в камере сгорания топлива с подачей воздуха извне.

Паровая турбина передает энергию пара для вращения генератора. Пар с высоким давлением и температурой толкает лопатки турбины, установленных на валу, так, что он начинает вращаться. При этом параметры перегретого пара, поступающего в турбину, снижается до насыщенного состояния. Насыщенный пар попадает в конденсатор, а роторная мощность применяется для вращения генератора, вырабатывающего ток. Сегодня почти все паровые турбины представляют собой конденсаторный тип.

Конденсаторы - это устройства для преобразования пара в воду. Пар течет снаружи труб, а охлаждающая вода течет внутри труб. Такая конструкция называется поверхностным конденсатором. Скорость передачи тепла зависит от потока охлаждающей воды, площади поверхности труб и разности температур между водяным паром и охлаждающей водой. Процесс изменения водяного пара происходит при насыщенном давлении и температуре, в этом случае конденсатор находится под вакуумом, потому что температура охлаждающей воды равна внешней температуре, максимальная температура конденсата воды вблизи температуры наружного воздуха.

Генератор преобразует механическую энергию в состоит из статора и ротора. Статор состоит из корпуса, который содержит катушки, а магнитная полевая роторная станция состоит из сердечника, содержащего катушку.

По виду вырабатываемой энергии ТЭС делятся на конденсационные КЭС, которые производят электрическую энергию и теплоэлектроцентрали ТЭЦ, совместно выпускающие тепловую (пар и горячая вода) и электрическую энергию. Последние, имеют возможности преобразования тепловой энергии в электрическую с высоким КПД.

Атомные электростанции

АЭС используют тепло, выделяемое во время ядерного деления, для нагрева воды и производства пара. Пар используется для вращения больших турбин, которые генерируют электричество. При делении атомы расщепляются, образуя более мелкие атомы, высвобождая энергию. Процесс протекает внутри реактора. В его центре находится ядро, в котором содержится уран 235. Топливо для АЭС получают из урана, имеющего в своем составе изотоп 235U (0,7%) и неделящегося 238U (99,3 %).

Ядерный топливный цикл представляет собой серию промышленных этапов, связанных с производством электроэнергии из урана в ядерных энергетических реакторах. Уран - относительно распространенный элемент, который встречается во всем мире. Он добывается в ряде стран и обрабатывается до использования в качестве топлива.

Виды деятельности, связанные с производством электроэнергии, в совокупности относятся к ядерному топливному циклу по преобразованию тепловой энергии в электрическую на АЭС. Ядерный топливный цикл начинается с добычи урана и заканчивается удалением ядерных отходов. При переработке использованного топлива в качестве опции для ядерной энергии, его этапы образуют настоящий цикл.

Чтобы подготовить топливо для использования на АЭС, осуществляются процессы по добыче, переработке, конверсии, обогащению и выпуску твэлов. Топливный цикл:

  1. Выгорание урана 235.
  2. Шлакование - 235U и (239Pu, 241Pu) из 238U.
  3. В процессе распада 235U расход его уменьшается, а из 238U при выработке э/энергии получаются изотопы.

Себестоимость твэлов для ВВР примерно 20 % себестоимости вырабатываемого электричества.

После того как уран проведет около трех лет в реакторе, используемое топливо может пройти еще один процесс использования, включая временное хранение, переработку и рециркуляцию до удаления отходов. АЭС обеспечивает прямое преобразование тепловой энергии в электрическую. Тепло, выделяемое во время ядерного деления в активной зоне реактора, используется для превращения воды в пар, который вращает лопасти паровой турбины, приводя в действие генераторы, вырабатывающие электричество.

Пар охлаждается, превращаясь в воду в отдельной структуре на силовой установке, называемой градирней, которая использует воду из прудов, рек или океана для охлаждения чистой воды паросилового контура. Затем охлажденную воду повторно используют для получения пара.

Доля выработки электроэнергии на АЭС, по отношению к общему балансу выработки их разных видов ресурсов, в разрезе некоторых стран и в мире - на фото ниже.

Принцип работы газотурбинной электростанции аналогичен работе паротурбинной электростанции. Единственное различие заключается в том, что на паротурбинной электростанции для вращения турбины используется сжатый пар, а в газотурбинной силовой установке - газ.

Рассмотрим принцип преобразования тепловой энергии в электрическую в газотурбинной электростанции.

В воздух сжимают в компрессоре. Затем этот сжатый воздух проходит через камеру сгорания, где образуется газовоздушная смесь, повышается температура сжатого воздуха. Эта смесь с высокой температурой и высоким давлением проходит через газовую турбину. В турбине она резко расширяется, получая кинетическую энергию достаточную для вращения турбины.

В газотурбинной электростанции вал турбины, генератор переменного тока и воздушный компрессор являются общими. Механическая энергия, создаваемая в турбине, частично используется для сжатия воздуха. Газотурбинные электростанции часто используются в качестве резервного поставщика вспомогательной энергии на гидроэлектростанции. Он генерирует вспомогательную мощность во время запуска гидроэлектростанции.

Конструкция газотурбинной электростанции намного проще, чем паротурбинная электростанция. Размер газотурбинной электростанции меньше, чем у паротурбинной электростанции. На газотурбинной электростанции нет котельного компонента, и, следовательно, система менее сложная. Отсутствует пар, поэтому не требуются конденсатор и градирня.

Проектирование и строительство мощных газотурбинных электростанций намного проще и дешевле, капитальные затраты и эксплуатационные расходы в значительной степени меньше стоимости аналогичной паротурбинной электростанции.

Постоянные потери на газотурбинной электростанции значительно меньше по сравнению с паротурбинной электростанцией, поскольку в паровой турбине силовая установка котла должна работать непрерывно, даже когда система не подает нагрузку в сеть. Газотурбинная электростанция может быть запущена практически мгновенно.

Недостатки газотурбинной электростанции:

  1. Механическая энергия, создаваемая в турбине, также используется для запуска воздушного компрессора.
  2. Поскольку основная часть механической энергии, создаваемой в турбине, используется для управления воздушным компрессором, общая эффективность газотурбинной электростанции не такая высокая, как эквивалентная паротурбинная электростанция.
  3. Выхлопные газы в газотурбинной электростанции сильно отличаются от котла.
  4. До фактического запуска турбины воздух должен быть предварительно сжат, что требует дополнительного источника питания для запуска газотурбинной электростанции.
  5. Температура газа достаточно высока на газотурбинной электростанции. Это приводит к тому, что срок службы системы меньше, чем у эквивалентной паровой турбины.

Из-за более низкой эффективности газотурбинная электростанция не может использоваться для коммерческого производства электроэнергии, она обычно используется для подачи вспомогательной энергии на другие обычные электростанции, например, такие как гидроэлектростанция.

Термоэмиссионные преобразователи

Они также называются термоэлектронным генератором или термоэлектрическим двигателем, которые непосредственно преобразуют тепло в электричество, используя термоэмиссию. Тепловая энергия может быть преобразована в электроэнергию с очень высокой эффективностью через индуцированный температурой процесс электронного потока, известный как термоэлектронное излучение.

Основным принципом работы термоэлектронных преобразователей энергии является то, что электроны испаряются с поверхности нагретого катода в вакууме и затем конденсируются на более холодном аноде. После первой практической демонстрации в 1957 году термоэлектронные преобразователи энергии использовались с различными источниками тепла, но все они требуют работы при высоких температурах - выше 1500 К. В то время как работа термоэлектронных преобразователей энергии при относительно низкой температуре (700 К - 900 К) возможна, эффективность процесса, которая обычно составляет > 50%, значительно уменьшается, поскольку количество излучаемых электронов на единицу площади от катода зависит от температуры нагрева.

Для традиционных катодных материалов, таких как металлы и полупроводники, число испускаемых электронов пропорционально квадрату температуры катода. Однако недавнее исследование демонстрирует, что температура тепла может быть снижена на порядок при использовании графена в качестве горячего катода. Полученные данные показывают, что катодный термоэлектронный преобразователь на основе графена, работающий при 900 К, может достичь КПД 45%.

Принципиальная схема процесса электронной термоэлектронной эмиссии представлена на фото.

TIC на основе графена, где Tc и Ta - температура катода и температура анода, соответственно. Основываясь на новом механизме термоэлектронной эмиссии, исследователи предполагают, чтобы конвертер энергии катода на основе графена мог найти свое применение при повторном использовании тепла промышленных отходов, которое часто достигает температурного диапазона от 700 до 900 K.

Новая модель, представленная Ляном и Энгом, может принести пользу конструкции преобразователя энергии на основе графена. Твердотельные преобразователи энергии, которые в основном являются термоэлектрическими генераторами, обычно работают неэффективно в низкотемпературном диапазоне (с КПД менее 7%).

Утилизация отходов энергии стала популярной целью для исследователей и ученых, которые придумывают инновационные методы для достижения этой цели. Одним из наиболее перспективных направлений является термоэлектрические устройства на основе нанотехнологий, которые выглядят, как новый подход к экономии энергии. Прямое преобразование тепла в электричество или электричество в тепло известно, как термоэлектричество, основанное на эффекте Пельтье. Если быть точным, эффект называется именем двух физиков - Жана Пельтье и Томаса Зеебека.

Пельтье обнаружил, что ток, посылаемый в два разных электрических проводника, которые соединены на двух переходах, приведет к нагреву одного соединения, в то время как другое соединение охладится. Пельтье продолжил исследования, установил, что каплю воды можно заставить замерзнуть на стыке висмута-сурьмы (BiSb), просто изменив ток. Пельтье также обнаружил, что электрический ток может протекать, когда имеет место разность температур размещается поперек соединения разных проводников.

Термоэлектричество является чрезвычайно интересным источником электроэнергии из-за его способности преобразовывать тепловой поток непосредственно в электричество. Он представляет собой преобразователи энергии, которые легко масштабируются и не имеют движущихся частей или жидкого топлива, что делает их применимыми практически в любой ситуации, когда большое количество тепла, как правило, направляется в отходы, от одежды до крупных промышленных объектов.

Наноструктуры, используемые в материалах полупроводниковых термоэлементах, помогут поддерживать хорошую электропроводность и уменьшить теплопроводность. Таким образом, производительность термоэлектрических устройств может быть увеличена за счет использования материалов на основе нанотехнологий, с применением эффекта Пельтье. Они обладают улучшенными термоэлектрическими свойствами и хорошими поглощающими способность солнечной энергии.

Применение термоэлектричества:

  1. Поставщики энергии и датчики в диапазонах.
  2. Сжигающая масляная лампа, управляющая беспроводным приемником для удаленной связи.
  3. Нанесение небольших электронных устройств, таких как MP3-плееры, цифровые часы, чипы GPS/GSM и импульсные счетчики с теплотой тела.
  4. Быстро охлаждающие сиденья в роскошных автомобилях.
  5. Уборка отработанного тепла в автомобилях путем преобразования его в электричество.
  6. Преобразование отработанного тепла на заводах или промышленных объектах в дополнительную мощность.
  7. Солнечные термоэлектрики могут быть более эффективнее, чем фотоэлектрические элементы для выработки электроэнергии, особенно в районах с меньшим солнечным светом.

Магнитогидродинамический генератор мощности генерируют электроэнергию посредством взаимодействия движущейся жидкости (обычно ионизированный газ или плазма) и магнитного поля. С 1970 года в нескольких странах были проведены исследовательские программы МГД с особым акцентом на использование угля в качестве топлива.

Основополагающий принцип генерации MHD-технологий элегантен. Как правило, электропроводящий газ образуется при высоком давлении путем сжигания ископаемого топлива. Затем газ направляется через магнитное поле, в результате чего внутри него действует электродвижущая сила в соответствии с законом индукции Фарадея (названным в честь английского физика и химика XIX века Майкла Фарадея).

Система МГД представляет собой тепловой двигатель, включающий расширение газа от высокого до низкого давления так же, как и в обычном газовом турбогенераторе. В системе МГД кинетическая энергия газа преобразуется непосредственно в электрическую энергию, так как ей разрешено расширяться. Интерес к генерированию МГД был первоначально вызван открытием того, что взаимодействие плазмы с магнитным полем может происходить при гораздо более высоких температурах, чем это возможно во вращающейся механической турбине.

Предельные характеристики с точки зрения эффективности в тепловых двигателях были установлена в начале XIX века французским инженером Сади Карно. Выходная мощность МГД-генератора для каждого кубического метра его объема пропорциональна продукту газопроводности, квадрату скорости газа и квадрату силы магнитного поля, через который проходит газ. Для того, чтобы МГД-генераторы работали конкурентоспособно, с хорошей производительностью и разумными физическими размерами, электропроводность плазмы должна быть в диапазоне температур выше 1800 К (около 1500 С или 2800 F).

Выбор типа МГД-генератора зависит от используемого топлива и применения. Обилие запасов угля во многих странах мира способствуют развитию углеродных систем МГД для производства электроэнергии.

Исследовать работоспособность тепловых машин решил молодой французский инженер Н.С.Карно. Его работа «Размышление о движущей силе огня и о машинах, способных развивать эту силу» (1824), в которой он сформулировал общий и абстрактный методы решения специальной задачи, вышла за пределы специального исследования, положив начало новой науке - термодинамике.

Анализируя механизм действия тепловых машин, Карно исходил из того, что для их работы нужно наличие разности температур и затем их выравнивание, так же, как для работы водяных машин необходима разность уровней воды. Поэтому «возникновение движущей силы обязано в паровых машинах не действительной трате теплорода, а переходу его от горячего тела к холодному, т.е. восстановлению его равновесия». Но определяет ли производимую машиной работу? Ведь возможен процесс выравнивания температур без всякой работы, как при непосредственном тепловом контакте. Для того чтобы работа производилась, нужен посредник, рабочее вещество, которое было бы способно отобрать теплоту у нагревателя (более горячего тела) при более высокой температуре и отдать ее холодильнику (более холодному телу) - при более низкой.

Карно рассмотрел идеальную машину, которая имела бы большую эффективность, чем любая реальная машина. Идеальна она потому, что в ней отсутствует внутреннее трение, а процесс характеризуется только двумя температурами.

Теорема Карно, доказанная в этой работе: эффективность любой тепловой машины, работающей при температурах причем меньше эффективности идеальной машины. Кар-

но не вычислял коэффициент полезного действия (КПД), но указал, что он пропорционален разности падения температур единицы теплорода:

Идеи Карно в течение 10 лет не вызывали интереса, пока Клапейрон не выпустил свою книгу (1834), в которой он дал анализ работы Карно, перевел ее на математический язык и несколько улучшил сам цикл Карно - заменил его другим, теперь общеизвестным циклом из двух адиабат и двух изотерм, называемый циклом Карно. Клапейрон впервые употребил графическое изображение обратимых круговых процессов и вычислил работу как соответствующую площадь на графике.



Превращение теплоты в работу для практических целей важно, как и превращение одного вида энергии в другой. Обратимся к схеме работы тепловой машины. В цилиндре машины помещается при атмосферном давлении вещество (газ), называемое рабочим телом. Повысим его температуру, не меняя давление, и газ должен расшириться. Поршень пере-


местится на расстояние х, причем он будет двигаться против внешнего давления атмосферы. Если площадь поршня равна s, то совершается работа против силы, равной ps, так как р - сила, приходящаяся на единицу площади. Поршень переместился на расстояние х, и работа на этом пути Здесь поставлен знак минус, так как работа совершается

газом, который отдает ее внешней среде, перемещаясь в направлении, противоположном приложенной силе. Поскольку произведение sx есть изменение объема газа и равна теплоте,

затраченной на нагревание газа.

Пусть газ под поршнем в цилиндре находится в равновесии с окружающей средой. Будем медленно выдвигать поршень из цилиндра, не нарушая равновесия в каждый данный момент и сохраняя постоянство температуры. Этот процесс соответствует эмпирическому закону Бой-ля - Мариотта: pV= const. Точка 7, представляющая состояние газа, перейдет на плоскости р, V - в точку 2. Если опять же медленно и при постоянной температуре сжимать газ, то точка 2 вернется в точку 1 , потому что изотермический процесс обратим. Существует и другой обратимый процесс в идеально теплоизолированном сосуде - адиабатический. Этот процесс тоже очень медленный, так что температура во время сжатия или расширения выравнивается во всех точках, но меняется в зависимости от объема:

Оба этих обратимых процесса, конечно, идеализированы, реальные процессы могут только приближаться к ним, поскольку всегда есть какие-то потери теплоты на теплоизоляцию, вязкость среды и т. п. Цикл Карно состоит из двух изотермических и двух адиабатических процессов, которые образуют на графике в координатах (р, V) криволинейный четырехугольник. Адиабаты идут круче изотерм, поэтому они образуют боковые линии, а изотермы - основания. Теплота подводится и отнимается при изотермическом процессе, поэтому верхняя изотерма отвечает расширению газа в тепловом контакте с нагревателем температуры Т 1 , а нижняя - сжатию при контакте с холодильником при температуре Т 2 . Пусть газ получает от нагревателя теплоту Q 1 ,а холодильнику отдает теплоту Q 2 . Тогда за весь цикл он получит теплоту Q = Q 1 - Q 2 , равную совершенной работе А. Отношение работы А к теплоте, полученной у нагревателя (с нагревателем связаны основные затраты, ведь это ему нужно топливо), называется коэффициентом полезного действия теплового двигателя: КПД =

Коэффициент полезного действия двигателя, таким образом, определяется разностью температур нагревателя и холодильника, деленной на температуру нагревателя:

На рис. 4.3 графически представлена совершенная работа при Q = А + Q 1 , Возможность построения машины без холодильника, т.е. с КПД = 1, которая могла бы превращать в работу всю теплоту, заимствованную у теплового резервуара, не противоречит закону сохранения энергии. По своему практическому значению она


не уступала бы перпетуум-мобиле, так как могла бы производить работу за счет почти неисчерпаемых запасов внутренней энергии, содержащихся в воде морей и океанов, в атмосфере и недрах Земли. Такую машину У.Оствальд назвал перпетуум-мобиле второго рода (в отличие от перпетуум-мобиле первого рода - вечного двигателя, производящего работу из ничего). Карно исходил из идеи невозможности вечного двигателя, опираясь на факты многочисленных опытов, которая была возведена в постулат, названный вторым началом термодинамики.

На основе термодинамики У. Томсон (впоследствии лорд Кельвин) предложил абсолютную шкалу температур (см. рис. 4.1). Он исходил из того, что КПД всех обратимых двигателей определяется только абсолютными температурами холодильника и нагревателя. Машина Карно может использоваться для градуировки шкалы, если закрепить точку таяния льда. Проведя цикл Карно между данным телом и тающим льдом и измерив соответствующие количества теплоты, можно из прямой пропорциональности количества теплоты и температур найти абсолютную температуру (в К). С 1954 г., по определению X Генеральной конференции по мерам и весам, температура тройной точки воды (точка равновесного сосуществования льда, воды и пара) считается равной (273,16 К) при давлении 6,09 гПа.

Можно ли повысить КПД за счет уменьшения температуры холодильника? Казалось бы КПД = 1 при Т 2 = 0, но все газы гораздо раньше начинают сжижаться, т. е. перестают быть газами, следовательно, абсолютный нуль температур недостижим. Это и составляет содержание третьего начала термодинамики, утверждающего, что нельзя охладить вещества до температуры абсолютного нуля посредством конечного числа шагов. Понимание этого начала требует представлений об атомном строении вещества, тогда как другие начала есть обобщение непосредственного опыта и не зависят ни от каких предположений. Но: можно ли повысить КПД за счет увеличения температуры нагревателя? По этому пути развивается вся теплотехника (плазменные двигатели, например, имеют температуру горячего вещества до ), но этим путем

повышение КПД происходит медленней, чем понижением Т 2 . А когда хотят понизить температуру холодильника, обычно забывают, что на это надо затратить работу хотя бы с помощью жид-


кого воздуха. В холодильных установках теплота отбирается от холодного тела и отдается горячему, но только за счет работы извне. Смысл второго начала термодинамики в том и состоит, что нельзя непрерывно получать работу, не имея резервуара энергии. Для Земли таким источником энергии является Солнце. На солнечной энергии работают и гидростанции, и солнечные батареи, и ветряные двигатели. Их работа не противоречит второму началу термодинамики. В 1851 г. Кельвин сформулировал второе начало иначе: «Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара». Близкую формулировку дал Макс Планк: «Невозможно построить периодически действующую машину, единственным результатом которой было бы поднятие груза за счет охлаждения теплового резервуара». Поэтому иногда говорят: «Процесс Томсона - Планка невозможен». Клаузиус выдвинул второй постулат в таком виде: «Теплота не может самопроизвольно переходить от тела менее нагретого к телу более нагретому». Можно показать, что все эти варианты второго начала эквивалентны и вытекают один из другого.