Заземление и зануление - в чем разница? Заземление и зануление электрооборудования. Защитное зануление в электроустановках Суть в разделении проводника PEN на два: рабочий и защитный

Защитным заземлением называется преднамеренное электрическое соединение с землей или её эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением вследствие замыкания на корпус и по другим причинам (индуктивное влияние, вынос потенциала и т.п.). Принцип действия защитного заземления – снижение напряжения между корпусом, оказавшимся под напряжением, и землей до безопасного значения. Данное напряжение называется напряжением прикосновения U ПР. Это достигается путем уменьшения потенциала заземленного оборудования, а также путем выравнивания потенциалов основания, на котором стоит человек, и заземленного оборудования, за счет появления потенциалов на поверхности земли при стекании тока в землю.

Соединения заземляющих проводников между собой, а также заземлителями и заземляемыми конструкциями выполняются, как правило, сваркой, а с корпусами аппаратов, машин и другого оборудования – сваркой или с помощью болтов.

Занулением электроустановок называется преднамеренное соединение металлических нетоковедущих частей электроустановок, которые могут оказаться под напряжением вследствие пробоя изоляции, с нулевым защитным проводником. При замыкании любой фазы на корпус образуется контур короткого замыкания, характеризуемый силой тока весьма большой величины, достаточной для «выбивания» предохранителей в фазных питающих проводах. Таким образом электроустановка обесточивается. Предусматривается повторное заземление нулевого проводника на случай обрыва провода на участке, близком к нейтрали. По этому заземлению ток стекает на землю, откуда попадает в заземление нейтрали, по нему во все фазные провода, включая имеющий пробитую изоляцию, далее на корпус. Таким образом образуется контур короткого замыкания.

Вопрос 7. Осуществление достижения целей в области СУОТ.

Цель-повышение результативности управления рисками в области ОТ.

Цели в области ОТ являются основой для реализации Политики в области ОТ и разработки программы управления ОТ.

Цели в области ОТ используются как основа мониторинга и оценка эффективности функционирования СУОТ.

При достижении целей в области ОТ, мероприятий программ управления ОТ в части снижения значимых рисков производиться пересмотр в сторону снижения уровней значимого и других рисков. При этом вноситься изменения в соответствующие таблицы «Цели в области охраны труда, программа управления охраной труда по обеспечению реализации Политики в области охраны труда».

Билет №12

Вопрос 1. Обязанности нанимателя по отстранению работника от работы .

Обязанности нанимателя по отстранению работника от работы (статья 49 ТК РБ):

По требованию уполномоченных государственных органов в случаях, предусмотренных законодательством, наниматель обязан отстранить работника от работы.

1) появившегося на работе в состоянии алкогольного, наркотического или токсического опьянения, а также в состоянии, связанном с болезнью, препятствующем выполнению работы. Отказ водителя от прохождения приборного контроля опьянения является основанием для отстранения его от работы (пункт 7 Инструкции, утвержденной постановлением Министерства транспорта и коммуникаций Республики Беларусь и Министерства сельского хозяйства и продовольствия Республики Беларусь от 09.07.2013 N 25/28);

2) не прошедшего инструктаж, стажировку и проверку знаний по вопросам охраны труда;

3) не использующего средства индивидуальной защиты, непосредственно обеспечивающие безопасность труда;

4) не прошедшего медицинский осмотр, освидетельствование на предмет нахождения в состоянии алкогольного, наркотического или токсического опьянения в случаях и порядке, предусмотренных законодательством.

За период отстранения от работы заработная плата не начисляется, за исключением случаев, предусмотренных частью пятой статьи 49 ТК РБ.

При отстранении от работы работника, который не прошел инструктаж, стажировку и проверку знаний по вопросам охраны труда, медицинский осмотр либо освидетельствование на предмет нахождения в состоянии алкогольного, наркотического или токсического опьянения в случаях и порядке, предусмотренных законодательством, не по своей вине, ему производится оплата за все время отстранения от работы в соответствии с частью первой статьи 71 настоящего Кодекса.

В соответствии со статьей 49 ТК РБ по требованию уполномоченных государственных органов в случаях, предусмотренных законодательством, наниматель обязан отстранить работника от работы.

Помимо случаев, предусмотренных законодательством, наниматель обязан не допускать к работе (отстранить от работы) в соответствующий день (смену) работника:

1) появившегося на работе в состоянии алкогольного, наркотического или токсического опьянения;

2) не прошедшего инструктаж, проверку знаний по охране труда;

3) не использующего требуемые средства индивидуальной защиты при выполнении работ, обеспечивающих безопасность труда;

4) не прошедшего медицинский осмотр в случаях и порядке, предусмотренных законодательством.

Работника, совершившего хищение имущества нанимателя, наниматель имеет право отстранить от работы до вступления в законную силу приговора суда или постановления органа, в компетенцию которого входит наложение административного взыскания.

За период отстранения от работы заработная плата не начисляется.

При отстранении от работы работника, который не прошел инструктаж, проверку знаний по охране труда либо медицинский осмотр в случаях и порядке, предусмотренных законодательством, не по своей вине, ему производится оплата за все время отстранения от работы не ниже двух третей установленной ему тарифной ставки (оклада).


Похожая информация.


В предназначении и монтаже этих способов защиты от поражения электрическим током путаются даже профессиональные электрики. Речь идет не о всех, но прецеденты есть. А ведь элементарное понятие терминов иногда спасает десятки жизней. Даже если говорить не о поражении током, а о сдаче в эксплуатацию нового частного дома. Если выполнить защиту неправильно, контролирующая организация не разрешит подачу напряжения на вводной щит. И правильно сделает, никому не хочется брать на себя ответственность за жизни людей. Сегодня разберемся, что означают термины и зануление, в чем разница между ними, и когда возможно использование того или иного способа защиты.

В соответствии с ГОСТ 12.1.009–76:

  • защитное заземление – это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением;
  • зануление – это преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением.

В ГОСТ Р 50571.2– 94 «Электроустановки зданий. Часть 3. Основные характеристики» приводится классификация систем заземления электрических сетей: IT, TT, TN–С, TN–C–S, TN–S.


Согласно ПУЭ заземление выполняется (при наличии контура или возможности его монтажа) в обязательном порядке. Заземленными должны быт все металлические корпуса , которые гипотетически могут попасть под напряжение. Если возможность заземления отсутствует, производится защитное зануление с обязательной установкой устройств защитного отключения (УЗО) и автоматических в вводном электрическом .

Конечно, язык, которым написаны ПУЭ и ГОСТ бывает сложен для человека без электротехнического образования, а значит стоит разобрать подробно, что такое заземление и зануление на обычном языке, понятном простому обывателю.

Что такое заземление: как устроено, принцип работы и преимущества такой защиты

Принцип работы заземления в том, чтобы не допустить прохождения электрического тока через тело человека, если в силу каких-либо обстоятельств корпус окажется под напряжением. Такое может случиться при повреждении изоляции жил кабеля. Рассмотрим пример. Жила с поврежденной изоляцией соприкасается с металлическим корпусом . Хозяйка, готовя пищу на кухне, прикасается к , который не заземлен. Это приводит к тому, что ток устремляется к земле, используя человеческое тело, как проводник. Итог может быть самым плачевным, вплоть до летального исхода.


Теперь разберем для чего нужно заземление, как оно работает. Тот же пример, но уже с использованием защиты. Требования к заземлению применяются самые жесткие. При замерах сопротивление контура должно практически отсутствовать, что позволяет току беспрепятственно уходить в землю по шине. Законы физики не дают напряжению протекать через человеческое тело, которое имеет свое сопротивление. У одних оно больше, у других меньше, но наличие его не оспаривается. Получается, что ток утекает по пути наименьшего сопротивления, через заземлитель. Если при этом в схему включено УЗО, оно определит утечку и отключит подачу электроэнергии на прибор.

Что такое зануление электроприборов: возможности применения

Защитное зануление электроприборов используется, если смонтировать заземление невозможно. Такая ситуация может возникнуть в случае, если многоквартирный дом построен в советские времена. Своего контура у таких домов нет, а самостоятельно его устроить не получится.

Защитное зануление – это система, выполняющая отличную от заземления работу. Если второе призвано увести напряжение в землю, исключая возможность поражения электрическим током, то первое выполняется с целью создания (при пробое изоляции и попадания на корпус) короткого замыкания. В этом случае срабатывает автоматика и электричество отключается.


Важная информация! В многоквартирных домах современной постройки и частных секторах в наши дни монтаж зануления запрещен. Это продиктовано целями безопасности проживающих. Автоматика может подвести, что приведет к непоправимым последствиям.

Защитное зануление требует правильного монтажа. Не стоит думать, что достаточно бросить перемычку с нулевого контакта внутри на заземляющий. Это категорически запрещено. Рассмотрим ситуацию, когда уже «подгоревший» ноль подвергается нагрузке короткого замыкания, а автомат еще не успевает сработать. Ноль отгорает, исключив замыкание, но прибор остается под напряжением. Человек, надеясь на отсутствие электричества (света ведь нет, ноль отгорел) на ощупь продвигается к выходу и облокачивается на корпус , находящегося под напряжением. Исход ясен, не так ли?

Зануление и заземление: в чем разница

Разница этих систем в методе осуществления защиты. При устройстве защитного заземления роль отсекателя напряжения при возникновении аварийной ситуации берет на себя УЗО, а в случае монтажа зануления УЗО становится бессильно, сработать может только автомат. Почему так происходит? Устройство защитного отключения реагирует только на токовые утечки, совершенно игнорируя любые перегрузки, включая короткое замыкание. В случае монтажа зануления и включения в схему УЗО без автомата, при коротком замыкании УЗО не срабатывает, а попросту сгорает, не отключив напряжение с линии.


Чем отличается заземление от зануления: обобщение

Заземление отличается от зануления способом защиты и монтажом. Такие системы противоречат друг другу, а значит монтаж схемы с включением обоих вариантов, неприемлем. Зануление устраивается только в многоквартирных домах, не оборудованных собственным контуром. В иных случаях такой монтаж запрещен. О способах его устройства сейчас поговорим подробнее.

Что такое зануление и как его правильно устроить

Схема монтажа выглядит следующим образом. Пришедшая к вводному автомату нейтраль раздваивается, каждая из жил идет на отдельную шину. Одна из шин становится нулевой, а вторая заземляющей. От шины нейтрали жилы идут через автоматику и дальше на все нулевые контакты потребителей квартиры. Заземляющая соединяется с корпусом вводного щита, провод желто-зеленого цвета от нее идет на соответствующие контакты розеток и , которые этого требуют. Соприкосновение заземляющего провода с нулевым после защитной автоматики запрещено.


Важная информация! Неправильный монтаж защитного зануления приводит к отгоранию жил кабелей, пожару. Так же возможно поражение электрическим током вплоть до летального исхода.

Лучший вариант защиты это заземляющее устройство?

Единственно правильный ответ на этот вопрос – да. Это действительно так. , смонтированный по всем правилам, защитит человека намного лучше предыдущего варианта. Улучшить защиту можно при помощи дополнительных устройств – автоматических выключателей, УЗО или дифавтоматов. Ведь что такое защитное заземление? По своей сути это система отвода электрического тока в случае аварии туда, где он не может навредить человеку.


Касаемо заземляющего устройства можно сказать, что оно может быть различным – контур заземления по периметру здания, «треугольник» во дворе или естественный заземлитель. Все правила и способы его монтажа мы обязательно рассмотрим в одной из ближайших тем. Но для общей информации имеет смысл понять определение, что является естественным заземлителем.

Полезно знать! В качестве естественного заземлителя можно использовать любые металлические конструкции, находящиеся под землей, за исключением трубопроводов ГСМ, канализации и предметов, покрытых антикоррозийными составами. Водопроводные трубы для этой цели могут использоваться.

Заземление электроустановки - это обеспечение электробезопасности путём целенаправленной электрической связи корпуса устройства с "землёй". Защита делится на два варианта: заземление и зануление. Их общей целью является нейтрализация вредного для человека при касании воздействия электрического тока, если оборудование на корпусе или же в любой другой доступной точке пробило на опасное напряжение.

Заземление

Суть защитного заземления в обеспечении безопасной эксплуатации электрооборудования путём соединения его защищаемой части с соответствующим устройством - "землёй". Если на внешнем кожухе установки или любой другой её детали внезапно окажется электрический потенциал, вред для человека будет сведён к минимуму. Главная характеристика заземляющего устройства - его сопротивление, качество защиты улучшается с его понижением. Заземление можно разделить на две основные детали - заземлитель и проводящие соединители, обеспечивающие контакт с заземляемой деталью. Областью использования защитного заземления являются трёхфазные сети, нейтраль в которых изолирована.

Защитное заземление действует на основе серьёзного уменьшения разности потенциалов между деталью, на которую пробило напряжение (корпус и т.д.), и землёй, вплоть до безопасного для человека уровня. Если заземление отсутствует, контакт с опасным местом электроустановки является непосредственным контактом с фазой. У возникающего электрического тока нет иных путей, кроме тела человека. При низком электрическом сопротивлении надетой обуви, самого пола и наличии изолированности проводов от "земли" величина тока окажется недопустимой для пострадавшего. Если организация работы по охране труда была выполнена грамотно и проблемная деталь имеет защитное заземление, то даже в случае больших значений воздействующего напряжения, оно не вызовет серьёзных последствий для организма. Согласно закону Ома, сила тока будет обратно пропорциональна сопротивлению. При наличии двух параллельных цепей - человеческого тела и заземляющего контура, при равном значении исходного напряжения (фаза), сила проходящего тока будет тем выше, чем меньше сопротивление цепи. Сконструированное с учётом обеспечения минимального сопротивления защитное заземление примет на себя основной электрический ток, обезопасив имеющего значительно более высокое сопротивление человека.

Два типа заземления

Заземлители делятся на два типа - естественные и искусственные. Если для заземления используются уже существовавшие при постройке здания металлические конструкции (трубы, арматура и т.п.), заземлитель называют естественным. Когда стальные стержни, уголки или трубы специально забивают или закапывают в землю, конструкция является искусственной. В целях повышения безопасности длина искусственного заземлителя не может быть меньше 2.5 м., а улучшая защиту, металлические фрагменты комбинируют путём сварки стальными накладками или проволокой. Чтобы обеспечить электрический контакт между заземляемым прибором и заземлителем, принято использовать шины, выполненные из меди или стали. Заземляющие проводники крепят к корпусу оборудования при помощи сварки или с использованием надёжного резьбового соединения. Обязательная защита с использованием технологии заземления требуется для трансформаторов, электрических шкафов и щитов, а также большинства промышленных и некоторых бытовых приборов и механизмов.

Хотя защитное заземление в большой степени уменьшает риск для человека, оно не ликвидирует его полностью. Потенциальная проблема в наличии своего собственного сопротивления у заземлителя, соединительных проводов и даже земли. Если изоляция нарушена, замыкающий ток проделает путь от заземляемой детали до земли, и на каждом этапе имеющееся сопротивление создаст дополнительную разность потенциалов. Итоговое суммарное напряжение будет значительно ниже общепринятых в России 220 В, однако всё ещё может составлять небезопасные для человека значения. Чтобы снизить суммарное напряжение надо уменьшить сопротивление заземлителя относительно финальной точки - земли. Общепринятой практикой является увеличение количества искусственных заземлителей.

Зануление

Вторым видом защиты от удара током при пробое на корпус является защитное зануление. Оно заключается в целенаправленном соединении частей электрического прибора, потенциально могущих оказаться под фазой, с заземленным выводом источника переменного или с аналогичной средней точкой в сетях постоянного тока. Тем самым пробой любой фазы на корпус оборудования переводится в короткое замыкание с заземлённым нулём. Протекающий при защитном занулении ток в разы больше, чем в случае заземления. Поэтому основной целью создания защитного зануления является быстрое прекращение работы и полное обесточивание сломанного устройства в принципе.

Нулевой проводник бывает рабочим и защитным. Рабочий проводник предназначен для полноценного питания электроустановки, поэтому не отличается от других носителей по толщине и качеству изоляции, материалу и сечению провода. Защитный проводник имеет целью всего лишь создание в краткий период времени короткого замыкания очень высокого тока, который позволит сработать защите и оперативно обесточить неисправное устройство. В качестве нулевого защитного провода часто выступают используемые при прокладывании проводки стальные трубы или нулевые провода без дополнительных деталей (выключателей и предохранителей). Равно как и заземление, зануление не может полностью защитить человека от воздействия электричества при непосредственном контакте с находящимся под фазой элементом конструкции. Если обеспечение электробезопасности в помещении требует повышенного внимания, строго необходимо комбинировать зануление с другими мерами защиты - выравниванием потенциала и защитным отключением.


Защитное заземление – это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением. Оно состоит (рис. 24.6) из заземлителя 3 (металлических проводников, находящихся в земле с хорошим контактом с ней) и заземляющего проводника 2, соединяющего металлический корпус электроустановки 1 с заземлителем.

Совокупность заземлителя и заземляющих проводов называют заземляющим устройством. Защитное заземление применяют в трехфазных трехпроводных и однофазных двухпроводных сетях переменного тока напряжением до 1000 В с изолированной нейтралью (так называемая система IT), а также в сетях напряжением выше 1000 В переменного и постоянного тока с любым режимом нейтрали.

Защитное действие заземляющего устройства основано на снижении до безопасной величины тока, проходящего через человека в момент касания им поврежденной электроустановки. При попадании напряжения на корпус электроустановки человек, коснувшись ее и имея хороший контакт с землей, замыкает собой электрическую цепь: фаза С – корпус электроустановки 1 – человек – земля – емкостные Х A, X B) и активные R A, R B сопротивления связи проводов с землей, фазы А и В. По человеку пойдет ток. Несмотря на то что электрические провода сети установлены на изолированных опорах, между ними и землей существует электрическая связь. Она возникает за счет несовершенства изоляции проводов, опор и т.п. и наличия емкости между проводами и землей. При большом протяжении проводов эта связь становится значительной, а ее активное R и емкостное X сопротивления снижаются и становятся соизмеримыми с сопротивлением тела человека. Вот почему, несмотря на отсутствие видимой связи, человек, находящийся под напряжением и имеющий контакт с землей, замыкает собой электрическую цепь между различными фазами сети.

Рис. 24.6. Схема защитного заземления (система IT):

1 – электроустановка; 2 – заземляющий проводник; 3 – заземлитель

При наличии заземляющего устройства образуется дополнительная цепь: фаза С – корпус электроустановки – заземляющее устройство – земля – сопротивления Х А, R A, Х B, R B фазы A и В. В результате ток замыкания распределяется между заземляющим устройством и человеком. Так как сопротивление заземлителя (оно не должно превышать 10 Ом) во много раз меньше сопротивления человека (1000 Ом), то через тело человека будет проходить малый ток, не вызывающий его поражения. Основная часть тока пойдет по цепи через заземлитель.

Заземлители могут быть естественными и искусственными. В качестве естественных заземлителей используют металлические конструкции и арматуру зданий и сооружений, имеющие хорошее соединение с землей, проложенные в земле водопроводные, канализационные и другие трубопроводы (за исключением трубопроводов горючих жидкостей, горючих и взрывоопасных газов и трубопроводов, покрытых изоляцией для защиты от коррозии).

В качестве искусственных заземлителей применяют одиночные или соединенные в группы металлические электроды длиной 2,5-3,0 м, забитые вертикально в землю с расстоянием друг от друга 2,5-3,0 м или уложенные горизонтально в землю. Электроды изготавливают из отрезков металлических труб, угловой стали, швеллеров с толщиной стенок не менее 4 мм. Более тонкие профили вследствие коррозии быстро выходят из строя.

Вертикальные электроды в групповом заземлителе соединяют между собой с помощью сварки перемычкой, выполненной из аналогичных материалов и тех же сечений, что и сами электроды. Заземляющее устройство должно иметь вывод наружу (на поверхность земли), выполненное на сварке из таких же материалов. Оно служит для подсоединения заземляющего проводника.

Для осуществления заземляющих функций сопротивление заземляющего устройства в электроустановках напряжением до 1000 В в сети с изолированной нейтралью должно быть не более 4 Ом. При мощности генераторов и трансформаторов, питающих сеть, 100 кВ А и менее допускается сопротивление заземлителей не более 10 Ом. Необходимое сопротивление достигают установкой соответствующего количества электродов в заземлителе, определяемого расчетом. Для глинистых, влажных почв обычно бывает достаточно двух-трех электродов, на сухих песчаных или каменистых участках этого может не хватить.

Сопротивление заземляющего устройства – это отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю.

Различают выносное и контурное заземляющие устройства. Выносное устройство располагают за пределами площадки с заземляемым оборудованием. Его достоинство состоит в возможности выбора грунта с наименьшим удельным сопротивлением. Контурное заземление выполняют забивкой электродов по контуру заземляемого оборудования и между ним. Такая установка электродов создает дополнительный защитный эффект за счет повышения и выравнивания (более равномерного распределения) потенциалов земли в зоне нахождения человека.

Зануление – это преднамеренное электрическое соединение металлических нетоковедущих частей электроустановок, которые могут оказаться под напряжением, с глухозаземленной нейтралью источника тока (генератора или трансформатора).

В четырехпроводных или пятипроводных сетях с нулевым проводом и глухозаземленной нейтралью источника тока напряжением до 1000 В (так называемая система TN) зануление – основное средство защиты. Заземление в таких сетях неэффективно.

Подсоединение корпусов электроустановок к нейтрали источника тока осуществляют с помощью нулевого защитного проводника (РЕ- проводника). Его нельзя путать с нулевым рабочим проводом (N-проводником), который также соединен с нейтралью источника, но служит для питания однофазных электроустановок. Нулевой защитный проводник РЕ прокладывают по трассе фазных проводов, в непосредственной близости от них. Систему, где присутствуют нулевой рабочий провод N и нулевой защитный проводник РЕ, и они разделены на всем протяжении трассы, называют системой TN-S. Буква S означает разделение указанных проводников на всем их протяжении.

В качестве нулевого защитного проводника в сетях до 1000 В в первую очередь рекомендуется использовать нулевой рабочий проводник (кроме специально оговоренных случаев), к которым подсоединяют корпуса электроустановок. В этом случае его называют совмещенным нулевым защитным и нулевым рабочим проводником (PEN-проводником), а саму систему – системой TN-С. Это система TN , в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении (рис. 24.7).

Если же функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике только в какой-то ее части, начиная от источника питания, а далее они идут раздельно (первый из них служит для защиты электроустановок, а второй – для питания однофазных электроустановок), то такую систему называют системой TN-C-S.

Согласно требованиям ПУЭ снова объединять эти разделенные проводники уже нельзя.

Рис. 24.7. Схема зануления (система TN-C ):

1 – заземлитель нейтрали трансформатора; 2 – источник тока (трансформатор); 3 – нейтраль источника тока; 4 – зануление корпуса трансформатора; 5 – нулевой рабочий (он же и нулевой защитный) провод сети; 6" – нулевой защитный провод электроустановки; 7 – предохранитель; 8 – электроустановка; 9 – повторное заземление нулевого защитного провода сети; L 2, L 3 – фазные провода; PEN – нулевой рабочий проводник и нулевой защитный проводник, совмещенные в одном

Согласно ПУЭ не допускается использовать в качестве РЕ проводников:

  • металлические оболочки изоляционных трубок и трубчатых проводов, несущие тросы при тросовой электропроводке, металлорукава, а так же свинцовые оболочки проводов и кабелей;
  • трубопроводы газоснабжения и другие трубопроводы горючих и взрывоопасных веществ и смесей, трубы канализации и центрального отопления;
  • водопроводные трубы при наличии в них изолирующих вставок.

Защитное действие зануления основано на снижении до безопасной величины тока, проходящего через человека в момент касания им поврежденной электроустановки, и последующем отключении этой установки от сети. Работает зануление следующим образом. При попадании напряжения на корпус зануленной электроустановки 8 (рис. 24.7) бо́льшая часть тока с него пойдет в сеть через нулевой защитный провод 6. Через тело человека по цепи: корпус электроустановки 8 – человек – земля – заземляющее устройство 9 – нулевой рабочий провод 5 пойдет незначительный ток, не вызывающий его поражения (ввиду более высокого сопротивления этой цепи по сравнению с сопротивлением цепи через нулевой защитный провод 6). Одновременно с этим замыкание на корпус фазного провода при такой схеме защиты автоматически превращается в однофазное короткое замыкание между фазным и нулевым рабочим проводом 5 сети, в результате чего через 0,2–7 с срабатывает токовая защита (перегорает предохранитель 7, выключается автоматический выключатель и т.п.) и электроустановка, а вместе с ней и человек, полностью обесточиваются. Таким образом, в первоначальный момент зануление работает аналогично защитному заземлению, а в последующем оно полностью прекращает действие тока на человека. Только при этом ток, проходящий через тело человека до срабатывания защиты, будет в несколько раз меньше, так как сопротивление зануляющего проводника обычно не превышает 0,3 Ом, а допустимое сопротивление заземлителя – 4 Ом.

В запуленных электроустановках до 1 кВ с глухозаземленной нейтралью с целью надежного обеспечения автоматического отключения аварийного участка проводимость фазных и нулевых защитных проводников и их соединений должна обеспечить ток короткого замыкания, не менее чем в три раза превышающий номинальный ток плавкого элемента ближайшего предохранителя или автоматического выключателя, имеющего расцепитель с обратнозависимой от тока характеристикой (тепловой расцепитель), в 1,4 раза – для автоматических выключателей с электромагнитными расцепителями с силой номинального тока до 100 А и в 1,25 раза – с величиной тока более 100 А.

Нулевой защитный провод 5 сети должен обеспечивать надежное соединение корпусов электроустановок с нейтралью источника. Поэтому все соединения выполняют сварными. В нем запрещается установка предохранителей и выключателей (за исключением случая одновременного отключения и фазных проводов).

Нулевой защитный провод 5 сети заземляют: у источника тока с помощью заземлителя 1; на концах воздушных линий (или ответвлений от них) длиной более 200 м; на вводах воздушной линии к электроустановкам. Повторные заземления 9 необходимы для уменьшения опасности поражения электрическим током при обрыве нулевого провода и замыкании фазы на корпус электроустановки за местом обрыва, а также для снижения напряжения на корпусе в момент срабатывания токовой защиты. Согласно ПУЭ сопротивление заземляющего устройства, к которому присоединена нейтраль источника тока, с учетом естественных и повторных заземлителей нулевого провода должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях источника трехфазного тока 660, 380 и 220 В. Сопротивление каждого повторного заземлителя в отдельности должно быть не более 15, 30 и 60 Ом соответственно при тех же напряжениях.

В сети, где применяют зануление, нельзя заземлять корпуса электроустановок без их зануления, так как в случае замыкания фазы на корпус заземленной, но не зануленной электроустановки иод напряжением окажутся все корпуса других зануленных электроустановок. В то же время дополнительное заземление зануленных электроустановок весьма полезно. Оно повышает надежность заземления нулевого провода.

Если в помещении находится несколько электроустановок, то каждую из них заземляют или зануляют, подсоединяя к магистрали заземления (зануления), представляющей собой металлический проводник сечением не менее 100 мм2 (например, стальная полоса 40 х 4 мм), укрепленный по периметру помещения. Магистраль соединяют с заземлителем, или с нулевым защитным проводником (в зависимости от принятой системы защиты), или с тем и другим одновременно.

Последовательное заземление или зануление электроустановок (одна от другой) не разрешается (рис. 24.8).

Заземлители с магистралью зануления заземления соединяют не менее чем двумя проводниками, подсоединяя их к заземлителю в разных местах.

Присоединение заземляющих проводников к заземлителю и заземляющим конструкциям выполняют сваркой, а к главному заземляющему зажиму, корпусам аппаратов, машин и опорам ЛЭП – болтовым соединением (для обеспечения возможности производства измерений) с принятием мер против ослабления контакта и его коррозии.

Рис. 24.8.

1, 4, 5 и 6 – правильное зануление электроустановки; 2 и 3 – неправильное зануление электроустановки; 7 – магистраль заземления (зануления)

Для обеспечения надежной защиты сечения всех защитных проводников (РE-проводников) должны быть не менее приведенных в табл. 24.3 при условии выполнения их из тех же материалов, что и фазные проводники.

Таблица 24.3

Наименьшие площади поперечного сечения защитных проводников РЕ

Сечение фазных проводников, мм2

Наименьшее сечение защитных проводников (РЕ-проводннков), мм2

16 < 5 ≤ 35

Сечение РEN-проводника должно быть не менее 10 мм2 по меди или 16 мм2 – но алюминию.

Размеры заземлителей и заземляющих проводников, проложенных в земле, приведены в табл. 24.4.

Заземление или зануление электроустановок следует выполнять при номинальном напряжении:

  • выше 50 В переменного тока или выше 120 В постоянного тока – во всех электроустановках независимо от того, где они эксплуатируются;
  • выше 25 В переменного тока или выше 60 В постоянного тока – в помещениях с повышенной опасностью;
  • выше 12 В переменного тока или выше 30 В постоянного тока – в особо опасных помещениях и в наружных установках;
  • при любом напряжении переменного и постоянного тока – во взрывоопасных помещениях любого класса.

К частям, подлежащим занулению или заземлению, относятся: корпуса электрических машин (в том числе технологическое оборудование с электропитанием), корпуса трансформаторов, светильников, каркасы распределительных щитов, рубильников, щитов управления, металлические оболочки и броня электрических кабелей; металлические трубы, в которых проложена электропроводка; металлические корпуса передвижных и переносных электроприемников и др. (в соответствии с требованиями ПУЭ).

Зануление (заземление ) металлических корпусов переносных электроустановок осуществляют дополнительной жилой кабеля (проводником PEN в системе TN-C в системе, где нулевой рабочий и нулевой защитный проводники совмещены в одном PEN- проводнике): третьей жилой для однофазных и четвертой – для трехфазных электроприемников.

Если применяется система с разделенными нулевым рабочим (N ) и нулем защитным (РЕ) проводниками (система TN-S), то в питающем кабеле должно быть уже две дополнительные жилы: (N) и (РЕ). То же самое должно быть и в соединительной вилке, и в розетке. Жилы эти проводов должны быть гибкими, медными, их сечение должно быть равно сечению фазных проводников и быть не менее 1,5 мм2.

Втычные соединители (вилки и розетки) должны быть выполнены так, чтобы соединение защитных проводников происходило до соединения фазных проводников, а рассоединение – в обратной последовательности. Обычно это достигается применением у вилки более длинного штыря для защитного проводника (РЕ или PEN), чем для фазных проводов (рис. 24.9 и 24.10).

Если корпуса розетки или вилки выполнены из металла, то к ним также подсоединяют защитные проводники (PEN или РЕ, в зависимости от того, какая система защиты применяется). Во всех случаях вилку подсоединяют к электро- приемнику, розетку – к сети.

Таблица 24.4

Наименьшие размеры заземлителей и заземляющих проводников, проложенных в земле

Материал

Профиль сечения

Диаметр, мм

Площадь поперечного сечения, мм2

Толщина стенки, мм

Стать черная

для вертикальных заземлителей

Прямоугольный

Сталь оцинкованная

для вертикальных заземлителей

для горизонтальных заземлителей

Прямоугольный

Прямоугольный

Канат многопроволочный

1,8 (диаметр каждой проволоки)

Для определения технического состояния заземляющего устройства проводят визуальные осмотры его видимой части (не реже одного раза в 6 месяцев ответственным за электрохозяйство), осмотры с выборочным вскрытием грунта, измерение параметров заземляющего устройства в соответствии с нормами испытания электрооборудования.

Рис. 24.9. TN-C :

а – розетка; б – вилка

Рис. 24.10. Втычной соединитель (разъем) для подключения переносной электроустановки к электрической сети системы заземления TN-S:

а – розетка; б – вилка

Осмотры с выборочным вскрытием грунта проводят в местах, наиболее подверженных коррозии, а также вблизи мест заземления нейтралей силовых трансформаторов, присоединений разрядников и ограничителей перенапряжений не реже одного раза в 12 лет. При осмотре оценивают состояние контактных соединений, наличие антикоррозионного покрытия, отсутствие обрывов. Результаты осмотров заносят в паспорт заземляющего устройства установленной формы.

При вскрытии грунта производят инструментальную оценку состояния заземлителей и степени коррозии контактных соединений. Элемент заземлителя заменяют, если разрушено более 50% его сечения. Результаты осмотров оформляют актами.

При определении технического состояния заземляющего устройства производят:

  • измерение сопротивления заземляющего устройства;
  • измерение напряжения прикосновения (в электроустановках, заземляющее устройство которых выполнено по нормам на напряжение прикосновения);
  • проверку наличия цепи между заземляющим устройством и заземляемыми элементами, а также соединений естественных заземлителей с заземляющим устройством;
  • измерение токов короткого замыкания электроустановки;
  • проверку состояния пробивных предохранителей;
  • измерение удельного сопротивления грунта в районе заземляющего устройства.

Любая электроустановка состоит не только из проводников электрического тока. Они помещаются в корпуса и оболочки, закрыты кожухами. Между токоведущими частями корпусами, в которых они находятся или на которых расположены, размещаются изоляционные материалы.

Все изоляторы подвержены способности повреждаться. При этом они теряют свои свойства и начинают проводить электрический ток. Потенциал рабочих частей электроустановки, находящихся под напряжением, проникает через место повреждения на токопроводящие корпуса и оболочки. При прикосновении к ним человека последний получает опасный для жизни удар электрическим током.

Способы защиты от опасных потенциалов

Ситуацию с повреждением междуфазной изоляции электрооборудования мгновенно пресекают защитные устройства: автоматические выключатели или предохранители. Но она лишь косвенно представляет опасность для человека.

Опаснее для людей как раз однофазное замыкание, в результате которого корпуса электродвигателей, электрошкафов, кабельных конструкций оказываются под напряжением.

Чтобы исключить риск поражения электротоком , нужно, чтобы при попадании напряжения на корпус произошло гарантированное короткое замыкание и потенциал на корпусе был максимально снижен.

Первое защитное действие достигается созданием цепи между корпусом и заземленной нейтралью электроустановки. При замыкании возникает ток, достаточно большой для срабатывания тех же защитных аппаратов, работающих при междуфазных замыканиях. Это называется защитным отключением.

Для реализации второго метода всем потенциально опасным металлическим частям электрооборудования придают потенциал земли. Делается это преднамеренным их соединением с заземляющим устройством. Мероприятие носит название – защитное заземление.

Системы заземления электроустановок до 1000 В получили в 7-м издании ПУЭ классификацию. Рассмотрим эти системы по очереди.

Система заземления TN-C

В этой конструкции нет ничего нового. Она была такой долгие годы.

Для питания потребителей в ней используется 4 провода. Три из них – фазные, один – нулевой. По последнему протекает рабочий ток нагрузки. Но он же используется и для реализации защитных целей, соединяясь с контуром заземления нейтрали силового трансформатора, питающего электроустановки. К нему же присоединяются и корпуса электрооборудования. Называется он проводником PEN. Из-за того, что в нем сочетаются функции защиты и транспортировки рабочего тока к месту назначения, он получил название «совмещенный проводник».

В итоге реализуются обе задачи: ток замыкания на землю высок – отключение поврежденного участка происходит достаточно быстро. К тому же при повреждении малое сопротивление PEN-проводника шунтирует тело прикоснувшегося к корпусу человека, имеющее сопротивление порядка килоома. Большая часть тока стекает в землю.

Но по PEN-проводнику протекает рабочий ток нагрузки. Контактные соединения от этого могут нарушиться, соединение – стать ненадежными или прерваться вовсе.

Так исчезает столь необходимая связь с заземляющим устройством.

Даже, если имеется повторное заземление PEN-проводника на вводе в здание.

Мало того, наличие тока в этом проводнике приводит к возникновению потенциала, увеличивающегося по мере удаления от точки связи с контуром заземления.

А при обрыве проводника PEN картина и вовсе ужасающая. Потенциал на корпусах за местом обрыва может теоретически достигнуть и 220 В.

Добавим ко всему этому технологически трудную реализацию соединения корпусов некоторых электроприемников с PEN. Как заземлить корпус электроплитки, подключаемой к сети через розетку?

Развитие бытовых электроприборов, требующих применения защитных мер по электробезопасности, привело к усовершенствованию системы TN-C. Подробнее можно почитать в отдельной статье.

Система заземления TN-S

Отличие от предыдущей рассмотренной системы заземления в том, что функции рабочего-нулевого и защитного проводника разделены в разных физических проводниках. Нулевой рабочий (N) – проводит ток нагрузки, нулевой защитный (РЕ) – подключается к контуру заземления.

В результате происходит полное избавление от потенциала на корпусах, появляющихся в «особо отдаленных районах» электрической сети, а также – при обрывах проводников. Максимум, что грозит при отсутствии целостности проводника РЕ – отсутствие защиты. Но оборваться у него шансов немного – ток-то по нему не протекает, с чего бы вдруг потеряться выполненным по всем электрическим правилам контактным соединениям?

Поскольку сечение РЕ-проводников в составе кабельных линий обычно оказывается равным сечению фазных, упростилась задача присоединить их к корпусам любого электрооборудования.

Даже к заземляющему контакту розетки. Что позволило распространить защитные меры безопасности на все бытовые электроприборы: на ту же электроплитку, в частности.

Все вновь монтируемые электроустановки теперь, как правило, выполняются по этой системе заземления.

Система заземления TN-C-S.

Существенной проблемой при реализации системы TN-S является то, что реконструкция электроустановок и строительство новых происходит зачастую без реконструкции самой трансформаторной подстанции. Обычно переделывается какая-то ее часть, начиная от распределительного щита на вводе до последнего потребителя. До этого щитка система заземления неизбежно сохраняет старую конструкцию.

Эта проблема заранее решена тем же самым пунктом ПУЭ, описывающим переходной вариант системы заземления, обозначенный, как TN-C-S. В нем нетронутая реконструкцией часть электроустановки вполне себе официально не меняет своей структуры, оставаясь то же TN-C. А вот с некоторой точки распределительная сеть выполняется по новым правилам.

Суть в разделении проводника PEN на два: рабочий и защитный.

Выполняется это во вводном распределительном устройстве. В нем устанавливается две распределительных шинки: N и РЕ. Проводник PEN в обязательном порядке присоединяется к РЕ, а между самими шинками монтируется перемычка.

Почему к РЕ?

Если перемычка между шинами оборвется (этого нельзя исключать ни в коем случае), то при таком способе соединения нулевая рабочая шина потеряет связь с нейтралью электроустановки. При этом возможны тяжелые последствия для электрооборудования – но соединение с защитной шиной не пострадает, люди останутся в безопасности.

К тому же не заметить сей факт обрыва невозможно. Его сразу побегут искать.

При обратной же схеме коммутации обрыв перемычки заметят разве что при плановых измерениях целостности защитной цепи. А за это время люди останутся без защиты – корпуса «повиснут в воздухе». Хорошо бы, если так.

Предоставленная сама себе сеть из соединенных между собой защитных проводников таит не меньшую опасность, чем при обрыве PEN-проводника система TN-C.

Блоки питания бытовой аппаратуры (компьютеров или стиральных машин, к примеру) и полупроводниковые ПРА люминесцентных ламп при отсутствии соединения их корпусов с заземляющим устройством выдают на них потенциал порядка 110 В через конденсаторы входного помехоподавляющего фильтра блока питания. Он распространяется по всей сети, появляясь на прочих металлических частях, соединенных с РЕ-проводником.

Не стоит забывать о том, что эта система унаследовала от TN-C ее главные недостатки: потенциал на PEN-проводнике и опасные напряжения на нем при его обрыве. Главный метод борьбы с ними – собственный контур повторного заземления, вывод от которого присоединяется к шине РЕ вводного щитка.

Но есть и другие системы заземления, использующиеся в частных случаях для защиты людей.

Система заземления ТТ

В предыдущих системах все заземляющие устройства соединяются в единую цепь проводниками PEN или (и) РЕ. В системе ТТ потребитель имеет свой собственный контур заземления, не связанной с проводником PEN питающей линии. Все его электрооборудование связано с этим контуром проводниками РЕ.

Таким образом, исчезают проблемы с возможным обрывом питающего потребителя PEN- проводника. Он используется как нулевой рабочий и никак не связан с корпусами.

Защита с помощью предохранителей и автоматических выключателей у потребителя работает только на устранение междуфазных замыканий, а также – между фазой и нулевым проводником.

Мерой же для защитного отключения служит обязательная установка УЗО у потребителя.

Внедрение этого метода заземления имеет показания к применению и при большой протяженности питающих линий, когда повышенное сопротивление петли фаза-нуль не позволяет произвести защитное отключение в нормируемое время.

Система заземления IT

А здесь нулевой проводник отсутствует вовсе, так как эта система – с изолированной нейтралью. Подключение нагрузки возможно только на линейные напряжения сети.

Ничего опасного для потребителя при возникновении повреждения одной фазы на корпус не происходит. Ток замыкания на землю ничтожен и не принесет организму особого вреда.

А для ликвидации опасных по величине токов все линии защищают УЗО в обязательном порядке.

Но для фиксации замыканий на землю в таких сетях устанавливаются специальные элементы – реле утечки. При его срабатывании повреждение требуется активно поискать. А при возникновении второго замыкания участок сети с повреждением подлежит немедленному отключению.