Антропогенное загрязнение воздуха закрытых помещений. Гигиеническая характеристика источников загрязнения

Столица России - один из самых больших городов на планете. Разумеется, в ней присутствуют все проблемы мегаполисов. Главная из них - это загрязнение воздуха в появилась больше десятилетия назад и с каждым годом только усугубляется. Это может стать причиной настоящей техногенной

Норма чистого атмосферного воздуха

Естественный атмосферный воздух - это смесь газов, основными из которых считаются азот и кислород. Их объем составляет 97-99 % в зависимости от местности и атмосферного давления. Также в небольших количествах в воздухе содержатся водород, инертные газы, пары воды. Такой состав считается оптимальным для жизнедеятельности. В результате этого происходит постоянный круговорот газов в природе.

Но деятельность человека вносит в него существенные изменения. К примеру, просто в закрытом помещении без растений один человек за несколько часов может изменить процентное соотношение кислорода, углекислого газа и паров воды только за счет того, что он будет там дышать. Представьте только, каким может быть загрязнение воздуха в Москве сегодня, где живут миллионы людей, ездят тысячи машин и работают огромные промышленные предприятия?

Главные вредные примеси

По данным исследований, больше всего концентрация в атмосфере над городом у фенола, углекислого и бензапирена, формальдегида, диоксидов азота. Следовательно, увеличение процентного количества этих газов влечет за собой снижение концентрации кислорода. На сегодня можно констатировать, что уровень загрязнения воздуха в Москве превысил допустимые нормы в 1,5-2 раза, что становится крайне опасно для проживающих на этой территории людей. Ведь мало того, что они недополучают необходимый им кислород, так еще и травят организм опасными ядовитыми и канцерогенными газами, которые имеют огромную концентрацию в московском воздухе даже в закрытых помещениях.

Источники загрязнения воздуха в Москве

Почему же с каждым годом в столице России становится все труднее дышать? По данным последних исследований, главной причиной загрязнения воздуха в Москве выступают автомобили. Они заполнили столицу на каждой большой автостраде и маленькой улочке, на проспектах и во дворах. 83 % поступает в атмосферу именно вследствие работы двигателей внутреннего сгорания.

На территории столицы есть несколько крупных промышленных предприятий, которые также выступают источниками, вызывающими загрязнение воздуха в Москве. Хотя на большинстве из них и стоят современные очистительные системы, в атмосферу все же попадают опасные для жизни газы.

Третьим по величине загрязняющим источником являются большие ТЭС и котельные, которые работают на угле и мазуте. Они обогащают воздух мегаполиса большим количеством продуктов сгорания, таких как угарный и углекислый газы.

Факторы, повышающие концентрацию вредных веществ

Примечательно то, что количество вредных газов в воздухе столицы России не всегда и не всюду одинаково. Есть несколько факторов, которые способствуют его очищению или большему загрязнению.

По статистическим данным, на одного человека в Москве приходится примерно 7 квадратных метров зеленых насаждений. Это очень мало в сравнении с другими большими городами. В тех регионах, где концентрация парков больше, воздух намного чище, чем во всем остальном городе. Во время облачной погоды воздух не может сам очищаться, и у земли собирается большое количество газов, которые вызывают жалобы местного населения на плохое самочувствие. Повышенная влажность также удерживает у земли газы, вызывая загрязнение атмосферного воздуха в Москве. А вот морозная погода, наоборот, способна его временно очистить.

Самые загрязненные регионы

В столице самыми грязными регионами считаются промышленные Южный и Юго-Восточный округи. Особенно плохой воздух в Капотне, Люблино, Марьино, Бирюлево. Здесь располагаются крупные промышленные заводы.

Высок уровень загрязнения воздуха в Москве и непосредственно в центре. Здесь нет огромных предприятий, зато самая большая концентрация автомобилей. К тому же все помнят о знаменитых московских пробках. Именно в них машины вырабатывают больше всего вредных газов, поскольку двигатели работают не на полную мощность, и нефтепродукты не успевают сгореть полностью, образуя угарный газ.

ТЭС также больше всего в центральной части Москвы. Они сжигают уголь и мазут, обогащая воздух все теми же угарным и углекислым газами. Кроме того, они дают еще и опасные канцерогены, существенно влияющие на здоровье москвичей.

Чистый воздух в Москве

Есть в столице и относительно чистые регионы, в которых уровень вредных газов приближается к норме. Конечно, автомобили и небольшая промышленность оставляют и здесь свой негативный след, но по сравнению с промышленными регионами здесь довольно чисто и свежо. Географически это западные районы, особенно расположенные за МКАД. В Ясенево, Теплом Стане и Северном Бутово можно без опасений дышать полной грудью. В северной части города также есть несколько районов, которые относительно благоприятны для нормальной жизни, - это Митино, Строгино и Крылатское. Во всем остальном загрязнение воздуха в Москве сегодня можно назвать близким к критическому. Это особенно настораживает потому, что с каждым годом ситуация только ухудшается. Есть опасения, что скоро в городе не останется районов, где воздух будет более-менее чистым.

Болезни

Невозможность нормально дышать вызывает целый ряд неприятных ощущений и хронических заболеваний. Особенно к этому чувствительны дети и люди пожилого возраста.

Ученые констатируют, что загрязнение воздуха в Москве сейчас стало причиной наличия у каждого пятого астмы или астматического фактора. Дети в пять раз чаще болеют пневмонией, бронхитом, аденоидами и полипами верхних дыхательных путей.

Недостаток кислорода вызывает кислородное голодание мозга. Вследствие этого развиваются частые головные боли, мигрени, пониженный уровень Опасный угарный газ становится причиной сонливости и общей усталости. На фоне всего этого развиваются сердечно-сосудистые заболевания, диабет, неврозы.

Наличие большого количества пыли в воздухе не позволяет естественным фильтрам в носу всю ее задержать. Она попадает в легкие, оседает в них и сокращает их объем. Кроме того, пыль может содержать очень опасные вещества, которые, накапливаясь, вызывают раковые опухоли.

Когда москвичи попадают за город или в лес, у них начинается головокружение и мигрень. Так организм реагирует на непривычно большое количество кислорода, который поступает в кровь. Это ненормальное явление показывает реальное влияние загрязнения воздуха в Москве на здоровье человека.

Борьба за очищение воздуха

Ученые каждый год внимательно изучают причины, факторы и темпы загрязнения воздуха в Москве. 2014 год показал, что наблюдается тенденция к ухудшению, хотя постоянно принимаются меры по уменьшению вредных примесей в воздухе.

На заводах и ТЭС устанавливают фильтры, которые удерживают самые опасные продукты их деятельности. Для разгрузки автомобильного потока строятся новые развязки, мосты и тоннели. Чтобы воздух стал намного чище, постоянно увеличиваются площади зеленых насаждений. Ведь ничто так не очищает атмосферу, как деревья. Принимаются и административные меры наказания. За нарушение режима газообмена и выброс большего количества вредных газов штрафуются как владельцы частных автомобилей, так и крупные предприятия.

Но все равно результаты прогнозов неутешительные. Скоро в Москве чистый воздух может стать дефицитом, как это уже произошло в самых Чтобы этого не случилось завтра, нужно уже сегодня думать о том, стоит ли оставлять автомобиль с включенным двигателем на длительное время, пока вы ждете кого-то у подъезда.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

“Санкт-Петербургский Торгово-Экономический Институт”

кафедра технологии и организации питания

Реферат на тему: гигиена воздуха

Санкт-Петербург

Гигиена воздуха.

Физические свойства воздуха

Химический состав воздуха и его санитарное значение.

Механические примеси.

Санитарно-гигиенические нормы допустимых уровней ионизации воздуха (СанПиН от 16 июня 2003 года)

Государственный и ведомственный контроль за соблюдением санитарных норм и правил.

Микрофлора воздуха.

Загрязнение воздушной и окружающей среды.

Охрана окружающей среды.

Состояние качества атмосферного воздуха и характеристики источников загрязнения атмосферы.

Нам не страшен СО 2.

Требования к вентиляции и отоплению

Список использованной литературы:

Воздушная среда состоит из газообразных веществ, не­обходимых для жизнедеятельности человека. Она обеспе­чивает механизмы теплообмена и функции органов чело­века, ориентирующих его в пространстве (зрение, слух, обо­няние), а также служит природным резервуаром, в котором обезвреживаются газообразные продукты обмена веществ живых организмов и отходы промышленного производства. Наряду с этим воздушная среда при значительном измене­нии ее естественных физических и химических свойств, бактериологическом и пылевом загрязнении может служить причиной различных заболеваний человека. Источниками загрязнения воздушной среды являются токсические отхо­ды промышленных производств, выхлопные газы автотранспорта, ядохимикаты, используемые в сельском хо­зяйстве, и др. Особую опасность при этом представляют ток­сические туманы (смоги), связанные с накоплением в воз­духе, например, сернистого газа, что приводит к острым и хроническим массовым отравлениям.

При гигиенической оценке воздушной среды рассматри­вают требования к атмосферному воздуху и воздуху за­крытых помещений. Учитывают его физические свойства, химический и бактериальный состав, наличие механичес­ких примесей.

Физические свойства воздуха

К физическим свойствам воздуха относятся: темпера­тура, влажность, подвижность, барометрическое давление, электрическое состояние, интенсивность солнечной радиа­ции, ионизирующая радиоактивность. Каждый из этих фак­торов имеет самостоятельное значение, однако на организм они оказывают комплексное влияние.

При характеристике гигиенических показателей воз­душной среды особое значение придают комплексу физи­ческих факторов, определяемых как климат. Они играют решающую роль в регуляции теплообмена человека. К ним относят температуру, относительную влажность и скорость движения воздуха.

При гигиенической оценке воздуха закрытых помеще­ний факторы, характеризующие климат, объединяют поня­тием микроклимат помещений.

Теплообмен человека состоит из двух процессов: теплопродукции и теплоотдачи. Теплопродукция про­исходит за счет окисления пищевых веществ и освобожде­ния тепла при мышечных сокращениях. Некоторая часть тепла поступает в организм извне за счет солнечной энер­гии, нагретых предметов и горячей пищи. Теплоотдача осуществляется проведением, или конвекцией (за счет разницы температур тела и воздуха), излучением, или ра­диацией (за счет разницы температур тела и предметов), и испарением (с поверхности кожи, через легкие и дыхатель­ные пути). В состоянии покоя и комфорта теплопотери человека составляют: конвекцией - около 30%, излучени­ем - 45, испарением - 25%.

Человек обладает способностью регулировать интен­сивность теплопродукции и теплоотдачи, благодаря чему температура его тела остается, как правило, постоянной. Однако при значительных изменениях метеорологических факторов среды состояние теплового равновесия может на­рушаться и вызвать в организме патологические сдвиги - перегрев или переохлаждение.

Оптимальный микроклимат - это такие показатели микроклимата, которые при длительном воздействии на человека обеспечивают сохранение нормального теплово­го состояния организма без напряжения механизмов тер­морегуляции и обеспечивают ощущение теплового ком­форта.

Оптимальные для человека значения метеорологичес­ких условий в производственных условиях различаются в зависимости от категории работ по степени тяжести, т. е. в зависимости от общих энергозатрат организма (в ккал/ч) и периода года. Например, при физических работах средней тяжести (категория II) с расходом энергии в пределах 151-250 ккал/ч (175-290 Вт) оптимальные значения микро­климата в холодный период года (среднесуточная темпе­ратура наружного воздуха равна или ниже 10°С) характери­зуются следующими показателями: температура 17-20"С, относительная влажность 40-60%, скорость движения воз­духа 0,2 м/с.

Благодаря механизмам терморегуляции человек от­носительно легко переносит значительные отклонения тем­пературы воздуха от комфортной и даже способен пере­нести кратковременное воздействие воздуха температурой 100 в С и выше.

При повышении температуры воздуха компенсаторные реакции организма приводят к некоторому снижению теп­лопродукции и усилению отдачи тепла с поверхности кожи. Если повышение температуры воздуха сопровождается откло­нением от нормы и других метеорологических факторов (влажность, движение воздуха, интенсивность теплового излучения), то нарушение терморегуляции наступает зна­чительно быстрей. Так, при нормальной относительной влажности воздуха (40%) нарушение терморегуляции орга­низма наступает при температуре воздуха свыше 40 "С, а при относительной влажности 80-90 % - уже при 31-32 "С. В условиях высоких температур и высокой влажности воз­духа человек освобождается от избытка тепла преимущест­венно за счет испарения влаги с поверхности кожи. Напри мер, потеря влаги в условиях горячего цеха может дости­гать у работника примерно 10 л в сутки. Вместе с потом из организма удаляются соли, водорастворимые витамины В и С. Потеря хлоридов и воды при обильном потоотделении ведет к обезвоживанию тканей, угнетению желудочной сек­реции. Кроме того, усиливаются процессы торможения в центральной нервной системе, отмечается ослабление вни­мания, нарушение координации движений, что увеличивает производственный травматизм. Особенно тяжело человек переносит повышенные температуры и влажность непод­вижного воздуха. В этих условиях подавляются в организ­ме все механизмы теплоотдачи.

Резкое перегревание организма может привести к раз­витию теплового удара, проявляющегося в виде слабости, головокружения, шума в ушах, сердцебиения, а в тяжелых случаях - повышения температуры, нервно-психического возбуждения или потери сознания. Следует отметить, что присутствие нагретых поверхностей усиливает состояние перегрева организма за счет особенностей биологического действия радиационного тепла. В соответствии с законами теплоизлучения (Кирхгофа, Стефана-Больцмана, Вина) теп­ловое излучение нагретого предмета происходит более ин­тенсивно, чем повышение его температуры, а спектральный состав излучения по мере нагревания предмета сдвигается в сторону более коротких волн и, следовательно, обуслов­ливает более глубокое проникающее действие тепла на организм.

В производственных цехах предприятий общественного питания важнейшей гигиенической задачей является профилактика перегрева организма. С этой целью предус­матриваются удаление избыточного тепла с помощью общей и местной вентиляции, применение совершенных конструк­ций тепловых аппаратов, использование рациональной спец­одежды.

Низкие температуры воздуха (особенно в сочетании с высокой влажностью и подвижностью) могут привести к заболеваниям, связанным с переохлаждением организма. В этих условиях понижается температура кожи, снижается со­кратительная способность мышц, особенно рук, что сказы­вается на работоспособности человека. При глубоком ох­лаждении ослабляются реакции на болевые раздражители в результате наркотического действия холода, понижается сопротивляемость организма к инфекционным заболеваниям. Например, местное охлаждение рук при длительной разгрузке мороженого мяса, рыбы, мытье овощей холодной водой приводит к нарушению кровообращения, что являет­ся простудным фактором.

В связи с этим на предприятиях очень важно соблюдать гигиенические мероприятия, предупреждающие переохлаж­дение организма: устройство местной вентиляции, исклю­чающее холодные потоки воздуха (сквозняки) в рабочей зоне, организацию отогрева рук при длительной работе с холодными предметами, проектирование утепленных там­буров и т. д.

Влажность воздуха влияет на организм человека в комплексе с температурой воздуха.

С целью профилактики как перегрева, так и переохлаж­дения в производственных помещениях особое значение придается нормированию допустимых показателей темпе­ратуры, относительной влажности и скорости движения воз­духа в рабочей зоне в зависимости от категорий работ по тяжести и периода года (табл. 1).

Следует помнить, что для обеспечения допустимых по­казателей микроклимата следует применять в холодный период средства защиты рабочих мест от охлаждения из-за остекления оконных проемов, а в теплый период года - от попадания в рабочую зону прямых солнечных лучей.

Из числа вышеуказанных физических свойств воздуш­ной среды важным гигиеническим показателем является характер и степень ее ионизации.

Под ионизацией воздуха понимают превращение ней­тральных газов молекул и атомов в ионы, несущие положи­тельный и отрицательный заряды. Ионизация происходит путем перераспределения электронов между атомами и мо­лекулами газов под влиянием радиоактивного излучения земли и космического излучения.

В выдыхаемом воздухе, найдено более 200 различных соединений, главным образом органических продуктов метаболизма (табл. 5.1). Интегральным количественным показателем содержания этих соединений в воздухе может быть так называемая окисляемость воздуха , т.е. количество миллиграммов 02, которая необходима для окисления недоокисленных веществ ВИЧ воздуха (г / м3). Окисляемость выдыхаемого здоровым человеком, в норме составляет 15-20 мг / л. Воздух жилых помещений считается чистым, если окисляемость не превышает 5 .мг / л, умеренно загрязненным - при окисляемости 6-9 мг / л, загрязненным - если окисляемость составляет 10 мг / л и более.

Таблица 5.1

Специальные исследования (IL Никберг, 1987) показали, что количество отдельных ингредиентов (двуокиси углерода, аммиака), а также суммарное количество недоокисленных веществ в выдыхаемом воздухе (то есть, его окисляемость) существенно зависят от состояния здоровья человека, характера заболевания и степени его тяжести, курение табака, особенности обменных процессов и т.п.

Среди химических составляющих воздуха в помещении большое гигиеническое значение имеет двуокись углерода (СO 2 ). Этот газ относится к физиологически активных соединений, является возбудителем дыхательного центра и антагонистом O2, не имеет запаха и цвета, плохо растворяется в воде, вдвое тяжелее воздуха. В крови нормальный парциальное давление СО2 составляет 10 мм, а это на 8-10 мм.рт.ст, выше, чем в вдыхаемом воздухе, в котором его концентрация составляет 3,5-4,5%.

В зависимости от концентрации СО, в выдыхаемом воздухе, реакция организма человека может быть разной. Если концентрация СО2 менее 0,1%, человек чувствует себя нормально, субъективные или объективные нарушения отсутствуют. Именно эту концентрацию (0,1%) установлено как предельно допустимую для воздуха жилых помещений. ПДК диоксида углерода в воздухе лечебных учреждений равна 0,07%.

Если концентрация СО2 колеблется в пределах 0,1-0,5%. Ухудшается условно-рефлекторная деятельность (увеличивается время латентного периода реакции на зрительный или слуховой раздражитель), появляется ощущение дискомфорта, могут быть обнаружены некоторые изменения на ЭКГ.

При вдыхании воздуха, в котором концентрация СО, более 0,5% (0,5-1%), появляются первые проявления ацидоза, изменения электролитных свойств крови (увеличивается содержание Na, уменьшается содержание К в эритроцитах). Однако физическая и умственная деятельность существенно не ухудшаются, поэтому пребывание людей при такой концентрации иногда разрешается (на подводных лодках и т.п.).

Если концентрация СО2 увеличивается до 2% - нарастает ацидоз, снижается работоспособность, появляются признаки гипоксии. При таких условиях на производстве можно работать только в течение ограниченного времени - до 3-4 часов.

Если концентрация СО2 более 2% (2-7%), наблюдаются четкие субъективные и объективные проявления токсического воздействия СО2 в виде наркотического действия, неадекватного психического возбуждения, возникает тахипноэ, головные боли, головокружение, одышка. При таких условиях длительное пребывание в помещениях недопустимо (оно может быть вынужденным только в случае аварийных ситуаций, продолжаться до 60 минут и сопровождаться строгим медицинским контролем).

Пребывание в помещении с концентрацией СО2 в воздухе более 7% быстро приводит к потере сознания и смерти.

Доминирующим по токсичности компонентом среди основных источников загрязнения воздуха жилых помещений является окись углерода (СО).

Окись углерода СО представляет собой продукт неполного сгорания топлива и входит в состав всех горючих смесей. Окись углерода, проникая через легочные альвеолы в кровь, образует с гемоглобином карбоксигемоглобин. А это вызывает глубокие количественные и качественные изменения процессов транспорта кислорода к тканям, усиливает гипоксические состояния, негативно влияет на биохимические процессы организма, может привести к хроническим и острым отравлениям. Острые отравления окисью углерода в свободной атмосфере и в жилых помещениях обычно не наблюдаются. Хронические отравления возможны при концентрации, превышающей 20-30 мг / м3. Для них характерно: появление головной боли, снижение памяти, повышение утомляемости, нарушения сна и др. Предельно допустимая средняя суточная концентрация окиси углерода в атмосфере составляет 1 мг / м 3, а максимальная разовая - 3 мг / м 3.

В воздухе жилых помещений окись углерода может появляться при печном отоплении, особенно при преждевременно закрытой дымовой трубе. В современных газифицированных кухнях и ванных комнатах в результате утечки газа из сети или его неполном сгорании во время эксплуатации. На производстве окись углерода может образовываться и накапливаться в рабочих помещениях в результате технологических процессов. В табачном даме содержится около 0,5-1,0% окиси углерода. По данным ИЛ. Даценко и Р. Д. Габовича (1999г.), В газифицированных квартирах содержание СО в воздухе не только кухонь, но и в жилых комнатах может превышать предельно допустимый для атмосферного воздуха (10 мг / м3).

Источником загрязнения СО атмосферы служат выбросы промышленных предприятий, выхлопные газы автотранспорта и др. В обычном даме содержится около 3% окиси углерода в выхлопных газах при нормальном режиме работы двигателя - 7,7%. На городских улицах с интенсивным движением автомобилей и в домах, расположенных на этих улицах, при открытых окнах концентрация окиси углерода повышается до 10-20 мг / м3.

В связи с широким внедрением в народное хозяйство двигателей внутреннего сгорания, развитием автомобильного движения, авиации, использованием в сельском хозяйстве разного рода самоходных машин борьбе с загрязнением воздуха окисью углерода уделяется большое внимание.

Классификация химических факторов производственной среды:

а) по агрегатному состоянию: газы, пары, аэрозоли и смеси;

б) по происхождению (химическими классами): органические, неорганические, элементоорганическими и др.;

в) по характеру воздействия на организм человека: общетоксические, раздражающие, сенсибилизирующие, канцерогенные, мутагенные, влияющие на репродуктивную функцию, эмбриотоксические и тератогенные;

г) в зависимости от поражения органов и систем: яда политропный, нейротропного, нефротоксического и кардиотоксического влияния, а также яды крови

д) по степени токсичности: чрезвычайно токсичны, высокотоксичные, умеренно токсичные и малотоксичные;

е) по степени воздействия на организм в целом: чрезвычайно опасные (1-й класс), высокоопасные (2-й класс), умеренно опасные (3-й класс) и малоопасные (4-й класс).

Чистый атмосферный воздух у поверхности Земли - это ме­ханическая смесь различных газов, среди которых в порядке их убывания по объему содержатся азот, кислород, аргон, диоксид углерода и ряд других газов, суммарное количество которых не превышает 1 %.

Состав чистого сухого атмосферного воздуха в объемных процентах представлен на рис. 1,2,

За сутки в состоянии покоя взрослый человек пропускает че­рез легкие 13-14 м3 воздуха - значительный объем, увеличи­вающийся при выполнении физических нагрузок. Это значит, что для организма небезразлично, воздухом какого химическо­го состава он дышит.

Кислород - самый важный для жизнедеятельности газ воз­духа. Он расходуется в организме на окислительные процессы, поступая через легкие в кровь, и доставляется тканям и клеткам организма в составе оксигемоглобина,

Рис. 1.2. Химический состав атмосферного воздуха при нормальных условиях.

В окружающей природе кислород также необходим для окис­ления органических веществ, находящихся в воде, воздухе и почве, а также для поддержания процессов горения.

Источником кислорода в атмосфере являются зеленые рас­тения, образующие его под действием солнечной радиации в процессе фотосинтеза и выделяющие в воздух в процессе ды­хания, Речь идет о фитопланктоне морей и океанов, а также растениях тропических лесов и вечнозеленой тайги, которые образно называют "легкими планеты".

Зеленые растения образуют кислород в очень больших коли­чествах, и вследствие постоянного перемешивания слоев ат­мосферного воздуха его содержание в атмосферном воздухе повсюду остается практически постоянным - около 21 %. Низ­кие концентрации кислорода, существенные для жизнедеятель­ности организма человека, наблюдаются при подъеме на высоту и при пребывании людей в герметически замкнутых помеще­ниях в случае аварийных ситуаций, когда нарушены техничес­кие средства поддержания жизнедеятельности. Повышенное содержание кислорода отмечается в условиях высокого атмос­ферного давления (в кессонах). При парциальном давлении свыше 600 мм рт.ст. он ведет себя как токсичное вещество, вы­зывая отек легких и пневмонию.

В атмосферном воздухе содержится динамический изомер кислорода - трехатомный кислород озон, являющийся силь­нейшим окислителем. Он образуется в природных условиях в верхних слоях атмосферы под влиянием коротковолнового ультрафиолетового излучения Солнца, при грозовых разрядах, в процессе испарения воды.

Озон играет важнейшую роль в защите биологических объ­ектов планеты от губительного воздействия жесткого ультрафи­олета, задерживая его в стратосфере на высоте 20-30 км.

Озон обладает своеобразным приятным запахом свежести, и его присутствие можно легко обнаружить в лесу после грозы, в горах, в чистой природной среде, где он считается показате­лем чистоты воздуха. Однако избыток озона неблагоприятен для жизнедеятельности организма, и начиная с концентрации 0,1 мг/м3 он действует как раздражающий газ.

Присутствие же озона в воздухе крупных промышленных горо­дов, загрязненном выбросами автотранспорта и промышленных объектов, в свете последних научных данных считается неблаго­приятным признаком, поскольку в этих условиях он образуется в результате фотохимических реакций при формировании смога.

Высокая окислительная способность озона используется при обеззараживании воды.

Диоксид углерода, или углекислый газ, поступает в воздух в процессе дыхания людей, животных, растений (в ночное вре­мя), окисления органических веществ при горении, брожении, гниении, находясь в окружающей среде в свободном и связан­ном состояниях.

Постоянство содержания этого газа на уровне 0,03 % в ат­мосфере обеспечивается его поглощением на свету зелеными растениями, растворением в воде морей и океанов, удалением с атмосферными осадками.

Значительные количества СО2 образуются в результате работы промышленных предприятий и автотранспорта, сжигающих ог­ромные количества топлива, вследствие чего в последние годы появились данные о том, что содержание углекислого газа в воздухе крупных современных городов приближается к 0,04 %, что вызывает тревогу у экологов по поводу образования "пар­никового эффекта", о котором более подробно будет сказано дальше.

Диоксид углерода участвует в обменных процессах организма, являясь физиологическим возбудителем дыхательного центра.

Вдыхание больших концентраций СОг нарушает окислительно­восстановительные процессы, и его накопление в крови и тканях ведет к тканевой аноксии. Длительное пребывание людей в за­крытых помещениях (жилых, производственных, общественных) сопровождается выделением в воздух продуктов их жизнеде­ятельности: углекислоты с выдыхаемым воздухом и летучих ор­ганических соединений (аммиак, сероводород, индол, меркап­тан), называемых антропотоксинами, с поверхности кожных покровов, грязной обуви и одежды. Происходит и некоторое снижение содержания в воздухе кислорода. В этих условиях у людей могут появиться жалобы на ухудшение самочувствия, снижение работоспособности, сонливость, головную боль и дру­гие функциональные симптомы. Чем же объясняется этот симптомокомплекс? Можно предположить, что причина лежит в не­хватке кислорода, количество которого, как уже говорилось, несколько снижается по сравнению с его содержанием в атмос­ферном воздухе. Однако было установлено, что его снижение в самых неблагоприятных условиях не превышает I %, так как вследствие негерметичности этих помещений кислород легко проникает из атмосферы в воздух помещений, пополняя его за­пас. Организм человека не реагирует на такое снижение содер­жания кислорода. Больные люди отмечают снижение кислорода в воздухе, если оно составляет 18 %, здоровые - 16 %. Жизнь не­возможна при концентрации кислорода в воздухе, равной 7-8 %. Однако названных концентраций кислорода в негерметичных помещениях никогда не бывает, но они могут быть в затонувшей подводной лодке, обрушившейся шахте и других герметичных пространствах. Следовательно, в негерметичных помещениях снижение содержания кислорода не может стать причиной ухуд­шения самочувствия людей. Тогда не заключается ли эта причи­на в накоплении избытка углекислоты в воздухе помещений? Однако известно, что неблагоприятная концентрация СО2 для здоровья человека составляет 4-5 %, когда появляются голо­вная боль, шум в ушах, сердцебиение и т.д. При содержании в воздухе 8 % углекислоты наступает смерть. Указанные же концентрации характерны только для герметичных помещений с неисправной системой жизнеобеспечения. В обычных закры­тых помещениях таких концентраций углекислого газа быть не может вследствие имеющегося постоянного воздухообмена с окружающей средой.

И все же содержание С02 в воздухе закрытых помещений имеет санитарное значение, являясь косвенным показателем чистоты воздуха. Дело в том, что параллельно с накоплением С02, обычно не выше 0,2 %, ухудшаются другие свойства воз­духа: повышаются температура и влажность, запыленность, со­держание микроорганизмов, число тяжелых ионов, появляются антропотоксины. Вот этот комплекс изменившихся физичес­ких свойств воздуха наряду с химическим загрязнением и вы­зывает ухудшение самочувствия людей. Такому изменению свойств воздуха соответствует содержание углекислоты, равное ОД %, и поэтому данная концентрация считается предельно до­пустимой для воздуха закрытых помещений.

В последние годы было установлено, что для оценки санитар­ного состояния воздуха закрытых помещений этого показателя недостаточно, так как требуется определение содержания неко­торых токсичных химических веществ, выделяющихся в воздух из полимерных строительных материалов, широко приме­няемых для внутренней отделки помещений (фенол, аммиак, формальдегид и др.).

Азот и другие инертные газы. Азот по количественному со­держанию является наиболее существенной частью атмосфер­ного воздуха, составляя 78,1 % и разбавляя другие газы, в пер­вую очередь кислород. Азот физиологически индифферентен, не поддерживает процессы дыхания и горения, содержание его в атмосфере постоянное, одинаково его количество во вдыха­емом и выдыхаемом воздухе. В условиях повышенного атмос­ферного давления азот может оказать наркотическое действие, а также известна его роль в патогенезе кессонной болезни.

Известен круговорот азота в природе, осуществляемый с по­мощью определенных видов почвенной микрофлоры, растений и животных, а также электрических разрядов в атмосфере, в ре­зультате чего азот связывается биологическими объектами, а за­тем вновь поступает в атмосферу.

ПРАКТИЧЕСКАЯ ЗНАЧИМОСТЬ ТЕМЫ:

Воздух плохо вентилируемых палат и других закрытых помещений боль­ниц вследствие изменений в химическом и бактериальном составе, фи­зических и других свойств способен оказать вредное влияние на состоя­ние здоровья, вызывая или ухудшая течение заболеваний легких, сердца, почек и др. Все это говорит о большом гигиеническом значении со­стояния воздушной среды, так как чистый воздух составляет, по мнению Ф.Ф. Эрисмана, одну из первых эстетических потребностей человече­ского организма.

ЦЕЛЬ ЗАНЯТИЯ:

    Закрепить теоретические знания о гигиеническом значении чистоты воздуха (СО 2 . антропотоксины, бакобсемененность).

    Научить студентов методам определения углекислоты и бакобсемененности воздуха и оценке степени загрязнения воздуха в соот­ветствии с гигиеническими нормативами.

    Изучить гигиенические требования к вентиляции различных поме­щений больниц.

    Научить студентов методам оценки вентиляционного режима (расчет кратности воздухообмена при естественной вентиляции).

ВОПРОСЫ ТЕОРИИ:

      Показатели загрязнения воздуха (органолептические, физические, химические, бактериологические).

      Физиолого-гигиепическое значение углекислоты.

      Методы определения углекислоты в закрытых помещениях.

      Расчет и оценка кратности воздухообмепа по углекислоте.

      Методы определения бактериальной загрязненности воздуха больничных помещений и их гигиеническая оценка.

ПРАКТИЧЕСКИЕ НАВЫКИ:

Студенты должны:

        Освоить методику определения углекислоты экспресс-методом.

        Изучить устройство и правила работы с прибором Кротова.

        Научиться оценке состояния воздушной среды и обоснованию режи­мов проветривания (на примере решения ситуационных задач).

Литература:

А) основная:

1.Гигиена с основами экологии человека [Текст] : учебник для студентов высшего профессионального образования, обучающихся по специальностям 060101.65 "Лечебное дело", 0601040.65 "Медико-профилактическое дело" по дисциплине "Гигиена с основами экологии человека. ВГ" / [П. И. Мельниченко и др.] ; под ред. П. И. Мельниченко.- М. : ГЭОТАР-Медиа, 2011 .- 751 с.

2. Пивоваров, Юрий Петрович. Гигиена и основы экологии человека [Текст] : учебник для студентов медицинских вузов, обучающихся по специальности 040100 "Лечебное дело", 040200 "Педиатрия" / Ю. П. Пивоваров, В. В. Королик, Л. С. Зиневич; под ред. Ю. П. Пивоварова.- 4-е изд., испр. и доп. - М. : Академия, 2008 .- 526 с.

3. Кича, Дмитрий Иванович. Общая гигиена [Текст] : руководство к лабораторным занятиям: учебное пособие / Д. И. Кича, Н. А. Дрожжина, А. В. Фомина.- М. : ГЭОТАР-Медиа, 2010 .- 276 с.

Б) дополнительная литература:

1. Мазаев, В.Т. Коммунальная гигиена [[Текст]] : учебное пособие для вузов: [В 2 ч.] / В. Т. Мазаев, А. А. Королев, Т. Г. Шлепнина; под ред. В. Т. Мазаева.- М. : ГЭОТАР-Медиа, 2005.

2. Щербо, А. П. Больничная гигиена / А. П. Щербо.- СПб. : Изд-во СПбМАПО, 2000 .- 482с.

УЧЕБНЫЙ МАТЕРИАЛ ДЛЯ САМОСТОЯТЕЛЬНОЙ ПОДГОТОВКИ

Санитарная оценка чистоты воздуха

Присутствие в закрытых помещениях людей или животных приводит к загрязнению воздуха продуктами метаболизма (антропотоксины и другие химические вещества).Известно, что человек в процессе жизнедеятель­ности выделяет более 400 различных соединений - аммиак, аммонийные соединения сероводород, летучие жирные кислоты, индол, меркаптан, акролеин, ацетон, фенол, бутан, окись этилена и др. Выдыхаемый воздух содержит всего 15-16% кислорода и 3,4-4,7% углекислого газа, насыщен водяными парами и имеет температуру около 37. В воздух поступают патогенные микроорганизмы (стафилококки, стрептококки и др.), уменьшается количество легких ионов и накапливаются тяжелые. Кро­ме того, в процессе эксплуатации лечебных учреждений в воздух палат­ных, приемных, лечебно-диагностических отделений могут поступать неприятные запахи, обусловленные повышением содержания недоокисленных веществ, применением строительных материалов (древесина, по­лимерные материалы), использованием различных медикаментов (эфира, кислорода, газообразных анестетических веществ, испарением лекар­ственных средств). Все это оказывает неблагоприятное воздействие как на персонал, так и, в особенности, на больных. Поэтому контроль за химическим составом воздуха и его бактериальной обсемененностью имеет важное гигиеническое значение.

Для оценки чистоты воздуха используют ряд показателей:

1. Органолептические.

Органолептические свойства воздуха основных помещений ЛПУ (при применении 6-балыюй шкалы Райта) должны соответствовать следую­щим параметрам: оценке 0 (отсутствие запаха), воздух подсобных поме­щений - оценке 1 (едва заметный запах).

2. Химические.

    Концентрация кислорода - 20-21%.

    Концентрация углекислоты до 0,05% (очень чистый воздух), до 0,07% (воздух хорошей чистоты), до 0,17с (воздух удовлетворительной чистоты).

    Концентрации химических веществ соответствуют ПДК для атмо­сферного воздуха.

    Окисляемость воздуха (количество кислорода в мг, необходимых для окисления органических веществ в 1 м 3 воздуха): чистый воздух - до 6 мг/м 3 , умеренно загрязненный - до 10 мг/м 3 ; воздух плохо проветри­ваемых помещений - более 12 мг/м 3 .

3.Физические

    Изменение температуры воздуха и относительной влажности.

    Коэффициент униполярности - отношение концентрации тяжелых ио­нов. Чистый атмосферный воздух имеет коэффициент униполярности 1,1-1.3. При загрязнении воздуха коэффициент униполярности увеличи­вается.

    Показателем электрического состояния воздуха является концентра­ция легких ионов (сумма отрицательных и положительных.) порядка 1000-3000 ионов в 1 см 3 воздуха (±500).

    Бактериологические ("Методические указания по микробиологи­ческому контролю за санитарио-гигиеническим состоянием больниц и родильных домов" номер 132-11):

    1. Хирургические операционные: общая обсемененность воздуха до на­чала операции не должна превышать 500 микробов в 1 м 3 , после операции - 1000; патогенные стафилококки и стрептококки не должны определяться в 250 л воздуха.

      Предоперационные и перевязочные: общая обсемененность воздуха до начала работы не должна превышать 750 микробов В 1 м 3 , после работы - 1500; патогенные стафилококки и стрептококки не долж­ны обнаруживаться в 250 л воздуха.

      Родильные залы: общая обсемененность воздуха - менее 2000 микробов в 1 м3 , количество гемолитических стафилококков и стрептококков - не более 24 в 1 м 3 .

      Манипуляционные комнаты: общая обсемененность воздуха - менее 2500 микробов в 1 м 3 .; число гемолитических стафилококков и стрептококков - не более 32 в 1 м 3 воздуха.

      Палаты для больных скарлатиной: общая обсемененность - менее 3500 микробов в 1 м 3 ; число гемолитических стафилококков и стрептококков - до 72-100 в 1 м 3 воздуха.

      Палата для новорожденных: общая обсемененность воздуха - менее 3000 микробов в 1 м 3 ; количество гемолитических стафилококков и стрептококков - менее 44 в 1 м 3 воздуха.

В остальных больничных помещениях чистым воздухом для летнего режима микроорганизмов в 1 м 3 – 3500,

гемолитического стафилококка - 24, зеленящего и гемолитического стрептококка - 16; для зимнего режима эти показатели составляют) соответственно 5000, 52 и 36.

Оценка загрязнения воздуха помещений продуктами метаболизма по содержанию двуокиси углерода.

Обнаружение в воздухе всех многочисленных продуктов метаболизма связано с большими трудностями, поэтому принято качество воздушной среды в помещениях оценивать косвенно по интегральному показателю - содержанию углекислого газа. Экспресс-метод определения СО2 в воз­духе основан на реакции углекислоты с раствором соды. Принцип мето­да заключается в том, что окрашенный в розовый цвет раствор соды с индикатором фенолфталеином обесцвечивается, когда весь углекислый натрий взаимодействует с СО2 воздуха и превращается в двууглекислую соду. В шприц объемом 100 мл набирают 20 мл 0,005%) раствора соды с фенолфталеином, а затем засасывают 80 мл воздуха и встряхивают в течение 1 минуты. Если не произошло обесцвечивание раствора, воздух из шприца осторожно выжимают, оставив в нем раствор, вновь набирают порцию воздуха и встряхивают еще 1 мин. Эту операцию повторяют 3-4 раза, после чего добавляют воздух небольшими порциями, по 10-20 мл, каждый раз встряхивая шприц в течение 1 мин до обесцвечивания рас­твора. Подсчитав общий объем воздуха, прошедшего через шприц опре­деляют концентрацию СО2 в воздухе по таблице

Зависимость содержания СО 2 в воздухе от объема воздуха, обеспечи­вающего 20 мл 0,005% раствора соды

Объем возду­ха, мл

Конц. С0 2 %

Объем возду­ха, мл

Конц. С0 2 %

Объем возду­ха, мл

Конц. С0 2 %

Санитарно-бактериологическое исследование воздуха

Различают следующие методы:

    седиментационный - основан на принципе самопроизвольного осаж­дения микроорганизмов;

    фильтрационные методы - заключаются в просасывании определенн­ого объема воздуха через стерильную среду, после чего фильтрующий материал используется для выращивания бактерий на питательных средах (мясопептонном агаре - для определения микробного числа и агаре с кровью - для подсчета количества гемолитических стрептококков);

    основанные на принципе ударного действия воздушной среды.

Одним из наиболее совершенных считается последний, поскольку он обеспечивает лучшее улавливание высокодисперсных фаз микробного аэрозоля. Наиболее распространенным в санитарной практике является седиментационно-аспирационный забор воздуха с помощью прибора Кротова. Прибор Кротова представляет собой цилиндр со съемной крышкой, в которой находится мотор с центробежным вентиляторам. Исследуемый воздух всасывается со скоростью 20-25 л/мин через клино­видную щель в крышке прибора и ударяется о поверхность плотной пи­тательной среды. Для равномерного посева микробов чашка Петри с пи­тательной средой вращается со скоростью 1 оборот в 1 сек. Общий объем воздуха при значительном загрязнении воздуха должен составлять 40-50 л, при незначительном - более 100 л. Чашку Петри закрывают крышкой, надписывают и ставят в термостат на 2 суток при температуре 37° С, после чего подсчитывают количество выросших колоний. Учитывая объем взятой пробы воздуха, вычисляют количество микробов в 1 м 3

Пример подсчета: Через прибор пропустили 60 л воздуха в течение 2 мин (30 л/мин). Число выросших колоний 510. Количество микроорга­низмов в 1 м 3 воздуха равно: 510/60 х1000 = 8500 в 1 м 3 .

Гигиенические требования к вентиляции больниц

В современном типовом проектировании лечебно-профилактических уч­реждений отмечается тенденция к увеличению этажности и коечности стационаров, а также числа диагностических отделений и служб. Это дает возможность сократить площадь застройки, протяженность комму­никаций, избавиться от дублирования вспомогательных служб, позволяет создать более мощные лечебно-диагностические отделения. Вместе с тем большее уплотнение палатных отделений, расположение их по вер­тикали увеличивает возможность перетекания воздушных потоков по палатным секциям и этажам. Эти особенности современного больнич­ного строительства предъявляют повышенные требования к организации воздухообмена с целью предупреждения вспышек внутрибольничных инфекций и послеоперационных осложнений. Особенно это относится к операционным блокам, хирургическим стационарам, учреждениям родо­вспоможения, детским и инфекционным отделениям больниц. Так, при проведении операций в операционных с вентиляционными установками, обеспечивающими 5-6-кратный воздухообмен и 100 % очистку воздуха от микроорганизмов, число гнойно-воспалительных осложнений не пре­вышает 0,7-1,0%, а в операционных - при отсутствии приточно- . вытяжной вентиляции возрастает до 20-30% и более. Требования к вентиляции изложены в СниП-2.04.05-80 «Отопление, вентиляция и конди­ционирование воздуха». Для работы систем отопления и вентиляции устанавливают два режима: режим холодного и переходного периодов года (температура воздуха ниже +10° С), режим тепловою периода года (температура выше 10 С). Для создания изолированного воздушного режима палат следует их проектировать со шлюзом, имеющим сообще­ние с санузлом. Вытяжная вентиляция палат должна осуществляться по­средством индивидуальных каналов, что исключает перетекание воздуха по вертикали. В инфекционных отделениях вытяжная вентиляция пред­усматривается во всех боксах и полубоксах отдельно гравитационным побуждением (за счет теплового напора), путем устройства самостоя­тельных каналов и шахт, а также установкой дефлекторов для каждого из перечисленных помещений. Приток воздуха в боксы, полубоксы, фильтры-боксы должен осуществляться за счет инфильтрации из кори­дора, через неплотности строительных конструкций. Для обеспечения рационального обмена воздуха операционного блока следует обеспечить движение воздушных потоков из операционных в прилегающие к ней помещения (предоперационные, наркозные), а также из этих помеще­ний в коридор. В коридоре операционных блоков оборудуют вытяжную вентиляцию. Наибольшее распространение в операционных получила схема подачи воздуха через приточные устройства, расположенные под потолком под углом в 15.С вертикальной плоскости и удаление ею из двух зон помещения (верхней и нижней.). Такая схема обеспечивает ламинарность движения воздушного потока и улучшает гигиенические условия помещений. Другая схема заключается в подаче воздуха в опе­рационную через потолок, через перфорированную панель и боковые приточные щели, которые создают стерильную зону и воздушную завесу. Кратность воздухообмена в центральной части операционной при этом достигает до 60-80 в 1 час. Во всех помещениях лечебных учреждений, кроме операционных, помимо организованной системы вентиляции должны устраиваться в окнах откидные фрамуги. Наружный воздух, по­даваемый приточными установками в операционные, наркозные, родо­вые, реанимационные, послеоперационные палаты, палаты интенсивной терапии, в 1-2-коечные палаты для больных с ожогами кожи, палаты для новорожденных, недоношенных и травмированных детей, очищают до­полнительно в бактериологических фильтрах. Для снижения микробной обсемененности воздуха в помещения малого объема рекомендуются воздухоочистители передвижные, рециркулярные, обеспечивающие быструю и высокоэффективную очистку воздуха. Запыленность и бакте­риальная обсемененность после 15 мин непрерывной работы при этом уменьшается в 7-10 раз. Работа воздухоочистителей основана на непре­рывной циркуляции воздуха через фильтр из ультратонких волокон. Они работают в режиме как полной рециркуляции, так и с забором воздуха из смежных помещений или с улицы. Воздухоочистители используют для очистки воздуха во время операции. Они не вызывают неприятных ощу­щений и не влияют на окружающих.

Кондиционирование воздуха - это комплекс мероприятий для создания и автоматического поддержания в помещениях лечебных учреждений оптимального искусственного микроклимата и воздушной среды в операционных, наркозных, родовых, послеоперационных палатах, реанимационных, палатах интенсивной терапии, кардиологических и эндокри­нологических отделениях, в 1-2-коечных палатах больных с ожогами Кожи, для 50% коек в отделениями для грудных и новорожденных детей, а также во всех палатах отделений недоношенных и травмированных де­тей. Автоматическая система регулировки микроклимата должна обес­печивать требуемые ею параметры: температура воздуха - 17-25 С 0 , от­носительная влажность - 40-70%, подвижность - 0,1-0,5 м/сек.

Санитарная оценка эффективности вентиляции производится на основа­ние:

    санитарного обследования вентиляционной системы и режима ее эксплуатации;

    расчета фактического объема вентиляции и кратности воздухообме­на по данным инструментальных замеров;

    объективного исследования воздушной среды и микроклимата вен­тилируемых помещений.

Оценив режим естественной вентиляции (инфильтрация наружного воз­духа через различные щели и неплотности в окнах, дверях и отчасти через поры строительных материалов в помещения), а также проветри­вание их с помощью открытых окон, форточек и других отверстий, устраиваемых для усиления естественного воздухообмена, рассматривают устройство аэрационных приспособлений (фрамуги, форточки, аэрационные каналы) и режим проветривания. При наличии искусственной вентиляции (механическая вентиляция, которая не зависит от наружной температуры и давления ветра и обеспечивает при известных условиях подогрев, охлаждение и очистку наружного воздуха) уточняют время ее функционирования в течение суток, условия содержания воздухозаборных и воздухоочистительных камер. Далее необходимо определить эф­фективность вентиляции, находя ее из фактического объема и кратности воздухообмена. Следует различать необходимые и фактические величины объема и кратности воздухообмена.

Необходимый объем вентиляции - это количество свежего воздуха, ко­торое следует подать в помещение на 1 человека в час, чтобы содержание СО 2 не превысило допустимого уровня (0,07% или 0,1%).

Под необходимой кратностью вентиляции понимают число, показы­вающее сколько раз в течение 1 часа воздух помещения должен сме­ниться наружным, чтобы содержание СО 2 не превысило допустимого уровня.

Вентиляция может быть естественной и искусственной

Под естественной вентиляций подразумевается обмен воздуха помещения с наружным через различные щели и неплотности, имеющиеся в оконных проемах и пр. и отчасти через поры строительных материалов (так называемая инфильтрация), а также через форточки и другие отверстия, устраиваемые для усиления естественного воздухообмена. В том и другом случае обмен воздуха происходит главным образом вследствие разницы температуры наружного и комнатного воздуха и давления ветра.

Лучшим приспособлением для проветривания помещения являются фрамуги устраиваемые в- верхней части окон, они уменьшают напор ветра и токи холодного воздуха, проходящего через них, попадают в зону пребывания людей уже перемещенный с теплым воздухом комнаты. Минимальным отношением площади форточки и площади пола, необходимы для обеспечения достаточного проветривания является 1: 50, т.е. при площади комнаты 50м2. ПЛОЩАДЬ ФОРТОЧЕК ДОЛЖНА быть не менее 1м 2 .

В зданиях общественного назначения с большим скоплением людей, а также в помещениях с повышением загрязнением воздуха одной, естественной вентиляции бывает недостаточно и кроме того в холодное время года ею не всегда можно широко пользоваться ввиду опасности образования холодных потоков воздуха. Поэтому в ряде помещений устраивает искусственную механическую вентиляцию, не зависящую от температурных колебаний наружного воздуха и давлении ветра, обеспечивают возможность подогрева наружного воздуха. Она может быть местной - для одного помещения и центральной - для всего здания. При местной вентиляции вредные примеси удаляются непосредственно с места их образования, а при общеообменной обменивается воздух всего помещения.

Воздух, поступающий в помещение, называется приточным, а удаляемый - вытяжным. Система вентиляции, которая обеспечивает только подачу чистого воздуха, называется приточной, а та, что только удаляет загрязненный воздух - вытяжной.

Приточно-вытяжная вентиляция одновременно подает чистый воздух и удаляет загрязненный. Обычно воздух по притоку обозначается знаком (+), по вытяжке - знаком (-).

Приток и вытяжка могут быть сбалансированными: либо с преобладанием притока, либо вытяжки.

Для борьбы с парообразованием вентиляция устраивается с преобладанием вытяжки над притоком. В операционных и родильных приток преобладает над вытяжкой. Этим достигается большая гарантия сохранения воздуха в операционных и родильных залах в чистоте, так как при такой организации воздух из них поступает в соседние помещения, а не наоборот,

К вентиляционным системам и установкам предъявляют следующие гигиенические требования:

    Обеспечить необходимую чистоту воздуха;

    Не создавать высоких и неприятных скоростей движения воздуха;

    Поддерживать вместе с системами отопления физические параметры воздуха - необходимую температуру и влажность;

    Быть безотказными и простыми в эксплуатации;

    Бесперебойно работать;

    Быть бесшумными и безопасными.

Критерии, определяющие необходимый воздухообмен, меняются в зависимости от назначения помещения. Например, для расчета вентиляции бань, душевых, прачечных пользуются допустимыми температурными величинами и содержанием влаги в воздухе. Для расчета вентиляции жилищ пользуются величинами углекислоты в воздухе, а также антропотоксинов, но они широкого применения не нашли, из-за трудности их определения.

М. Петтенкофер предложил считать гигиенической нормой содержания СО 2 - 0,07%, К.Флугге - -0,1%, О.Б.Елисова-0,05%. Величина СО 2 в воздухе жилых помещений 0,1% до сих пор является общепризнанной для оценки степени, загрязнения воздуха от присутствия людей. Углекислый газ накапливается в помещениях в результате жизнедеятельности организма в количествах, находящихся в прямой зависимости от степени загрязнения воздуха другими показателями обмена веществ человека(продукты разложения зубного налета, водяные пары и др., которые делают воздух "спертым, жилым" и неблагоприятно влияют на людей на их самочувствие).

Отмечено, что такие качества воздух приобретает при концентрации С0 2 более 0,1%,хотя данные концентрации СО 2 сами по себе не оказывают вредное воздействие на организм.

Так как концентрации СО 2 в воздухе определить значительно легче, чем наличие летучих соединений (антропотоксинов), поэтому в санитарной практике принято оценивать степень загрязнения воздуха жилых и общественных зданий по концентрации СО 2 .

Особое внимание уделяется организации вентиляции в кухнях и санитарных узлах. Недостаточный воздухообмен или неправильно работающая вытяжная вентиляция часто приводит к ухудшению состава воздуха не только в этих помещениях, но и в жилых комнатах.

При проверке эффективности вентиляции прежде всего необходимо оценить:

Состояние воздуха температура, влажность, наличие вредных паров, микроорганизмов, накоплении двуокиси углерода в обследуемых помещениях;

Объем вентиляции - т.е. количество подаваемого или удаляемого воздуха вентиляционными устройствами в м 3 за час. Этот показатель оценивается с учетом количества людей в помещениях, его объема, источника загрязнения воздуха и зависит от скорости движения воздуха и площади сечения канала.

3. Кратность вентиляции - показатель указывающий во сколько раз обменивается воздух обследуемых помещений в течении часа. Для жилых помещений коэффициент кратности должен составлять 2-3 , т.к. менее 2-х раз не будет обеспечиваться потребность воздушного куба на 1 человека, а более 3-х раз создает избыточную скорость движения воздуха.

ВИДЫ ВЕНТИЛЯЦИИ

ИСКУССТВЕННАЯ

1.Местная - а) Приточная(+)

б) Вытяжная(-)

2.Общеообменная - а) Вытяжная (-)

б) Приточно-вытяжная (+ -)

в) Приточная (+)

3. Кондиционирование - а) Центральное

б) Местное

ЕСТЕСТВЕННАЯ

1. Неорганизованная(инфильтрация)

2. Организованная(аэрация)

Кратность обмена воздуха в больничных помещениях (СНиП-П-69-78)

Помещения

Кратность воздухообмена в ч.

приток вытяжка

Палаты для взрослых

80 м 3 на одну койку 80 м 3 на одну хойку

Палаты предродовые, перевязочные, манипу- ляционные, предоперационные, процедурные

Родовые, операционные, послеоперационные палаты, палаты интенсивной терапии

По расчету, но не менее десятикратного обмена

Палаты послеродовые

80 м 3 на одну койку

Палаты для детей

80 м 3 на одну койку

Палаты для недоношенных, грудных и ново­рожденных детей

По расчету, но не менее 80 м 3 на кровать

Б оксы и полубоксы, палатные секции ин­фекционного отделения

2.5 2,5

Кабинеты врачей, комнаты персонала

Помещения для санитарной обработки боль­ных, душевые, кабины личной гигиены

Помещения для хранения трупов

Для определения кратности воздухообмена в помещении при естествен­ной вентиляции необходимо учитывать кубатуру помещения, число находящихся в нем людей и характер проводимой в нем работы. С исполь­зованием перечисленных выше данных кратность естественного возду­хообмена можно рассчитать по следующим трем методам:

1. В жилых и общественных домах, где изменения качества воздуха про­исходит в зависимости от количества присутствующих людей и бытовых процессов, связанных с ними, расчет необходимого воздухообмена про­изводят обычно по углекислоте, выделяемой одним человеком. Расчет объема вентиляции по углекислоте производят по формуле:

L = К х n / (Р - Ps) (м 3 /ч)

L - искомый объем вентиляции, м3 ; К - объем углекислоты, выделяемой 1 человеком в час (22,6 л); n - количество людей в помещении; Р - мак­симально допустимое содержание углекислоты в воздухе помещений в промиллях (1% или 1,0 л/м кубического воздуха); Ps - содержание уг­лекислоты в атмосферном воздухе (0,4 промилли или 0,4 л/ м3)

В расчете на 1 человека объем потребного вентиляционного воздуха составляет в расчете на 1 человека 37,7м3 в час. Исходя из нормы вентиляционного воздуха, устанавливают размеры воздушного куба, который в обычных жилых помещениях должен быть не менее 25 м 3 при расчете на взрослого человека. Необходимая вентиляция при этом достигается при 1.5-кратном обмене воздуха в час (37,7:25=1,5).