Расчет отопительной нагрузки здания. Расчет по стенам и окнам. Тепловая нагрузка от нагрева воды для ГВС

Тепловая нагрузка на отопление - это количество тепловой энергии, необходимое для достижения комфортной температуры в помещении. Существует также понятие максимальной почасовой нагрузки, которое следует понимать как наибольшее количество энергии, которое может понадобиться в отдельные часы при неблагоприятных условиях. Чтобы понять, какие условия можно считать неблагоприятными, необходимо разобраться с факторами, от которых зависит тепловая нагрузка.

Потребность здания в тепле

В разных строениях потребуется неодинаковое количество тепловой энергии, чтобы человек чувствовал себя комфортно.

Среди факторов, влияющих на потребность в тепле, можно выделить следующие:


Распределение приборов

Если речь идет о водяном отоплении, максимальная мощность источника тепловой энергии должна равняться сумме мощностей всех источников тепла в здании.

Распределение приборов по помещениям дома зависит от следующих обстоятельств:

  1. Площадь помещения, уровень потолка.
  2. Положение комнаты в строении. Помещения в торцевой части по углах отличаются повышенными теплопотерями.
  3. Расстояние до источника тепла.
  4. Оптимальная температура (с точки зрения жильцов). На температуру помещения, помимо прочих факторов, влияет перемещение воздушных потоков внутри жилья.
  1. Жилые помещения в глубине строения - 20 градусов.
  2. Жилые помещения в угловых и торцевых частях здания - 22 градуса.
  3. Кухня - 18 градусов. В кухонном помещении температура выше, так как в ней присутствуют дополнительные источники тепла (электрическая плита, холодильник и т.д.).
  4. Ванная комната и туалет - 25 градусов.


Если в доме обустроено воздушное отопление, объем потока тепла, поступающий в комнату, зависит от пропускной возможности воздушного рукава. Регулируется поток ручной настройкой вентиляционных решеток, а контролируется - термометром.

Дом может обогреваться распределенными источниками тепловой энергии: электро- или газовые конвекторы, теплые полы на электричестве, масляные батареи, ИК-обогреватели, кондиционеры. В этом случае нужные температуры определяются настройкой термостата. В этом случае нужно предусмотреть такую мощность оборудования, которой бы хватало при максимальном уровне тепловых потерь.


Методики расчета

Расчет тепловой нагрузки на отопление можно произвести на примере конкретного помещения. Пусть в данном случае это будет сруб из 25-сантиметрового бурса с чердачным помещение и полом из древесины. Размеры здания: 12×12×3. В стенах имеется 10 окон и пара дверей. Дом расположен в местности, для которой характерны очень низкие температуры зимой (до 30 градусов мороза).

Расчеты можно произвести тремя способами, о которых пойдет речь ниже.

Первый вариант расчета

Согласно существующим нормам СНиП, на 10 квадратных метров нужен 1 кВт мощности. Данный показатель корректируется с учетом климатических коэффициентов:

  • южные регионы - 0,7-0,9;
  • центральные регионы - 1,2-1,3;
  • Дальний Восток и Крайний Север - 1,5-2,0.

Вначале определяем площадь дома: 12×12=144 квадратных метра. В таком случае базовый показатель тепловой нагрузке равен: 144/10=14,4 кВт. Полученный результат умножаем на климатическую поправку (будем использовать коэффициент 1,5): 14,4×1,5=21,6 кВт. Столько мощности нужно, чтобы в доме была комфортная температура.


Второй вариант расчета

Способ, приведенный выше, страдает значительными погрешностями:

  1. Не учтена высота потолков, а ведь обогревать нужно не квадратные метры, а объем.
  2. Через оконные и дверные проемы теряется больше тепла, чем через стены.
  3. Не учтен тип здания - многоквартирное это здание, где за стенами, потолком и полом обогреваемые квартиры содей или это частный дом, где за стенами только холодный воздух.

Корректируем расчет:

  1. В качестве базового применим следующий показатель - 40 Вт на кубический метр.
  2. Для каждой двери предусмотрим по 200 Вт, а для окон - по 100 Вт.
  3. Для квартир в угловых и торцевых частях дома используем коэффициент 1,3. Если речь идет о самом высоком или самом низком этаже многоквартирного здания, используем коэффициент 1,3, а для частного строения - 1,5.
  4. Также снова применим климатический коэффициент.


Таблица климатического коэффициента

Производим расчет:

  1. Высчитываем объем помещения: 12×12×3=432 квадратных метра.
  2. Базовый показатель мощности равняется 432×40=17280 Вт.
  3. В доме есть десяток окон и пара дверей. Таким образом: 17280+(10×100)+(2×200)=18680Вт.
  4. Если речь идет о частном доме: 18680×1,5=28020 Вт.
  5. Учитываем климатический коэффициент: 28020×1,5=42030 Вт.

Итак, исходя из второго вычисления видно, что разница с первым способом расчета практически двукратная. При этом нужно понимать, что подобная мощность нужна только во время самых низких температур. Иными словами, пиковую мощность можно обеспечить дополнительными источниками обогрева, например, резервным обогревателем.

Третий вариант расчета

Есть еще более точный способ подсчета, в котором учитываются теплопотери.


Схема потери тепла в процентах

Формула для расчета такова: Q=DT/R, где:

  • Q - потери тепла на квадратный метр ограждающей конструкции;
  • DT - дельта между наружной и внутренней температурами;
  • R - уровень сопротивления при передаче тепла.

Обратите внимание! Порядка 40% тепла уходит в вентиляционную систему.

Чтобы упростить подсчеты, примем усредненный коэффициент (1,4) потерь тепла через ограждающие элементы. Осталось определить параметры термического сопротивления из справочной литературы. Ниже приведена таблица для наиболее часто применяемых конструкционных решений:

  • стена в 3 кирпича - уровень сопротивления составляет 0,592 на кв. м×С/Вт;
  • стена в 2 кирпича - 0,406;
  • стена в 1 кирпич - 0,188;
  • сруб из 25-сантиметрового бруса - 0,805;
  • сруб из 12-сантиметрового бруса - 0,353;
  • каркасный материал с утеплением минватой - 0,702;
  • пол из древесины - 1,84;
  • потолок или чердак - 1,45;
  • деревянная двойная дверь - 0,22.


  1. Температурная дельта - 50 градусов (20 градусов тепла в помещении и 30 градусов мороза на улице).
  2. Потери тепла на квадратный метр пола: 50/1,84 (данные для пола из древесины)=27,17 Вт. Потери по всей площади пола: 27,17×144=3912 Вт.
  3. Теплопотери через потолок: (50/1,45)×144=4965 Вт.
  4. Рассчитываем площадь четырех стен: (12×3)×4=144 кв. м. Так как стены изготовлены из 25-сантиметрового бруса, R равняется 0,805. Тепловые потери: (50/0,805)×144=8944 Вт.
  5. Складываем полученные результаты: 3912+4965+8944=17821. Полученное число - общие теплопотери дома без учета особенностей потерь через окна и двери.
  6. Прибавляем 40% вентиляционных потерь: 17821×1,4=24,949. Таким образом, понадобится котел на 25 кВт.


Выводы

Даже самый продвинутый из перечисленных способов не учитывает всего спектра потерь тепла. Поэтому рекомендуется покупать котел с некоторым запасом мощности. В связи с этим приведем несколько фактов по особенностям КПД разных котлов:

  1. Газовое котельное оборудование работают с очень стабильным КПД, а конденсационные и соляровые котлы переходят на экономичный режим при небольшой нагрузке.
  2. Электрокотлы имеют 100% коэффициент полезного действия.
  3. Не допускается работа в режиме ниже номинальной мощности для твердотопливных котельных аппаратов.

Твердотопливные котлы регулируются ограничителем поступления воздуха в топочную камеру, однако при недостаточном уровне кислорода не происходит полного выгорания топлива. Это приводит к образованию большого количества золы и снижению КПД. Исправить положение можно при помощи теплового аккумулятора. Бак с теплоизоляцией устанавливается между трубами подачи и обратки, размыкая их. Таким образом, создается малый контур (котел - буферный бак) и большой контур (бак - отопительные приборы).


Схема функционирует следующим образом:

  1. После закладки топлива оборудование работает на номинальной мощности. Благодаря естественной или принудительной циркуляции, происходит передача тепла в буфер. После сгорания топлива, циркуляция в малом контуре прекращается.
  2. В течение последующих часов тепловой носитель циркулирует по большому контуру. Буфер медленно передает тепло батареям или теплому полу.

Увеличенная мощность потребует дополнительных затрат. При этом запас мощности оборудования дает важный положительный результат: интервал между загрузками топлива значительно увеличивается.

Тепловая нагрузка подразумевает под собой количество тепловой энергии, необходимое для поддержания комфортной температуры в доме, квартире или отдельной комнате. Под максимальной часовой нагрузкой на отопление подразумевается количество тепла, необходимое для поддержания нормированных показателей в течение часа в самых неблагоприятных условиях.

Факторы, влияющие на тепловую нагрузку

  • Материал и толщина стен. К примеру, стена из кирпича в 25 сантиметров и стена из газобетона в 15 сантиметров способны пропустить разное количество тепла.
  • Материал и структура крыши. Например, теплопотери плоской крыши из железобетонных плит значительно отличаются от теплопотерь утепленного чердака.
  • Вентиляция. Потеря тепловой энергии с отработанным воздухом зависит от производительности вентиляционной системы, наличия или отсутствия системы рекуперации тепла.
  • Площадь остекления. Окна теряют больше тепловой энергии по сравнению со сплошными стенами.
  • Уровень инсоляции в разных регионах. Определяется степенью поглощения солнечного тепла наружными покрытиями и ориентацией плоскостей зданий по отношению к сторонам света.
  • Разность температур между улицей и помещением. Определяется тепловым потоком через ограждающие конструкции при условии постоянного сопротивления теплопередаче.

Распределение тепловой нагрузки

При водяном отоплении максимальная тепловая мощность котла должна равняться сумме тепловой мощности всех устройств отопления в доме. На распределение устройств отопления влияют следующие факторы:

При воздушном отоплении тепловой поток, который поступает в отдельное помещение, зависит от пропускной способности воздушного рукава. Зачастую простейшим способом его регулировки является подстройка положения решеток вентиляции с контролем температуры вручную.

При системе отопления, где применяется распределительный источник тепла (конвектора, теплые полы, электрообогреватели и т.д.), необходимый режим температуры устанавливается на термостате.

Методики расчета

Для определения тепловой нагрузки существует несколько способов, обладающие различной сложностью расчета и достоверностью полученных результатов. Далее представлены три наиболее простые методики расчета тепловой нагрузки.

Метод №1

Согласно действующему СНиП, существует простой метод расчета тепловой нагрузки. На 10 квадратных метров берут 1 киловатт тепловой мощности. Затем полученные данные умножаются на региональный коэффициент:

  • Южные регионы имеют коэффициент 0,7-0,9;
  • Для умеренно-холодного климата (Московская и Ленинградская области) коэффициент равен 1,2-1,3;
  • Дальний Восток и районы Крайнего Севера: для Новосибирска от 1,5; для Оймякона до 2,0.

Расчет на примере:

  1. Площадь здания (10*10) равна 100 квадратных метров.
  2. Базовый показатель тепловой нагрузки 100/10=10 киловатт.
  3. Это значение умножается на региональный коэффициент, равный 1,3, в итоге получается 13 кВт тепловой мощности, которые требуются для поддержания комфортной температуры в доме.

Обратите внимание! Если использовать эту методику для определения тепловой нагрузки, то необходимо еще учесть запас мощности в 20 процентов, чтобы компенсировать погрешности и экстремальные холода.

Метод №2

Первый способ определения тепловой нагрузки имеет много погрешностей:

  • Разные строения имеют разную высоту потолков. Учитывая то, что обогревается не площадь, а объем, этот параметр очень важен.
  • Через двери и окна проходит больше тепла, чем через стены.
  • Нельзя сравнивать городскую квартиру с частным домом, где снизу, сверху и за стенами не квартиры, а улица.

Корректировка метода:

  • Базовый показатель тепловой нагрузки равняется 40 ватт на 1 кубический метр объема помещения.
  • Каждая дверь, ведущая на улицу, добавляет к базовому показателю тепловой нагрузки 200 ватт, каждое окно – 100 ватт.
  • Угловые и торцевые квартиры многоквартирного дома имеют коэффициент 1,2-1,3, на который влияет толщина и материал стен. Частный дом обладает коэффициентом 1,5.
  • Региональные коэффициенты равны: для Центральных областей и Европейской части России – 0,1-0,15; для Северных регионов – 0,15-0,2; для Южных регионов – 0,07-0,09 кВт/кв.м.

Расчет на примере:

Метод №3

Не стоит обольщаться – второй способ расчета тепловой нагрузки также весьма несовершенен. В нем весьма условно учтено тепловое сопротивление потолка и стен; разность температур между наружным воздухом и воздухом внутри.

Стоит отметить, чтобы поддерживать внутри дома постоянную температуру необходимо такое количество тепловой энергии, которое будет равняться всем потерям через вентиляционную систему и ограждающие устройства. Однако, и в этом методе расчеты упрощены, так как невозможно систематизировать и измерить все факторы.

На теплопотери влияет материал стен – 20-30 процентов потери тепла. Через вентиляцию уходит 30-40 процентов, через крышу – 10-25 процентов, через окна – 15-25 процентов, через пол на грунте – 3-6 процентов.

Чтобы упростить расчеты тепловой нагрузки, подсчитываются тепловые потери через ограждающие устройства, а затем это значение просто умножается на 1,4. Дельта температур измеряется легко, но взять данные про термическое сопротивление можно только в справочниках. Ниже приведены некоторые популярные значения термического сопротивления:

  • Термическое сопротивление стены в три кирпича равно 0,592 м2*С/Вт.
  • Стены в 2,5 кирпича составляет 0, 502.
  • Стены в 2 кирпича равно 0,405.
  • Стены в один кирпич (толщина 25 см) равно 0,187.
  • Бревенчатого сруба, где диаметр бревна 25 см – 0,550.
  • Бревенчатого сруба, где диаметр бревна 20 сантиметров – 0,440.
  • Сруба, где толщина сруба 20 см – 0,806.
  • Сруба, где толщина 10 см – 0,353.
  • Каркасной стены, толщина которой 20 см, утепленной минеральной ватой – 0,703.
  • Стены из газобетона, толщина которой 20 см – 0,476.
  • Стены из газобетона, толщина которой 30 см – 0,709.
  • Штукатурки, толщина которой 3 см – 0,035.
  • Потолочного или чердачного перекрытия – 1,43.
  • Деревянного пола – 1,85.
  • Двойной деревянной двери – 0,21.

Чтобы выяснить, какой мощностью должно располагать теплосиловое оборудование частного дома, нужно определить общую нагрузку на систему отопления, для чего и выполняется тепловой расчет. В данной статье мы не станем говорить об укрупненной методике подсчетов по площади или объему здания, а представим более точный способ, используемый проектировщиками, только в упрощенном виде для лучшего восприятия. Итак, на систему отопления дома ложится 3 вида нагрузок:

  • компенсация потерь тепловой энергии, уходящей сквозь строительные конструкции (стены, полы, кровлю);
  • нагрев воздуха, потребного для вентиляции помещений;
  • подогрев воды для нужд ГВС (когда в этом задействован котел, а не отдельный нагреватель).

Определение потерь тепла через наружные ограждения

Для начала представим формулу из СНиП, по которой производится расчет тепловой энергии, теряемой через строительные конструкции, отделяющие внутреннее пространство дома от улицы:

Q = 1/R х (tв – tн) х S, где:

  • Q – расход тепла, уходящего через конструкцию, Вт;
  • R – сопротивление передаче тепла сквозь материал ограждения, м2ºС / Вт;
  • S – площадь этой конструкции, м2;
  • tв – температура, которая должна быть внутри дома, ºС;
  • tн – средняя уличная температура за 5 самых холодных дней, ºС.

Для справки. Согласно методике расчет теплопотерь выполняется отдельно для каждого помещения. С целью упростить задачу предлагается взять здание в целом, приняв приемлемую среднюю температуру 20-21 ºС.

Площадь для каждого вида наружного ограждения вычисляется отдельно, для чего измеряются окна, двери, стены и полы с кровлей. Так делается, потому что они изготовлены из разных материалов различной толщины. Так что расчет придется делать отдельно для всех видов конструкций, а результаты потом просуммировать. Самую холодную уличную температуру в своем районе проживания вы наверняка знаете из практики. А вот параметр R придется рассчитать отдельно по формуле:

R = δ / λ, где:

  • λ – коэффициент теплопроводности материала ограждения, Вт/(мºС);
  • δ – толщина материала в метрах.

Примечание. Значение λ – справочное, его нетрудно отыскать в любой справочной литературе, а для пластиковых окон этот коэффициент вам подскажут производители. Ниже приводится таблица с коэффициентами теплопроводности некоторых стройматериалов, причем для вычислений надо брать эксплуатационные значения λ.


В качестве примера подсчитаем, сколько тепла потеряет 10 м2 кирпичной стены толщиной 250 мм (2 кирпича) при разнице температур снаружи и в доме 45 ºС:

R = 0.25 м / 0.44 Вт/(м · ºС) = 0.57 м2 ºС / Вт.

Q = 1/0.57 м2 ºС / Вт х 45 ºС х 10 м2 = 789 Вт или 0.79 кВт.

Если стена состоит из разных материалов (конструкционный материал плюс утеплитель), то их тоже надо считать отдельно по приведенным выше формулам, а результаты суммировать. Таким же образом просчитываются окна и кровля, а вот с полами дело обстоит иначе. Первым делом необходимо нарисовать план здания и разбить его на зоны шириной 2 м, как это сделано на рисунке:


Теперь следует вычислить площадь каждой зоны и поочередно подставить в главную формулу. Вместо параметра R нужно взять нормативные значения для зоны I, II, III и IV, указанные ниже в таблице. По окончании расчетов результаты складываем и получаем общие потери тепла через полы.

Расход на подогрев вентиляционного воздуха

Малосведущие люди часто не учитывают, что приточный воздух в доме тоже надо подогревать и эта тепловая нагрузка тоже ложится на отопительную систему. Холодный воздух все равно попадает в дом извне, хотим мы того или нет, и на его нагрев нужно затратить энергию. Больше того, в частном доме должна функционировать полноценная приточно-вытяжная вентиляция, как правило, с естественным побуждением. Воздухообмен создается благодаря наличию тяги в вентиляционных каналах и дымоходе котла.

Предлагаемая в нормативной документации методика определения тепловой нагрузки от вентиляции достаточно сложна. Довольно точные результаты можно получить, если просчитать эту нагрузку по общеизвестной формуле через теплоемкость вещества:

Qвент = cmΔt, здесь:

  • Qвент – количество теплоты, потребное для нагрева приточного воздуха, Вт;
  • Δt – разница температур на улице и внутри дома, ºС;
  • m – масса воздушной смеси, поступающей извне, кг;
  • с – теплоемкость воздуха, принимается 0.28 Вт / (кг ºС).

Сложность расчета этого типа тепловой нагрузки заключается в правильном определении массы нагреваемого воздуха. Выяснить, сколько его попадает внутрь дома, при естественной вентиляции сложно. Поэтому стоит обратиться к нормативам, ведь здания строят по проектам, где заложены потребные воздухообмены. А нормативы говорят, что в большинстве комнат воздушная среда должна меняться 1 раз в час. Тогда берем объемы всех помещений и прибавляем к ним нормы расхода воздуха на каждый санузел – 25 м3/ч и кухонную газовую плиту – 100 м3/ч.

Чтобы произвести расчет тепловой нагрузки на отопление от вентиляции, полученный объем воздуха надо пересчитать в массу, узнав его плотность при разных температурах из таблицы:

Предположим, что общее количество приточного воздуха составляет 350 м3/ч, температура снаружи – минус 20 ºС, внутри – плюс 20 ºС. Тогда его масса составит 350 м3 х 1.394 кг/м3 = 488 кг, а тепловая нагрузка на отопительную систему - Qвент = 0.28 Вт / (кг ºС) х 488 кг х 40 ºС = 5465.6 Вт или 5.5 кВт.

Тепловая нагрузка от нагрева воды для ГВС

Для определения этой нагрузки можно воспользоваться той же простой формулой, только теперь надо посчитать тепловую энергию, расходуемую на подогрев воды. Ее теплоемкость известна и составляет 4.187 кДж/кг °С или 1.16 Вт/кг °С. Учитывая, что семье из 4 человек на все потребности достаточно 100 л воды на 1 сутки, нагретой до 55 °С, подставляем эти цифры в формулу и получаем:

QГВС = 1.16 Вт/кг °С х 100 кг х (55 – 10) °С = 5220 Вт или 5.2 кВт теплоты в сутки.

Примечание. По умолчанию принято, что 1 л воды равен 1 кг, а температура холодной водопроводной воды равна 10 °С.

Единица мощности оборудования всегда отнесена к 1 часу, а полученные 5.2 кВт – к суткам. Но делить эту цифру на 24 нельзя, ведь горячую воду мы хотим получать как можно скорее, а для этого котел должен располагать запасом мощности. То есть, эту нагрузку надо прибавить к остальным как есть.

Заключение

Данный расчет нагрузок на отопление дома даст гораздо более точные результаты, нежели традиционный способ по площади, хотя потрудиться придется. Конечный результат нужно обязательно умножить на коэффициент запаса – 1.2, а то и 1.4 и по рассчитанному значению подбирать котельное оборудование. Еще один способ укрупненного расчета тепловых нагрузок по нормативам показан на видео:

Тема этой статьи — определение тепловой нагрузки на отопление и прочих параметров, нуждающихся в расчете, для . Материал ориентирован прежде всего на владельцев частных домов, далеких от теплотехники и нуждающихся в максимально простых формулах и алгоритмах.

Итак, в путь.

Наша задача — научиться рассчитывать основные параметры отопления.

Избыточность и точный расчет

Стоит с самого начала оговорить одну тонкость расчетов: абсолютно точные значения потерь тепла через пол, потолок и стены, которые приходится компенсировать системе отопления, вычислить практически невозможно. Можно говорить лишь о той или иной степени достоверности оценок.

Причина — в том, что на теплопотери влияет слишком много факторов:

  • Тепловое сопротивление капитальных стен и всех слоев отделочных материалов.
  • Наличие или отсутствие мостиков холода.
  • Роза ветров и расположение дома на рельефе местности.
  • Работа вентиляции (которая, в свою очередь, опять-таки зависит от силы и направления ветра).
  • Степень инсоляции окон и стен.

Есть и хорошие новости. Практически все современные отопительные котлы и системы распределенного отопления (теплые полы, электрические и газовые конвектора и т.д.) снабжаются термостатами, дозирующими расход тепла в зависимости от температуры в помещении.


С практической стороны это означает, что избыточная тепловая мощность повлияет лишь на режим работы отопления: скажем, 5 КВт*ч тепла будут отданы не за один час непрерывной работы с мощностью 5 КВт, а за 50 минут работы с мощностью 6 КВт. Следующие 10 минут котел или другой нагревательный прибор проведет в режиме ожидания, не потребляя электроэнергию или энергоноситель.

Следовательно: в случае вычисления тепловой нагрузки наша задача — определить ее минимально допустимое значение.

Единственное исключение из общего правила связано с работой классических твердотопливных котлов и обусловлено тем, что снижение их тепловой мощности связано с серьезным падением КПД из-за неполного сгорания топлива. Проблема решается установкой в контур теплоаккумулятора и дросселированием отопительных приборов термоголовками.


Котел после растопки работает на полной мощности и с максимальным КПД до полного прогорания угля или дров; затем накопленное теплоаккумулятором тепло дозировано расходуется на поддержание оптимальной температуры в помещении.

Большая часть прочих нуждающихся в расчете параметров тоже допускает некоторую избыточность. Впрочем, об этом — в соответствующих разделах статьи.

Перечень параметров

Итак, что нам, собственно, предстоит считать?

  • Общую тепловую нагрузку на отопление дома. Она соответствует минимально необходимой мощности котла или суммарной мощности приборов в распределенной системе отопления.
  • Потребность в тепле отдельной комнаты.
  • Количество секций секционного радиатора и размер регистра, соответствующий определенному значению тепловой мощности.

Обратите внимание: для готовых отопительных приборов (конвекторов, пластинчатых радиаторов и т.д.) производители обычно указывают полную тепловую мощность в сопроводительной документации.


  • Диаметр трубопровода, способного в случае водяного отопления обеспечить необходимый тепловой поток.
  • Параметры циркуляционного насоса, приводящего в движение теплоноситель в контуре с заданными параметрами.
  • Размер расширительного бака, компенсирующего тепловое расширение теплоносителя.

Перейдем к формулам.

Один из основных факторов, влияющих на ее значение — степень утепления дома. СНиП 23-02-2003, регламентирующий тепловую защиту зданий, нормирует этот фактор, выводя рекомендованные значения теплового сопротивления ограждающих конструкций для каждого региона страны.

Мы приведем два способа выполнения подсчетов: для зданий, соответствующих СНиП 23-02-2003, и для домов с ненормированным тепловым сопротивлением.

Нормированное тепловое сопротивление

Инструкция по расчету тепловой мощности в этом случае выглядит так:

  • За базовое значение берутся 60 ватт на 1 м3 полного (включая стены) объема дома.
  • Для каждого из окон к этому значению дополнительно добавляется 100 ватт тепла . Для каждой ведущей на улицу двери — 200 ватт.


  • Для компенсации увеличивающихся в холодных регионах потерь используется дополнительный коэффициент.

Давайте в качестве примера выполним расчет для дома размерами 12*12*6 метров с двенадцатью окнами и двумя дверьми на улицу, расположенного в Севастополе (средняя температура января — +3С).

  1. Отапливаемый объем составляет 12*12*6=864 кубометра.
  2. Базовая тепловая мощность составляет 864*60=51840 ватт.
  3. Окна и двери несколько увеличат ее: 51840+(12*100)+(2*200)=53440.
  4. Исключительно мягкий климат, обусловленный близостью моря, заставит нас использовать региональный коэффициент, равный 0,7. 53440*0,7=37408 Вт. Именно на это значение и можно ориентироваться.


Ненормированное тепловое сопротивление

Что делать, если качество утепления дома заметно лучше или хуже рекомендованного? В этом случае для оценки тепловой нагрузки можно использовать формулу вида Q=V*Dt*K/860.

В ней:

  • Q — заветная тепловая мощность в киловаттах.
  • V — отапливаемый объем в кубометрах.
  • Dt — разница температур между улицей и домом. Обычно берется дельта между рекомендованным СНиП значением для внутренних помещений (+18 — +22С) и средним минимумом уличной температуры в наиболее холодный месяц за последние несколько лет.

Уточним: рассчитывать на абсолютный минимум в принципе правильнее; однако это будет означать избыточные расходы на котел и отопительные приборы, полная мощность которых будет востребована лишь раз в несколько лет. Цена незначительного занижения расчетных параметров — некоторое падение температуры в помещении в пик холодов, которое несложно компенсировать включением дополнительных обогревателей.

  • К — коэффициент утепления, который можно взять из приведенной ниже таблицы. Промежуточные значения коэффициента выводятся аппроксимацией.

Давайте повторим вычисления для нашего дома в Севастополе, уточнив, что его стены представляют собой кладку толщиной 40 см из ракушечника (пористой осадочной породы) без внешней отделки, а остекление выполнено однокамерными стеклопакетами.


  1. Коэффициент утепления примем равным 1,2.
  2. Объем дома мы вычислили ранее; он равен 864 м3.
  3. Внутреннюю температуру примем равной рекомендованным СНиП для регионов с нижним пиком температур выше -31С — +18 градусам. Сведения о среднем минимуме любезно подскажет всемирно известная интернет-энциклопедия: он равен -0,4С.
  4. Расчет, таким образом, будет иметь вид Q = 864 * (18 — -0,4) * 1,2 / 860 = 22,2 КВт.

Как легко заметить, подсчет дал результат, отличающийся от полученного по первому алгоритму в полтора раза. Причина, прежде всего в том, что средний минимум, использованный нами, заметно отличается от абсолютного минимума (около -25С). Увеличение дельты температур в полтора раза ровно во столько же раз увеличит оценочную потребность здания в тепле.


Гигакалории

В расчетах количества тепловой энергии, получаемой зданием или помещением, наряду с киловатт-часами используется еще одна величина — гигакалория. Она соответствует количеству тепла, необходимому для нагрева 1000 тонн воды на 1 градус при давлении в 1 атмосферу.

Как пересчитать киловатты тепловой мощности в гигакалории потребляемого тепла? Все просто: одна гигакалория равна 1162,2 КВт*ч. Таким образом, при пиковой мощности источника тепла в 54 КВт максимальная часовая нагрузка на отопление составит 54/1162,2=0,046 Гкал*час.

Полезно: для каждого региона страны местными властями нормируется потребление тепла в гигакалориях на квадратный метр площади в течение месяца. Среднее по РФ значение — 0,0342 Гкал/м2 в месяц.


Комната

Как подсчитать потребность в тепле для отдельной комнаты? Здесь используются те же схемы расчетов, что для дома в целом, с единственной поправкой. Если к комнате примыкает отапливаемое помещение без собственных отопительных приборов, оно включается в расчет.

Так, если к комнате размером 4*5*3 метра примыкает коридор размером 1,2*4*3 метра, тепловая мощность отопительного прибора рассчитывается для объема в 4*5*3+1,2*4*3=60+14,4=74,4 м3.

Отопительные приборы

Секционные радиаторы

В общем случае информацию о тепловом потоке на одну секцию всегда можно найти на сайте производителя.

Если он неизвестен, можно ориентироваться на следующие приблизительные значения:


Как всегда, есть ряд тонкостей. При боковом подключении радиатора с 10 и более секциями разброс температур между ближними к подводке и концевыми секциями будет весьма значительным.

Впрочем: эффект сведется на нет, если подводки подключить диагонально или снизу вниз.

Кроме того, обычно производители отопительных приборов указывают мощность для вполне конкретной дельты температур между радиатором и воздухом, равной 70 градусам. Зависимость теплового потока от Dt линейна: если батарея на 35 градусов горячее воздуха, тепловая мощность батареи будет ровно вдвое меньше заявленной.

Скажем, при температуре воздуха в комнате, равной +20С, и температуре теплоносителя в +55С мощность алюминиевой секции стандартного размера будет равна 200/(70/35)=100 ваттам. Для того, чтобы обеспечить мощность в 2 КВт, понадобится 2000/100=20 секций.

Регистры

Особняком в списке отопительных приборов стоят самодельные регистры.


На фото — отопительный регистр.

Производители по понятным причинам не могут указать их тепловую мощность; однако ее несложно вычислить своими руками.

  • Для первой секции регистра (горизонтальной трубы известных размеров) мощность равна произведению ее наружного диаметра и длины в метрах, дельты температур между теплоносителем и воздухом в градусах и постоянного коэффициента 36,5356.
  • Для последующих секций, находящихся в восходящем потоке теплого воздуха, используется дополнительный коэффициент 0,9.

Давайте разберем очередной пример — вычислим значение теплового потока для четырехрядного регистра с диаметром секции 159 мм, длиной 4 метра и температурой в 60 градусов в комнате с внутренней температурой +20С.

  1. Дельта температур в нашем случае равна 60-20=40С.
  2. Переводим диаметр трубы в метры. 159 мм = 0,159 м.
  3. Вычисляем тепловую мощность первой секции. Q = 0,159*4*40*36,5356 = 929,46 ватт.
  4. Для каждой последующей секции мощность будет равна 929,46*0,9=836,5 Вт.
  5. Суммарная мощность составит 929,46 + (836,5*3)=3500 (с округлением) ватт.

Диаметр трубопровода

Как определить минимальное значение внутреннего диаметра трубы розлива или подводки к отопительному прибору? Не станем лезть в дебри и воспользуемся таблицей, содержащей готовые результаты для разницы между подачей и обраткой в 20 градусов. Именно это значение характерно для автономных систем.

Максимальная скорость потока теплоносителя не должна превышать 1,5 м/с во избежание появления шумов; чаще ориентируются на скорость в 1 м/с.


Внутренний диаметр, мм Тепловая мощность контура, Вт при скорости потока, м/с
0,6 0,8 1
8 2450 3270 4090
10 3830 5110 6390
12 5520 7360 9200
15 8620 11500 14370
20 15330 20440 25550
25 23950 31935 39920
32 39240 52320 65400
40 61315 81750 102190
50 95800 127735 168670

Скажем, для котла мощностью 20 КВт минимальный внутренний диаметр розлива при скорости потока в 0,8 м/с будет равен 20 мм.

Обратите внимание: внутренний диаметр близок к ДУ (условному проходу) . Пластиковые и металлопластиковые трубы обычно маркируются наружным диаметром, который на 6-10 мм больше внутреннего. Так, полипропиленовая труба размером 26 мм имеет внутренний диаметр 20 мм.


Циркуляционный насос

Нам важны два параметра насоса: его напор и производительность. В частном доме при любой разумной протяженности контура вполне достаточно минимального для наиболее дешевых насосов напора в 2 метра (0,2 кгс/см2): именно это значение перепада обеспечивает циркуляцию системы отопления многоквартирных домов.

Необходимая производительность вычисляется по формуле G=Q/(1,163*Dt).

В ней:

  • G — производительность (м3/час).
  • Q — мощность контура, в который устанавливается насос (КВт).
  • Dt — перепад температур между прямым и обратным трубопроводами в градусах (в автономной системе типично значение Dt=20С).

Для контура, тепловая нагрузка на который составляет 20 киловатт, при стандартной дельте температур расчетная производительность составит 20/(1,163*20)=0,86 м3/час.


Расширительный бак

Один из параметров, нуждающихся в расчете для автономной системы — объем расширительного бачка.

Точный расчет основывается на довольно длинном ряде параметров:

  • Температуре и типе теплоносителя. Коэффициент расширения зависит не только от степени нагрева батарей, но и от того, чем они заполнены: водно-гликолевые смеси расширяются сильнее.
  • Максимально рабочем давлении в системе.
  • Давлении зарядки бачка, зависящем, в свою очередь, от гидростатического давления контура (высоты верхней точки контура над расширительным баком).

Есть, однако, один нюанс, позволяющий сильно упростить расчет. Если занижение объема бачка приведет в лучшем случае к постоянному срабатыванию предохранительного клапана, а в худшем — к разрушению контура, то его избыточный объем ничем не повредит.

Именно поэтому обычно берется бак с литражом, равным 1/10 суммарного количества теплоносителя в системе.

Подсказка: чтобы узнать объем контура, достаточно заполнить его водой и слить ее в мерную посуду.


Заключение

Надеемся, что приведенные схемы вычислений упростят жизнь читателю и избавят его от многих проблем. Как обычно, прикрепленное к статье видео предложит его вниманию дополнительную информацию.

На начальном этапе обустройства системы теплоснабжения любого из объектов недвижимости выполняется проектирование отопительной конструкции и соответствующие вычисления. Обязательно следует произвести расчет тепловых нагрузок, чтобы узнать объемы потребления топлива и тепла, необходимые для обогрева здания. Эти данные требуются, чтобы определиться с покупкой современного отопительного оборудования.

Тепловые нагрузки систем теплоснабжения

Понятие тепловая нагрузка определяет количество теплоты, которое отдают приборы обогрева, смонтированные в жилом доме или на объекте другого назначения. До того, как установить оборудование, данный расчет выполняют, чтобы избежать излишних финансовых расходов и других проблем, которые могут возникнуть в процессе эксплуатации отопительной системы.

Зная основные рабочие параметры конструкции теплоснабжения можно организовать эффективное функционирование обогревательных приборов. Расчет способствует реализации задач, стоящих перед отопительной системой, и соответствие ее элементов нормам и требованиям, прописанным в СНиПе.

Когда вычисляется тепловая нагрузка на отопление, даже малейшая ошибка может привести к большим проблемам, поскольку на основании полученных данных в местном отделении ЖКХ утверждают лимиты и другие расходные параметры, которые станут основанием для определения стоимости услуг.




Общая величина тепловой нагрузки на современную отопительную систему включает в себя несколько основных параметров:

  • нагрузку на конструкцию теплоснабжения;
  • нагрузку на систему обогрева пола, если она планируется к установке в доме;
  • нагрузку на систему естественной и/или принудительной вентиляции;
  • нагрузку на систему горячего водоснабжения;
  • нагрузку, связанную с различными технологическими нуждами.

Характеристики объекта для расчета тепловых нагрузок

Правильно расчетная тепловая нагрузка на отопление может быть определена при условии, что в процессе вычислений будут учтены абсолютно все, даже малейшие нюансы.




Перечень деталей и параметров довольно обширен:

  • назначение и тип объекта недвижимости . Для расчета важно знать, какое здание будет обогреваться - жилой или нежилой дом, квартира (прочитайте также: " "). От типа постройки зависит норма нагрузки, определяемая компаниями, поставляющими тепло, а, соответственно, расходы на теплоснабжение;
  • архитектурные особенности . Во внимание принимаются габариты таких наружных ограждений, как стены, кровля, напольное покрытие и размеры оконных, дверных и балконных проемов. Немаловажными считаются этажность здания, а также наличие подвалов, чердаков и присущие им характеристики;
  • норма температурного режима для каждого помещения в доме . Подразумевается температура для комфортного пребывания людей в жилой комнате или зоне административной постройки (прочитайте: " ");
  • особенности конструкции наружных ограждений , включая толщину и тип стройматериалов, наличие теплоизоляционного слоя и используемая для этого продукция;
  • назначение помещений . Эта характеристика особо важна для производственных зданий, в которых для каждого цеха или участка необходимо создать определенные условия относительно обеспечения температурного режима;
  • наличие специальных помещений и их особенности. Это касается, например, бассейнов, оранжерей, бань и т.д.;
  • степень техобслуживания . Наличие/отсутствие горячего водоснабжения, централизованного отопления, системы кондиционирования и прочего;
  • количество точек для забора подогретого теплоносителя . Чем их больше, тем значительнее тепловая нагрузка, оказываемая на всю отопительную конструкцию;
  • количество людей, находящихся в здании или проживающих в доме . От данного значения напрямую зависят влажность и температура, которые учитываются в формуле вычисления тепловой нагрузки;
  • прочие особенности объекта . Если это промышленное здание, то ими могут быть, количество рабочих дней на протяжении календарного года, число рабочих в смену. Для частного дома учитывают, сколько проживает в нем людей, какое количество комнат, санузлов и т.д.

Расчет нагрузок тепла

Выполняется расчет тепловой нагрузки здания относительно отопления на этапе, когда проектируется объект недвижимости любого назначения. Это требуется для того, чтобы не допустить лишние денежные траты и правильно выбрать отопительное оборудование.

При проведении расчетов учитывают нормы и стандарты, а также ГОСТы, ТКП, СНБ.

В ходе определения величины тепловой мощности во внимание принимают ряд факторов:

  • степень теплопотерь наружных ограждений;
  • мощность, необходимая для подогрева теплоносителя;
  • количество тепловой энергии, требуемое для нагрева воздуха для принудительной приточной вентиляции;
  • тепло, которое нужно для подогрева воды в бане или бассейне;
  • возможное дальнейшее расширение обогревательной системы. Это может быть создание отопления в мансарде, на чердаке, в подвале или в различных пристройках и строениях.

Расчет тепловых нагрузок здания с определенной степенью запаса необходимо, чтобы не допустить в дальнейшем лишних финансовых расходов.

Наиболее необходимость таких действий важна при обустройстве теплоснабжения загородного коттеджа. В таком объекте недвижимости монтаж дополнительного оборудования и других элементов отопительной конструкции обойдется невероятно дорого.

Особенности расчета тепловых нагрузок

Расчетные величины температуры и влажности воздуха в помещениях и коэффициенты теплопередачи можно узнать из специальной литературы или из технической документации, прилагаемой производителями к своей продукции, в том числе и к теплоагрегатам.

Стандартная методика расчета тепловой нагрузки здания для обеспечения его эффективного обогрева включает последовательное определение максимального потока тепла от обогревательных приборов (радиаторов отопления), максимального расхода тепловой энергии в час (прочитайте: " "). Также требуется знать общий расход тепловой мощности в течение определенного периода времени, например, за отопительный сезон.

Расчет тепловых нагрузок, в котором учитывается площадь поверхности приборов, участвующих в тепловом обмене, применяют для разных объектов недвижимости. Такой вариант вычислений позволяет максимально правильно рассчитать параметры системы, которая обеспечит эффективный обогрев, а также произвести энергетическое обследование домов и зданий. Это идеальный способ определить параметры дежурного теплоснабжения промышленного объекта, подразумевающего снижение температуры в нерабочие часы.




Методы вычисления тепловых нагрузок

На сегодняшний день расчет тепловых нагрузок производится при помощи нескольких основных способов, среди которых:

  • вычисление теплопотерь с использованием укрупненных показателей;
  • определение теплоотдачи установленного в здании отопительно-вентиляционного оборудования;
  • вычисление значений с учетом различных элементов ограждающих конструкций, а также добавочных потерь, связанных с нагревом воздуха.

Укрупненный расчет тепловой нагрузки

Укрупненный расчет тепловой нагрузки здания используется в тех случаях, когда информации о проектируемом объекте недостаточно или требуемые данные не соответствуют действительным характеристикам.

Для проведения подобных вычислений отопления используется несложная формула:

Qmax от.=αхVхq0х(tв-tн.р.) х10-6, где:

  • α – поправочный коэффициент, учитывающий климатические особенности конкретного региона, где строится здание (применяется в том случае, когда расчетная температура отличается от 30 градусов мороза);
  • q0 - удельная характеристика теплоснабжения, которую выбирают, исходя из температуры самой холодной недели на протяжении года (так называемой «пятидневки»);
  • V – наружный объем постройки.

Исходя из вышеприведенных данных, выполняют укрупненный расчет тепловой нагрузки.

Виды тепловых нагрузок для расчетов

При осуществлении расчетов и выборе оборудования во внимание принимают разные тепловые нагрузки:

  1. Сезонные нагрузки , имеющие следующие особенности:

    Им присущи изменения в зависимости от температуры окружающего воздуха на улице;
    - наличие отличий в величине расхода тепловой энергии в соответствии с климатическими особенностями региона местонахождения дома;
    - изменение нагрузки на отопительную систему в зависимости от времени суток. Поскольку наружные ограждения имеют теплостойкость, данный параметр считается незначительным;
    - расходы тепла вентиляционной системы в зависимости от времени суток.

  2. Постоянные тепловые нагрузки . В большинстве объектов системы теплоснабжения и горячего водоснабжения они используются на протяжении года. Например, в теплое время года расходы тепловой энергии в сравнении с зимним периодом снижаются где-то на 30-35%.
  3. Сухое тепло . Представляет собой тепловое излучение и конвекционный теплообмен за счет иных подобных устройств. Определяют данный параметр при помощи температуры сухого термометра. Он зависит от многих факторов, среди которых окна и двери, системы вентиляции, различное оборудование, воздухообмен, происходящий за счет наличия щелей в стенах и перекрытиях. Также учитывают количество людей, присутствующих в помещении.
  4. Скрытое тепло . Образуется в результате процесса испарения и конденсации. Температура определяется при помощи влажного термометра. В любом по назначению помещении на уровень влажности влияют:

    Численность людей, одновременно находящихся в помещении;
    - наличие технологического или другого оборудования;
    - потоки воздушных масс, проникающих сквозь щели и трещины, имеющиеся в ограждающих конструкциях здания.




Регуляторы тепловых нагрузок

В комплект современных котлов промышленного и бытового назначения входят РТН (регуляторы тепловых нагрузок). Эти устройства (см. фото) предназначаются для поддержки мощности теплоагрегата на определенном уровне и не допускают скачков и провалов во время их работы.

РТН позволяют экономить на оплате за отопление, поскольку в большинстве случаев существуют определенные лимиты и их нельзя превышать. Особенно это касается промпредприятий. Дело в том, что за превышение лимита тепловых нагрузок следует наложение штрафных санкций.

Самостоятельно сделать проект и произвести расчеты нагрузки на системы, обеспечивающие отопление, вентиляцию и кондиционирование в здании, довольно сложно, поэтому данный этап работ, как правило, доверяют специалистам. Правда, при желании можно выполнить вычисления самостоятельно.

Нагрузки на ГВС и вентиляцию

Обычно расчет тепловой нагрузки на ГВС, отопление и вентиляцию осуществляют в комплексе. Вентиляция относится к сезонным нагрузкам и предназначается для замены уже отработанных воздушных масс на чистый воздух и для нагрева его до определенной температуры.

Тепловизионная диагностика наглядно показывает, каким будет реальный перепад температур при прохождении конкретного количества теплоты через один «квадрат» площади ограждающих конструкций. Также термографирование помогает определить

Благодаря теплотехническим обследованиям получают самые достоверные данные, касающиеся тепловых нагрузок и потерь тепла для конкретного здания в течение определенного временного периода. Практические мероприятия позволяют наглядно продемонстрировать то, что теоретические расчеты не могут показать – проблемные места будущего сооружения.

Из всего вышеизложенного можно сделать вывод, что расчеты тепловых нагрузок на ГВС, отопление и вентиляцию, аналогично гидравлическому расчету системы отопления, очень важны и их непременно следует выполнить до начала обустройства системы теплоснабжения в собственном доме или на объекте другого назначения. Когда подход к работе выполнен грамотно, безотказное функционирование отопительной конструкции будет обеспечено, причем без лишних затрат.

Видео пример расчета тепловой нагрузки на систему отопления здания: