Что такое композитные материалы. Что такое композитные панели

Композитом называют сплошной неоднородный материал, который был искусственно создан из нескольких компонентов с разными физическими и химическими свойствами. Механические характеристики композитного материала определяет соотношение свойств матрицы и армирующих элементов, а также прочность их связи, которая обеспечивается при правильном выборе исходных компонентов и способе их совмещения.

Наиболее примитивным композитным материалом являются кирпичи из соломы и глины, которыми пользовались еще древние египтяне.

Чаще всего композитом называют материалы на основе смолы или полимерных матриц. Для изготовления композитных материалов используются фенольные, эпоксидные, винилэфирные, полиэфирные и полипропиленовые полимеры. Армирующими веществами при изготовлении композитов выступают сыпучие вещества и волокна. Прочность материала зависит от количества смолы – чем ее меньше, тем он прочнее. Сегодня для достижения идеальных пропорций всех компонентов в композитном материале постоянно совершенствуется технология формования.

Методы формования композитных материалов

В процессе формования матрица композитного материала объединяется с его армирующим веществом, в результате чего можно изготовить то или иное изделие. Термореактивные полимерные матрицы в процессе формования проходят через химическую реакцию отверждения. Термопластичные полимерные матрицы в процессе формования расплавляются и застывают в заданной форме. Данный процесс обычно проходит в комнатной температуры и нормального давления.

Самым распространенным композитом сегодня считается цемент с металлической арматурой или асфальтобетон.

Также существует контактное (ручное) формование, которое обладает рядом серьезных недостатков. В изделии, сформованном этим методом, содержится повышенное количество смолы, что делает его более хрупким. Кроме этого, при нем сложно достичь идеальных пропорций матрицы и армирующего вещества, а также соблюсти толщину изделия, избежав при этом внутренних воздушных ходов.

Процесс вакуумного формования предполагает использование открытой оснастки, в которую помещаются компоненты композита, накрываемые силиконовой мембраной или полимерной пленкой. Затем на оснастку в условиях атмосферного давления и повышенной температуры накладывают вакуум.

Сегодня со стороны строителей к композитным панелям приковано огромное внимание. Эти усовершенствованные современные материалы позволяют создать редкий архитектурный стиль новому зданию. Используют композитные панели для фасадов, прослуживших длительное время. В результате их применения существенно улучшается внешний вид построек.

Их можно использовать в жарких и холодных регионах благодаря устойчивости к разным температурам. Облицовка фасадов таким материалом приводит к созданию внутри зданий благоприятного микроклимата и к тому же позволит снизить затраты на кондиционирование в летнее время года и отопление в зимнее.

Из чего состоят панели?

Алюминиевые композитные панели - это изделия, которые состоят из двух окрашенных листов алюминия. Структура этого материала выглядит следующим образом:

  • защищающее покрытие, наделенное антикоррозийными свойствами;
  • слой, в основе которого лежит грунтовка;
  • высокопрочный алюминиевый лист;
  • огнеупорный минеральный либо полимерный наполнитель, это может быть полиэтилен, полиуретан, полипропилен, полистирол;
  • еще один слой высокопрочного алюминия;
  • грунтовка;
  • слой лака;
  • защищающая пленка.

Каждая панель для придания большей прочности покрыта специальным составом. Все слои друг с другом соединены по особой технологии, благодаря которой изделие приобретает высокую устойчивость к расслаиванию. В зависимости от назначения с двух либо одной стороны на изделие может быть, кроме краски, нанесено лаковое покрытие против ржавчины, в результате у алюминиевой композитной плиты повышается износостойкость. Выпускается готовая продукция непрерывной лентой. Наличие большого разнообразия габаритных размеров очень удобно для потребителей.

Композитная панель изготавливается способом изгиба алюминиевых листов.

Желательно, чтобы радиус закругления при этом был самым маленьким, если он будет таким же, как и толщина пластины, значит, изделие отвечает всем нормативным стандартам. В процессе производства материал обретает точные плоскостные характеристики, при этом защитные и поверхностные красочные слои нанесены однородно.

Поверхность алюминиевых композитных панелей для фасада может копировать:

  • древесину;
  • штукатурку;
  • кирпич;
  • природный камень.

На строительном рынке встречаются алюминиевые композитные панели с эффектом благородного металла, что становится возможным благодаря способу гальванотехники.

Свойства монтажных профилей

Все монтажные профили делятся на 3 вида:

  • открытая стыковка;
  • стык с уплотнением;
  • с использованием влагозащитного экрана.

Для того чтобы фасад из композитных панелей стал более жестким, часто применяют дополнительные элементы. На свойства этого изделия влияет наполнитель, который лежит в основе центрального слоя. Производители в начале изготовления такого изделия использовали полимерный материал в качестве наполнителя - вспененный полиэтилен.

Алюминиевый композит обладает:

  • незначительным весом;
  • неплохой пластичностью;
  • хорошими шумоизоляционными свойствами.

Но у данного типа есть главный минус, который заключается в том, что полиэтилен горит, поддерживает процесс горения, плавится и выделяет вредный дым. Таких недостатков не имеют алюминиевые листы с минеральным наполнителем. В составе этого вспененного полиэтилена есть существенное количество антипиренов. Благодаря этим минеральным добавкам очень сильно меняются его физические свойства. В этом случае наполнитель загорается от открытого пламени, но если нет источника огня, сразу гаснет, а также он:

  • не выделяет токсичного дыма;
  • не течет.

Производителями из Китая и Европы выпускаются технологические новинки — наполнители А и А2 классов. Гидроокись алюминия является их базовым компонентом. Эти композитные фасадные панели входят в разряд негорючих. Они могут выдерживать 2–4 часа открытого огня. Однако это положительное свойство способствует тому, что готовые изделия тяжело сделать округлыми либо другой неправильной формы. Все дело в том, что у них отсутствует пластичность. Алюминиевые композитные панели стоят дорого.

Их применяют на сооружениях и зданиях с самыми жесткими противопожарными требованиями.

Композитные алюминиевые с сотовой структурой - это отдельно стоящий класс изделий. В них между двумя металлическими листами находится сеть алюминиевых тонких перемычек рисунков:

  • сотового;
  • сетчатого;
  • линейного.

Они отличаются:

  • прочностью на изгиб;
  • легким весом;
  • дороговизной.

Такая разновидность не обладает достаточной способностью поглощать шум и вибрацию. От механического воздействия они продавливаются.

Главные плюсы

Композитный материал выпускается в различных цветах. Изделия бывают однотонных цветов, а также копирующие текстуру естественных материалов:

  • дерева;
  • мрамора;
  • гранита.

Лицевая сторона служит длительное время благодаря нанесенному лакокрасочному покрытию. К другим положительным свойствам относится простота разных процессов обработки. К примеру, благодаря фрезеровке на поверхности фасадных алюминиевых панелей можно делать технические отверстия. Легкость в обработке повышает в несколько раз сферу его использования. Конструкция материала позволяет преобразовать его в любую форму, сгибать и резать.

Результатом становится возможность использовать для отделки нестандартных построек, в которых предусмотрены купола, арки, пирамиды.

Вентфасад из композитных алюминиевых панелей обладает способностью ослаблять электромагнитные излучения. К прочим положительным свойствам относится возможность защитить стены от ветра и сырости. Небольшой вес не способен утяжелить здание. При облицовке композитом внешний вид стен будет пребывать в первоначальном состоянии длительное время, потому что такое покрытие устойчиво к погодным и химическим воздействиям. Благодаря тому что поверхность гладкая, на ней не скапливается пыль и грязь. Навесной фасад из композита ставить на высотные здания очень выгодно, потому что в этом случае поверхность обладает способностью к самоочищению.

Облицовка композитными панелями проводится в короткий срок. Они придадут сооружению стильный современный внешний вид, обеспечат ему значительные эстетические свойства.

Композитные материалы снижают потери тепла, безопасны с экологической точки зрения и не способны накапливать электричество. Они продолжительное время могут противостоять внешнему влиянию. Этот материал очень устойчив к воздействию ультрафиолетовых лучей. Композит почти никак не реагирует на агрессивные среды.

Облицовка фасада сооружений вредного производства рекомендуется именно таким видом композита.

Однако надо иметь в виду, что у материала имеются и минусы. Так изделие не является теплоизоляционным. Нужно учитывать его низкую пригодность к ремонту. В том случае если обшивка из композитных панелей повреждена, то отремонтировать достаточно сложно. При необходимости замены кассеты нужно будет менять и рядом находящиеся. У композитного материала низкого качества плита может расслаиваться, и тогда на фасаде образуются пузыри.

Области использования алюминиевых панелей

В наше время вентилируемые фасады из композитных панелей пользуются огромной популярностью. Экстерьеры всевозможных сооружений - это самая распространенная сфера применения. Композитный фасад состоит из многослойных алюминиевых панелей, которые применяются для внешней облицовки зданий.

Вентфасад, отделанный композитом, приобретает неповторимый современный внешний вид. При наличии еще и утеплителя можно достичь ощутимого сбережения электрической энергии без привлечения каких-либо дополнительных расходов на то, чтобы укрепить фундамент и несущие стены.

Монтаж вентилируемых фасадов прост благодаря тому, что есть возможность устанавливать панели на стенки из различного материала. При этом не надо их предварительно подготавливать, а значит, можно существенно сэкономить денежные средства. Легкий небольшого веса вентилируемый фасад из композитных материалов позволяет воплотить в реальность любую задумку дизайнера.

Этот материал нередко встречается во внутреннем пространстве общественных заведений в:

  • торговых центрах;
  • больницах;
  • поликлиниках;
  • аэропортах;
  • вокзалах;
  • автомобильных салонах;
  • школах.

Это те места, в которых требуется прочный материал, способный в неизменном состоянии выдержать продолжительную эксплуатацию. Кроме вентилируемых фасадов, композит используется и в других местах. Его часто используют при реставрации здания, сооружении необычных конструкций для наружной рекламы, строительстве легких временных построек. Нередко алюминиевые композитные панели участвуют в сооружении различных декоративных карнизов, поясков, наружных подвесных потолков, в облицовке колон.

Фасады из композита позволяют сформировать современный архитектурный стиль. И все это стало возможным благодаря небольшому весу, простоте обработки, повышенной гибкости и разнообразию красок.

Знакомит читателя с композитами на основе металлов и керамическими композитными материалами. Также в ней рассказывается об основных видах применения композитов.

  • Органопластики с органическими волокнами естественного и искусственного происхождения. Легче, чем стекло- и углепластики. Отличаются высокой прочностью на удар, но низкой - на растяжение/изгиб. К пластикам этого типа относится, например, кевлар.
  • Текстолиты, изготовленные из матрицы из полимера и тканей различной природы в качестве наполнителя. Некоторые текстолиты изготавливаются с матрицей из неорганических веществ (силикатов, фосфатов). Свойства материалов очень разнообразны, зависят от вида волокон ткани. Волокна производят из хлопка, асбеста, базальта, стекла, искусственных материалов и пр.
  • Полимеры с порошковым заполнением (полиэтилены, полипропилены, смолы с различными наполнителями, например, тальком, крахмалом, сажей, карбонатом кальция и пр.) - разработано уже более 10 тыс. видов пластиков этого типа. Обратите внимание, что у нас можно купить различные наполнители и другое необходимое сырье для изготовления композитов.

Композиты на основе металлов

Металлокомпозиты изготавливают на основе многих цветных металлов, например, меди, алюминия, никеля. Для наполнения берутся волокна, устойчивые к высоким температурам, не растворяющиеся в основе. Чаще всего используются металлические волокна или монокристаллы из оксидов, нитридов, керамики, карбидов, боридов. Благодаря этому получаются композиты, гораздо более огнестойкие, прочные и износоустойчивые, чем исходный чистый металл.

Керамические композиты

Керамические композиты изготавливают методом спекания под давлением исходной керамической массы с добавлением волокон или частиц. В качестве наполнителей чаще всего применяются металлические волокна - получаются керметы. Они отличаются устойчивостью к тепловому удару, высокой теплопроводностью.

Керметы используются для производства износоустойчивых и термостойких деталей, например, газовых турбин, электропечей. Также они востребованы для изготовления режущего инструмента, деталей тормозных систем, тепловыделяющих стержней для атомных реакторов.

Применение композитов

Композитные материалы уже сейчас используются практически во всех областях производства. Их применяют:

  • в строительстве;
  • производстве безопасных и бронированных стекол для транспортных средств, витрин и дверей;
  • медицинских протезов;
  • покрытий для кухонных столов и основы для электронных плат;
  • деталей и корпусов бытовых приборов;
  • оконных рам и многого другого.

Это интересно: композиты с экстремальными свойствами востребованы в самолето-, авто-, судо- и ракетостроении. Они нужны при производстве деталей для космических аппаратов, атомных станций, спортивного инвентаря (например, легких и прочных велосипедов). Применяются для изготовления элементов приборов и оборудования, эксплуатирующихся в агрессивных средах и при высоких температурах.

Введение

За последние несколько лет огромное внимание уделяется созданию и исследованию так называемых мультиферроиков - материалов, проявляющих одновременно ферроэлектрические и ферромагнитные свойства.

Мультиферроики могут быть реализованы как в монофазный, так и в композитной форме. Большинство из однофазных мультиферроичных материалов обнаруживают магнитоэлектрические свойства в низкотемпературных областях, главным образом, при криогенных температурах.

Альтернативу этим практически неприменимым однофазным мультиферроикам нашли в материалах, так называемых композитах, искусственно созданных материалах комбинацией двух фаз, например, комбинацией пьезоэлектрических и пьезомагнитных фаз или магнитострикционных и пьезоэлектрических фаз. Эти материалы сохраняют равновесные ферроэлектрические структуры при температурах, близких к комнатной. Они имеют большой магнитоэлектрический (МЕ) эффект, магнитострикционные и пьезоэлектрические фазы хорошего качества и относятся к так называемым мультифункциональным материалом. Главным достижением в производстве синтетических композитных мультиферроиков - это достаточно легкое и дешевое их изготовление и возможность контроля за молекулярным соотношением фаз и размером зёрен каждой фазы. Имеется и проблема, связанная с предотвращение возможной химической реакции на границах между ферроэлектрическим и магнитными фазами в течение синтеза, приводящей к потере, например, диэлектрических свойств. Вообще, в композитах размеры зёрен, форма и границы между зёрнами - основные элементы, приводящие при сохранении «родительских» свойств фаз к возникновению новых свойств. Так, известно, что может произойти усиление колоссального магнитного сопротивления (CRM), объясняемое в модели спин-поляризационного туннелирования появление непроводящих слоев-барьеров между зёрнами.

Передо мной тогда были поставлены задачи:

1) ознакомиться с литературой, посвященной композиционным мультиферроикам, представленного образца;

2) изучить свойства и структуру (La 0.5 Eu 0.5) 0.7 Pb 0.3 MnO 3 и PbTiO 3 ;

3) синтезировать в поликристаллическом виде PbTiO 3 и вырастить монокристалл (La 0.5 Eu 0.5) 0.7 Pb 0.3 MnO 3 ;

4) начать исследование магнитных, магнитоэлектрических и других свойств (1-х) (La 0.5 Eu 0.5) 0.7 Pb 0.3 MnO 3 +хPbTiO 3 .

Примеры композитов

Что такое композиты?

Композиционными называют материалы, образованные из двух или более разнородных фаз и обладающие характеристиками, не присущими исходным компонентам. Такое определение хорошо отражает идею композита, но является слишком широким, поскольку охватывает подавляющее большинство материалов и сплавов (например, стали, чугун, бетон и др.). По-видимому, лучшим будет другое определение: композиты - объемное монолитное искусственное сочетание разнообразных по форме и свойствам двух и более материалов (компонентов), с четкой границей раздела, использующее преимущества каждого из компонентов и проявляющее новые свойства, обусловленные граничными процессами.

Обычно композиты представляют собой основу (матрицу) из одного материала, армированную наполнителями из волокон, слоев, диспергированных частиц другого материала. При этом сочетаются прочностные свойства обоих компонентов. Путём подбора состава и свойств наполнителя и матрицы, их соотношение, ориентации наполнителя, можно получить материал с требуемым сочетанием эксплуатационных и технологических характеристик.

Композит отличается от сплава тем, что в готовом композите отдельные компоненты сохраняют присущие им свойства. Компоненты должны взаимодействовать на границе раздела композита, проявляя только положительные новые свойства. Такой результат можно получить лишь в том случае, если в композиционном материале успешно объединены свойства компонентов, т.е. при эксплуатации композита должны проявляться только требуемые свойства компонентов, а их недостатки полностью или частично уничтожаются.

Таким образом:

Получаемый композит приобретает новые, лучшие свойства и, следовательно, может выполнять дополнительные функции (многофункциональный материал);

Характеристики композита лучше, чем у его компонентов, взятых по отдельности или вместе без учета граничных процессов;

Действия отдельных компонентов композита всегда проявляются в их совокупности с учетом процессов, происходящих на границе раздела фаз.

Активное применение композитов началось с начала 70-х годов, хотя идея применения двух и более исходных материалов в качестве компонентов, образующих композиционную среду, существует с тех пор, как люди стали иметь дело с материалами.

Цель создания композита - достичь комбинации свойств, не присущих каждому из исходных материалов в отдельности. Таким образом, композит может изготавливаться из материалов, которые сами по себе не удовлетворяют предъявляемым требованиям. Так как эти требования могут относиться к физическим, химическим, технологическим и другим свойствам, то наука о композитах находится на стыке различных областей знания и требует участия исследователей различных специальностей.

Традиционный выбор материала и проектирование компонентов конструкции были отдельными задачами. Когда композиты стали вытеснять металлы и сплавы из таких областей, как самолето-, судо- и автомобилестроение, промышленный дизайн и выбор материала соединились и стали просто различными аспектами одного процесса.

Следует отметить, что наряду с конструкционной анизотропией композита существуют технологическая анизотропия, возникающая при пластической деформации изотропных материалов, и физическая анизотропия, присущая, например, кристаллам и связанная с особенностями строения кристаллической решетки.

По методу получения различают два вида композитов: искусственные и естественные. К искусственным относятся все композиты, полученные в результате искусственного введения армирующей фазы в матрицу, к естественным - сплавы эвтектического и близкого к ним состава. В эвтектических композитах армирующей фазой являются ориентированные волокнистые или пластинчатые кристаллы, образованные естественным путём в процессе направленной кристаллизации.

По мере создания новых композитов «старые» виды классификации расширяются и могут возникать новые.

При изучении литературы, посвященной магнитным и магнитоэлектрическим композитам, я нашла следующие композиты на основе оксидов, которые синтезированы и изучены:

1. «MgFe 2 O 3 -BaTiO 3 » ;

2. «BaTiO 3 - (Ni, Zn) Fe 2 O 4 » ;

3. «La 0.67 Ca 0.33 MnO 3 -CuFe 2 O 4 » ;

4. «(La 0.7 Ca 0.3 MnO 3) 1-x /(MgO) x » ;

5. «La 2/3 Ca 1/3 MnO 3 /SiO 2 » ;

6. «La 0.7 Sr 0.3 MnO 3 /Ta 2 O 5 » .