Источники тепловой энергии для преобразования в электрическую. Как происходит преобразование тепловой энергии в электрическую

Изобретение предназначено для использования в области энергетики, транспорта, авиации и космонавтики, где большую роль играет повышение экономичности тепловых машин. Способ преобразования тепловой энергии в механическую осуществляется путем использования двух разнородных тел в газовой фазе, их раздельного сжатия, раздельного подвода тепла к рабочим телам, смешения, адиабатического расширения смеси с получением механической работы, регенерации тепла, охлаждения и разделения смеси. Изобретение позволяет повысить КПД цикла и использовать низкопотенциальное тепло. 1 з.п. ф-лы, 1 ил.

Изобретение предназначено для использования в области энергетики, транспорта, авиации и космонавтики, где большую роль играет повышение экономичности тепловых машин. Известен способ преобразования тепловой энергии в механическую, при котором сжатый в компрессоре воздух подают в камеру сгорания, где подводят теплоту в цикле при сжигании топлива, а образующиеся в ней продукты сгорания подают в парогазовый эжектор, в котором при их смешении с перегретым паром, образующимся в парогенераторе при подводе к воде теплоты и преобразуемым в активный поток ускорением в паровом сопле эжектора до достижения высокой скорости истечения, происходит увеличение скорости продуктов сгорания за счет передачи им кинетической энергии пара с последующим повышением давления продуктов сгорания в составе парогазовой смеси, которую расширяют в турбине, и через систему регенеративного подогрева воды, после отделения от парогазовой смеси продуктов сгорания, их удаляют из установки (см. патент РФ N 2076929, МПК F 01 К 21/04, 1997). Недостатком данного способа являются большие затраты теплоты на получение перегретого пара, использование громоздкой системы регенеративного подогрева воды и значительные потери при смешении в эжекторе. Известен способ преобразования тепловой энергии в механическую в замкнутом процессе с подводом тепла от сжигания твердого, жидкого или газообразного топлива или от другого источника, при котором инертный газ, например ксенон или CO 2 , сжимается в компрессоре, нагревается в газонагревателе и затем расширяется в первой газотурбинной ступени. Отработавшие, но еще обладающие энергией, газы попадают в смеситель, где они смешиваются с рабочей средой, например водой, или фреоном, или паром этой среды. Рабочая среда испаряется или перегревается. Смесь поступает во вторую газотурбинную ступень, где расширяется. Отработавшую смесь подают из второй газотурбинной ступени в конденсатор, причем благодаря конденсации одновременно вновь происходит разделение веществ. Газ поступает в компрессор, а рабочая смесь в сборник жидкости и через насос - в подогреватель или испаритель (см. заявку DE N 3605466, МПК F 01 K 21/04, 1987). Недостатком этого способа являются большие потери тепла и громоздкость применяемого оборудования. Из известных способов преобразования тепловой энергии в механическую (электрическую) наиболее близким является способ преобразования тепловой энергии в механическую путем использования двух разнородных рабочих тел, их раздельного сжатия, подведения тепла, смешения, адиабатического расширения смеси с получением механической работы, охлаждения и разделения смеси на рабочие тела (см. патент US, N 5444981, МПК F 01 K 21/04, 1995). В этом способе преобразования турбина извлекает полезную энергию при меньшем падении давления, чем потребовалось бы при использовании только одного рабочего тела. Однако указанный способ применим только для использования высокопотенциального тепла сжигания топлива в котле и имеет недостаточно высокий КПД цикла. Использование котла в качестве источника тепла и совместный подогрев смешанных рабочих тел предопределяют выбор в качестве рабочих тел паров воды и гелия, которые соответственно имеют недостаточно оптимальные теплофизические свойства в процессе преобразования тепловой энергии. Недостатком способа является также отсутствие процесса регенерации тепла. Задачей настоящего изобретения является повышение КПД цикла и получение возможности использования низкопотенциального тепла, например тепла солнца, тепла окружающей среды и др. Поставленная задача решается тем, что в способе преобразования тепловой энергии в механическую путем использования двух разнородных рабочих тел, их раздельного сжатия, подведения тепла, смешения, адиабатического расширения смеси с получением механической работы, охлаждения и разделения смеси на рабочие тела, согласно изобретению в качестве рабочих тел используют разнородные тела в газовой фазе (He - CO 2 , He - N 2 , Ar - CO 2 , H 2 - N 2 или их смеси), тепло к рабочим телам подводят раздельно, а после расширения смеси производят регенерацию тепла к первоначальным рабочим телам. Поставленная задача решается тем, что смешение рабочих тел осуществляют в газовом эжекторе со сверхзвуковым диффузором или пульсирующем газовом эжекторе. На чертеже приведена T-S диаграмма сжатия, нагрева, смешения, расширения смеси, регенерации тепла от смеси на вход к первоначальным газам, охлаждения и разделения газов. Процессы адиабатического раздельного сжатия 0-1 и 0-1" двух различных газов в диапазоне температур от T 0 до T 1 изображены пунктиром, так как они начинаются из одной точки с параметрами P 0 и T 0 , а заканчиваются в точках 1 и 1" из-за различия свойств применяемых газов. Газы сжимаются соответственно до давлений P 1 и P" 1 , и далее идут процессы изобарического раздельного подвода тепла 1-2 и 1"-2" от постороннего источника до температуры 2 . После подвода тепла газы смешиваются в газовом эжекторе - процесс 2 - P см - 2" при температуре T см = T 2 . Возможно повторное смешение смеси газов после эжектора с одним из рабочих тел для достижения оптимальных параметров рабочей смеси перед расширением. Смесь газов эжектора расширяется в процессе P см - P" см до температуры T" см с получением механической (электрической) энергии. В процессе P" см - P"" см происходит регенерация тепла (изобарический отвод тепла от смеси к первоначальным рабочим телам). При этом температура смеси снижается до T 1 . Процесс P"" см P 0 - адиабатический, замыкает термодинамический цикл, и смесь приобретает первоначальные параметры P 0 и T 0 . В точке 0 происходит охлаждение и разделение смеси на первоначальные компоненты с использованием энергии основного цикла. Способ преобразования тепловой энергии в механическую осуществляется следующим образом. Разнородные рабочие тела в газовой фазе, например He - CO 2 , He - N 2 , Ar - CO 2 , H 2 - N 2 или их смеси раздельно сжимаются до давлений P 1 и P" 1 и к ним раздельно подводится тепло, например тепло солнца, тепло окружающей среды или другое низкопотенциальное тепло (процесс 1-2 и 1"-2"). Затем нагретые рабочие тела смешиваются, например, в газовом эжекторе (точка P см). Наиболее предпочтительным является смешение рабочих тел в газовом эжекторе со сверхзвуковым диффузором. Смесь рабочих тел адиабатически расширяется до давления P" см с получением механической работы (или электрической энергии). В процессе P" см - P"" см происходит регенерация тепла. Тепло от смеси изобарически отводится и передается к первоначальным рабочим телам. Процесс P"" см - P 0 адиабатический, замыкает термодинамический цикл, и смесь приобретает первоначальные параметры P 0 и T 0 . В точке 0 происходит охлаждение и разделение смеси на первоначальные компоненты с использованием энергии основного цикла. Таким образом, в предлагаемом способе преобразования тепловой энергии в механическую (электрическую) осуществляется многоконтурный замкнутый термодинамический цикл, в котором разнородные рабочие тела после их сжатия и раздельного подвода тепла к ним попеременно то смешиваются, то разделяются после расширения смеси в турбине. Положительный эффект от применения такого цикла объясняется резким различием теплофизических свойств используемых газов в качестве рабочих тел и оптимальными параметрами и свойствами смесей, получаемых при смешении этих газов в эжекторе. Все это позволяет повысить термический КПД тепловой машины и использовать в качестве подогрева рабочих тел низкопотенциальное тепло окружающей среды (или солнечный нагрев).

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ преобразования тепловой энергии в механическую путем использования двух разнородных рабочих тел, их раздельного сжатия, подведения тепла, смешения, адиабатического расширения смеси с получением механической работы, охлаждения и разделения смеси на рабочие тела, отличающийся тем, что в качестве рабочих тел используют разнородные тела в газовой фазе (He - CO 2 , He - N 2 , Ar - CO 2 , H 2 - N 2 или их смеси), тепло к рабочим телам подводят раздельно, а после расширения смеси производят регенерацию тепла к первоначальным рабочим телам. 2. Способ по п.1, отличающийся тем, что смешение рабочих тел осуществляют в газовом эжекторе со сверхзвуковым диффузором. Преобразование электрической энергии в тепловую пли электронагрев имеет четыре основные разновидности, по которым классифицируются промышленные электропечи; 1) электронагрев через сопротивление; 2) дуговой электронагрев; 3) смешанный электронагрев; 4) индукционный нагрев.
Электронагрев металлургических печей имеет существенные преимущества по сравнению с нагревом в результате сжигания углеродистого топлива: возможность получения весьма высоких температур до 3000° и более при концентрации зон высоких температур в определенных участках рабочего пространства печей; легкость и плавность регулирования величины и распределения температуры в рабочем пространстве; чистота рабочего пространства и возможность избежать загрязнения его золой, серой, газами и различными примесями: низкие потерн металлов со шлаками, пылью, газами и вследствие угара; высокий термический к. п. д., достигающий 70-85%; малое количество газов и пыли; возможность комплексной механизации и автоматизации; культура и чистота рабочих мест; возможность применять любую газовую среду и вакуум.
К недостаткам электронагрева относятся: высокое потребление электроэнергии, значительно превосходящее потребление в других отраслях народного хозяйства, и конструктивное ограничение производительности и мощности для некоторых типов электропечей. в дальнейшем в связи с увеличением мощности и числа электростанций, снижением стоимости электроэнергии и увеличением мощности и производительности электропечей перечисленные недостатки утратят свое значение.
Общая активная, или ваттная мощность трехфазной электропечной установки Р определяется по формуле

Электронагрев через сопротивление


Этот тип электронагрева имеет несколько разновидностей. По способу выделения тепла различают косвенный и прямой нагрев; наибольшее значение и распространение в печной технике имеет косвенный нагрев, характеризующийся тем, что тепло выделяется в специальных нагревательных элементах (сопротивлениях) и передается от них к обрабатываемому материалу теплоотдачей. По температуре рабочего пространства печей различают нагрев; низкотемпературный в интервале 100-700°, среднетемпературный 700-1200° и высокотемпературный 1200-2000°.
При низкотемпературном нагреве весьма большое значение имеет теплообмен между нагревателем и материалом конвекцией, которая всемерно интенсифицируется принудительной циркуляцией с большими скоростями газа или воздуха внутри печен. При среднетемпературном и высокотемпературном нагреве, особенно при отсутствии принудительной циркуляции газов, основное количество тепла передается от нагревателей к обрабатываемым материалам излучением. Для электрических печей сопротивления высокотемпературный нагрев имеет лишь ограниченное значение.
Электронагрев сопротивлением нашел наибольшее применение для сушки и обжига материалов, нагрева и термической обработки металлов и сплавов, плавки легкоплавких металлов - олова, свинца, цинка, алюминия, магния и их сплавов, а также для лабораторных и бытовых нужд. Поскольку, однако, при косвенном нагреве размер нагревательных элементов увеличивается, а размещение их в рабочем пространстве печи оказывается затруднительным, верхний предел мощности электрических печей сопротивления ограничивают величиной 600-2000 квт.
Для нормального протекания процесса преобразования электрической энергии в тепловую и длительной устойчивой работы нагревательные элементы должны обладать следующими качествами: большим удельным электрическим сопротивлением, допускающим достаточное поперечное сечение элементов и ограниченную их длину; малым электрическим температурным коэффициентом, ограничивающим разницу в электрическом сопротивлении нагретого и холодного нагревателя, постоянством электрических свойств во времени; жаростойкостью и неокисляемостью; жаропрочностью, т. е. достаточной механической прочностью при высоких температурах; постоянством линейных размеров; хорошей обрабатываемостью материала (свариваемость, пластичность и др.). Этим требованиям наиболее удовлетворяют сплавы никеля, хрома, железа (нихром, фехраль и жаропрочная сталь), применяемые в электропечах сопротивления в виде проволоки или ленты, и углеродистые материалы, применяемые в виде угольных, графитовых или карборундовых стержней.
Определение размеров нагревательных элементов можно научно обосновать совместным решением двух основных уравнений, описывающих существо работы нагревателей - уравнения мощности и уравнения теплообмена. Поскольку нагревательный элемент является составной частью электрической цели, то для получения необходимой мощности он должен обладать определенными размерами и сопротивлением. С другой стороны, вся тепловая энергия, полученная в нагревательном элементе в результате преобразования электроэнергии, должна быть передана теплоотдачей к перерабатываемым материалам и футеровке печи, для чего необходимо иметь определенную поверхность, температуру и коэффициент теплоотдачи. Если теплоотдача нагревательного элемента не соответствует происходящему в нем тепловыделению - элемент будет перегреваться, а его температура может превысить допустимые для материала пределы, что приведет к разрушению нагревателя.
На основании решения уравнения мощности для нагревательных элементов любой формы и материала выведена общая формула

При расчете размеров нагревателя величина w должна точно соответствовать его удельной теплоотдаче, которую находят решением соответствующего уравнения теплообмена нагревателя, кладки и материала А.Д. Свенчанский проанализировал условия теплоотдачи для различных реальных нагревателей и составил графики и таблицы, с помощью которых можно находить величину w.

Дуговой электронагрев


Этот вид электронагрева применяется в высокотемпературных электрических печах большой мощности преимущественно для плавки различных материалов. Если дуга горит между электродом и перерабатываемым в печи материалом, то такие печи называются печами прямого действия с зависимой дугой: открытой - видимой (рис. 20, а) или закрытой - невидимой дугой, погруженной в слой шихты или расплава (рис. 20, б). Если дуга горит между электродами и непосредственно не соприкасается с перерабатываемыми в печи материалами и продуктами, то такие печи называются печами косвенного действия с независимой дугой (рис. 20, в). Наибольшим термическим к. п. д. обладают дуговые печи прямого действия, особенно с закрытой дугой, поскольку в них имеются наилучшие условия для теплообмена между дугой и материалом, позволяющие быстро и с ограниченными потерями тепла нагревать материал до весьма высокой температуры.

Дуговые печи прямого действия получили наибольшее применение для выплавки стали и ферросплавов, плавки и рафинирования меди и никеля и переработки различного рудного сырья. При плавке металлов или сплавов с высокой (металлической) электропровадностью можно работать только с открытой дугой, горящей на поверхности материала, так как погружение электродов в слой материала поведет к короткому замыканию. Работа с закрытой дугой возможна, когда перерабатываемые материалы и продукты имеют ограниченную (не металлическую) электропроводность. Дуговые печи непрямого действия применяются в тех случаях, когда соприкосновение перерабатываемого материала с дугой ухудшает качество продуктов или увеличивает потери, например при плавке некоторых цветных металлов и сплавов (латунь, бронза и др.). Следует особо подчеркнуть, что дуговой электронагрев в отличие от нагрева сопротивлением не имеет каких-либо ограничений по общей мощности печей.
Дуговой электронагрев слагается из процесса преобразования электроэнергии в тепловую, протекающего в горящей дуге, и процесса теплообмена между дугой, материалом и футеровкой. Описание закономерностей первого процесса является предметом так называемой теории дуги и особенно дуги переменного тока большой мощности. Значительный вклад в разработку теории дуги внесли В.В. Петров, В.Ф. Миткевич, С.И. Тельный, И.Т. Жердев, К.К. Хренов, Г.А. Сисоян и др. Вопросами теплообмена между дугой, материалом и футеровкой занимались Д.А. Диомидовский, Н.В. Окороков и др.
Электрическая дуга может быть получена при постоянном и переменном токе, но все промышленные печи работают обычно на переменном токе. Для устойчивого горения дуги и ограничения толчков тока при коротких замыканиях последовательно с ней в электрическую цепь включается индуктивное сопротивление, поглощающее небольшую долю активной мощности. При переменном токе в течение каждого полупериода напряжение сети и сила тока достигают максимума и проходят через нуль. На рис. 21, а показаны теоретические кривые мгновенного значения силы тока и напряжения дуги Iд и Uд и напряжения питающего источника Uист. Когда напряжение источника после перехода через нуль начинает расти, дуга зажигается только при достижении величины напряжения зажигания U1. С этого момента в цепи появляется ток, возрастающий по периодической кривой, отличной От синусоиды. Дуга затухает при напряжении затухания т. е. раньше перехода через нуль напряжения источника, и в этот момент прекращается ток. После перехода через нуль все описанные явления повторяются. Таким образом, ток в дуге идет прерывисто и дуга то зажигается, то погасает. Длительность перерывов в горении дуги зависит от многих факторов и, в частности, от материала электродов, степени разогрева печного пространства и др. Понятно, что прерывистая дуга снижает эффективность дугового нагрева и поэтому должны создаваться условия, обеспечивающие непрерывное горение дуги переменного тока. Основным средством для непрерывного горения дуги переменного тока является последовательное включение в цепь дуги индуктивного сопротивления, что видно из рис. 21, б и в.
Исследование дифференциального уравнения дуги переменного тока, имеющей в цепи активное и индуктивное сопротивления, определило соотношение величин индуктивного X и активного R сопротивлений, обеспечивающее непрерывное горение дуги при заданных напряжениях источника Uист и дуги Uд (рис. 22).

Эффективность дугового нагрева в весьма большой степени зависит от электрического режима горящей дуги и, в первую очередь, от величин напряжения и силы тока.
В настоящее время еще не создана научно обоснованная методика определения наивыгоднейшего напряжения для питания дуговых печей. Поэтому напряжение выбирают по данным заводской практики в пределах от 100 до 600 в, причем более высокое напряжение обычно принимается для дуговых печей большой мощности и для печей с закрытой дугой. Связь максимального рабочего напряжения Uлин и номинальной мощности печи Рном принято выражать эмпирической формулой

где k и n - эмпирические коэффициенты, имеющие различные значения в зависимости от типа печи и характера процесса. Например для дуговых сталеплавильных печей к = 15; n = 0,33. Работа на повышенном напряжении более рациональна, так как снижает потери электроэнергии и увеличивает длину и тепловое излучение дуги. Верхний предел напряжения (600 в) обусловлен в основном условиями электрической изоляции печи и безопасности обслуживающего персонала.
После определения величины напряжения выбор других показателей электрического режима электропечной установки с дуговым нагревом - оптимальной силы тока, cos φ и к. п. д. - производится по ее рабочим характеристикам. Рабочие характеристики дуговых печей нaxодят построением круговых диаграмм: для действующих заводских печей снимают с натуры, для вновь проектируемых печей - по расчетным данным.
Для теории дугового нагрева и расчета дуговых печей весьма большое значение имеет процесс теплообмена между горящей дугой и перерабатываемыми в печи материалами. Однако теория теплообмена в рабочем пространстве дуговых печей находится еще в начальной стадии своего развития и требует дальнейшей углубленной разработки.

Смешанный электронагрев


Этот тип нагрева, являющийся результатом совместного тепловыделения в электрической дуге и в сопротивлении слоя шихты или расплавов, имеет основное значение для рудно-термических печей, выплавляющих ферросплавы, чугун и перерабатывающих рудное сырье и полупродукты цветной металлургии и химической промышленности.
в наиболее сложном случае электрический ток, проходящий через дугу и слои шихты, шлака и металла, преобразуется в них в тепловую энергию Qдуги, Qшихты, Qшлака, Q металла, печи Робщ представляет сумму перечисленных тепловыделений. Принципиальная схема расчета всех этих тепловыделений и связь их с геометрией горна рудно-термических печей была в свое время освещена автором но для точного расчета тепловыделений не достает еще очень многих данных по термической характеристике дуги, электросопротивлениям шихты и расплавов, форме и размерам токопроводящих участков и т. п. Соответственно предложенный автором методом расчета руднотермических электропечей носит пока ориентировочный характер и имеет ограниченное применение.
Для цветной металлургии наибольшее значение имеют рудно-термические печи, работающие с электродами, погруженными в толстый слой шлака, в которых происходит смешанный электронагрев, складывающийся из двух основных составляющих: Qдуги и Qшлака.
М.С. Максименко предложил разделять все электротермические процессы на две основные группы; 1) процессы, в которых доля энергии, поглощаемая в дуге р, больше доли энергии, поглощаемой в шихте и расплавах 2) процессы, у которых р

Индукционный электронагрев


Индукционный электронагрев осуществляется по принципу трансформатора, у которого вторичная обмотка замкнута на. себя, в результате чего индуктируемый электрический ток преобразуется в тепловую энергию. Роль вторичной обмотки играет обычно сам нагреваемый материал. Электрическая энергия, подводимая в первичную обмотку (индуктор), совершает сложный переход в энергию быстропеременного магнитного поля, которая, в свою очередь, вновь переходит во вторичной цепи в электрическую энергию, преобразуемую здесь за счет сопротивления цепи в тепловую энергию. Если нагреваемый материал ферромагнитен, те часть энергии переменного магнитного поля преобразуется в тепловую энергию непосредственно, без перехода в электрическую энергию.
Наибольшее распространение в технике имеют два типа индукционных печей: 1) печи с железным сердечником; 2) печи без сердечника - высокочастотные.

Печи с железным сердечником имеют принципиальную схему (рис. 23, а), похожую на схему обычного трансформатора, у которого первичная обмотка насажена на железный сердечник, а вторичная представлена замкнутым кольцом расплавленного металла, т. е. совмещена с нагрузкой. В результате энергичной циркуляции металл, нагреваемый в кольцевом канале, поднимается вверх в рабочее пространство печи и, соприкасаясь с находящейся там шихтой, нагревает и расплавляет ее.
Печи без сердечника по своей схеме представляют воздушный трансформатор (рис. 23, б), первичной обмоткой которого является медная катушка - индуктор, а вторичная-сама металлическая шихта, загруженная в тигель.
Действующее значение индуктируемой электродвижущей силы Е. в, зависит от амплитудной величины полезного магнитного потока Фм, вб, частоты переменного тока f, пер/сек, числа витков обмотки w, и выражается формулой

В печах с железным сердечником величина достаточно большая благодаря концентрации полезного магнитного потока в сердечнике, а в печах без сердечника величина мала из-за большого магнитного рассеивания. Вследствие этого в индукционных печах с железным сердечником необходимая величина электродвижущей силы Е легко достигается на переменном токе с нормальной и пониженной частотой (f Основные преимущества индукционного нагрева следующие: выделение тепла прямо в массе нагреваемого материала, что уменьшает роль теплообменных процессов, обеспечивает более равномерный прогрев материала и значительно повышает термический к. п. д. индукционных печей; исключительная чистота рабочего пространства печей (обусловленная отсутствием загрязняющих его продуктов горения топлива, материалов нагревательных элементов и электродов), позволяющая получать особо чистые металлы и сплавы; возможность полной изоляции рабочего пространства печей от окружающего воздуха и ведения плавки в вакууме или в газовой защитной атмосфере; возможность получения весьма высокой температуры, лимитируемой только свойствами нагреваемого материала и огнеупорной кладки; энергичное перемешивание расплавов электромагнитными и тепловыми потоками, позволяющее получать сплавы равномерного химического состава; высокая удельная производительность индукционных печей; большая скорость нагрева и плавления; малые потери металлов от угара; высокая техническая культура печных агрегатов, отсутствие пыли и газов.
К недостаткам индукционного нагрева относятся: пониженный коэффициент мощности, поскольку для печей с железным сердечником соs φ = 0,3/0,8 и для бессердечниковых печей соs φ = 0,03/0,1; ограниченные размеры, мощность и емкость индукционных печей по сравнению с другими агрегатами; сложность электрического оборудования бессердечниковых печей, требующих специальных источников переменного тока высокой частоты и конденсаторных батарей значительной емкости; ограниченная стойкость футеровки каналов печей с железным сердечником и тиглей бессердечниковых печей: низкая температура нагрева шлаков.
Преимущества индукционного нагрева обусловили его широкое распространение. Индукционные печи с железным сердечником являются в настоящее время основным агрегатом для плавки и литья цветных металлов и производства цветных сплавов. Индукционные печи без сердечника применяются для плавки цветных и благородных металлов и для получения качественных стальных отливок. В металлургии меди, никеля и цинка также применяются индукционные печи, работающие на конечных переделах. Индукционный нагрев широко применяется на машиностроительных заводах при термической обработке различных металлических заготовок и изделий.
Теория индукционных печей с железным сердечником базируется на теории однофазного двухобмоточного трансформатора с железным сердечником. Отличие обычного трансформатора от индукционной печи с железным сердечником заключается в том, что у трансформатора вторичная обмотка и сеть потребления (нагрузка) находятся на значительном расстоянии одна от другой, а в индукционной печи вторичная обмотка совмещена с нагрузкой и представлена кольцом расплавленного металла.
Преобразуемая мощность Рпр может быть выражена через вторичный ток I2 и фактическое активное сопротивление металла в канале r2 формулой

Мощность, теряемая в индукторе (электрические потери) Рэл, выражается через первичный ток I1 и фактическое активное сопротивление обмотки индуктора

Полная активная (ваттная) мощность индукционной печи с железным сердечником Р будет

В теории индукционных печей без железного сердечника эти печи рассматриваются как воздушные трансформаторы, у которых в результате отсутствия замкнутого железного магнитопровода магнитные потоки проходят по перерабатываемой шихте и по воздуху.
Частота питающего индуктор переменного тока f зависит от емкости (мощности) индукционной печи и удельного сопротивления перерабатываемой шихты р2. Исследования показывают, что чем больше емкость печи и ее размеры, в частности диаметр шихты d, см, и чем меньше удельное сопротивление расплавленного металла р2. ом/см3, тем меньше может быть минимальная частота fмин, гц; указанная зависимость выражается формулой

Каждой емкости печи и сопротивлению соответствует определенная оптимальная частота питающего тока, при которой к. п. д. печи достигает возможного максимального значения. Для бессердечниковых печей большой емкости (мощности) оказалось возможным применять пониженную частоту переменного тока, вплоть до нормальной 50 гц.
Активная мощность бессердечниковой печи Ра состоит из мощности, преобразуемой в шихте, и мощности, теряемой в индукторе, и выражается формулой

На основании закономерностей процессов горения топлива и преобразования электрической энергии в тепловую могут решаться следующие наиболее важные задачи по теории, эксплуатации и проектированию металлургических печей:
а) выбор системы нагрева печей (углеродистое топливо или электроэнергия);
б) выбор типа и сорта топлива и системы его сжигания;
в) выбор параметров электроэнергии и системы ее преобразования в тепловую энергию;
г) расчеты процессов горения топлива;
д) выбор и расчет топочных устройств;
е) расчет и конструирование электрических печей.

Добавить сайт в закладки

Как происходит преобразование тепловой энергии в электрическую

Непосредственное преобразование тепловой энергии в электриче­скую можно осуществить, используя явления в контакте двух метал­лов или полупроводников, где действуют сторонние силы, которыми обусловлена диффузия заряженных частиц.

Величина контактной разности потенциалов зависит не только от свойств контактирующих материалов, но и от температуры контакта, так как с температурой связаны энергия свободных электронов и их концентрация.

Рассматривая замкнутую цепь из двух разных металлов (рис. 1а), можно убедиться в том, что при одинаковой темпера­туре контактов 1 и 2 электрический ток в цепи не получится, так как контактные разности потенциалов, определяемые формулой

U k = (A 1 – A 2) : e 0

в обоих контактах одинаковы, но направлены в противоположные сто­роны по цепи:

U k 1 - U k 2 = (A 1 – A 2) + (A 2 - A 1) : e 0 = 0

Если один из контактов, например 1, нагреть (t 1 > t 2), то равнове­сие нарушится - в контакте 1 появится дополнительный скачок потенциала, связанный с нагревом. В этом случае U k1 > U K2 . В цепи образуется термоэлектродвижущая сила (термо-э. д. с.), абсолютное значение которой пропорционально разности температур контактов:

E т = U Kl - U K2 = E 0 (t 1 - t 2),

где Е 0 - величина, зависящая от свойств металлов, образующих контакт.

Рисунок 1 . а) замкнутая цепь из двух разных металлов, б) цепь с измерителем термо-э. д. с.

Таким образом, термо-э. д. с. возникает в цепи, состоящей из раз­ных металлов, при разной температуре мест соединения.

Термо-э. д. с. в рассматриваемой цепи поддерживается благодаря нагреванию спая 1, т. е. при постоянном расходе тепловой энергии. В свою очередь, термо-э. д. с. является причиной электрического тока.

Однако концентрация свободных электронов в металлах велика и при переходе из одного металла в другой меняется очень мало. В связи с этим контактная разность потенциалов оказывается незначитель­ной и мало зависит от температуры. По этой причине металлические термоэлементы имеют очень малые э. д. с. (в спае платины и железа - 1,9 мВ при разности температур горячего и холодного спаев 100° С), а к. п. д. их не превышает 0,5%. Такие термоэлементы применяют для измерения температур (термопары).

Для этого в цепь термопары включается измеритель термо-э. д. с. - милливольтметр (рис. 1, 6). Термопара в этом случае является источником электрической энергии, а измерительный прибор - приемником.

Кроме контакта 1 основных металлов термопары между собой образуются контакты их с соединительными проводами (Рис. 1 - 2, 3). В этих контактах тоже имеются контактные разности потенциалов, но они не изменяют термо-э. д. с., если их температура поддерживается одинаковой.

При наличии произвольного числа контактов разных металлов сумма контактных разностей потенциалов в замкнутой цепи остается равной нулю, если все контакты имеют одинаковую температуру. В этом можно убедиться, составив уравнение, аналогичное вышеприведенному. Независимо от числа контактов, термо-э. д. с. пропорциональна разности температур более нагретого контакта и всех других контактов, находящихся при одинаковой температуре.

Рисунок 2. n,p- полупроводники.

В отличие от металлов, в полупроводниках при увеличении температуры сильно увеличиваются концентрации свободных электронов и дырок. Это свойство полупроводников позволяет получить более высокие термо-э. д. с. (до 1 мВ на 1° С разности температур) и к. п. д. термоэлементов до 7%.

Полупроводниковый термоэлемент состоит из двух полупроводников (п и р на рис. 2). Один из них имеет электронную, а другой дырочную электропроводность. При нагревании полупроводников в месте соединения их металлической пластинкой сильно увеличивается концентрация свободных носителей заряда. Поэтому в полупроводниках возникает диффузия их от горячего конца к холодному. В полупроводнике с электронной электропроводностью к холодному концу перемещаются электроны, в результате чего этот конец заряжается отрицательно. В другом полупроводнике к холодному концу перемещаются дырки, образуя положительный заряд. Возникшая разность потенциалов противодействует диффузии, и при некотором значении ее устанавливается равновесие сил электрического поля и сторонних сил, под действием которых идет процесс диффузии носителей заряда. Эта разность потенциалов и является термо-э. д. с. полупроводникового термоэлемента.

Если к холодным концам полупроводников подключить токопроводящий элемент, например, резистор, то образуется замкнутая цепь и электрический ток в ней.

Известные способы прямого преобразования тепловой энергии в электрическую

подразделяются на три вида:

Магнитогидродинамические,

Термоэлектрические,

Термоэмиссионные.

МГД-метод и МГД-генератор. Магнитогидродинамический способ прямого преобра-

зования тепловой энергии в электрическую является наиболее разработанным для получения

больших количеств электроэнергии и лежит в основе МГД-генератора, опытные и опытно-

промышленные образцы которого были созданы в Советском Союзе.

Сущность МГД-метода заключается в следующем.

В результате сжигания органического топлива, например, природного газа, образуются

продукты сгорания. Их температура должна быть не ниже 2500 °С. При этой температуре

газ становится электропроводным , переходит в плазменное состояние. Это означает, что

происходит его ионизация. Плазма при такой относительно низкой температуре (низкотемпе-

ратурная плазма) ионизирована лишь частично . Она состоит не только из продуктов иониза-

ции - электрически заряженных свободных электронов и положительно заряженных ионов,

но и из сохранившихся целыми, еще не подвергшихся ионизации молекул. Для того чтобы

низкотемпературная плазма продуктов сгорания имела достаточную электропроводность при

температуре около 2500 °С, к ней добавляют присадку - легкоионизирующееся вещество

(натрий, калий или цезий). Ее пары ионизируются при более низкой температуре.

В основе работы МГД-генератора лежит закон Фарадея об электромагнитной индук-

ции: в проводнике, движущемся в магнитном поле, индуцируется ЭДС . В МГД-генераторе

роль движущегося проводника выполняет движущийся поток низкотемпературной плазмы,

т. е. поток ионизированного токопроводящего газа. На рис. 2.12 приведена принципиальная

схема МГД-генератора: между полюсами постоянного магнита расположен расширяющийся

канал, на противоположных стенках которого размещены электроды, замкнутые на внеш-

нюю цепь. Плазма с небольшой добавкой легкоионизирующегося вещества при температу-

ре около 2700-2500 °С поступает в канал МГД-генератора и за счет уменьшения ее тепловой

энергии разгоняется там до скорости, близкой к звуковой и даже более высокой (до 2000 м/с и более). Протекая по каналу, электропроводная плазма пересекает силовые линии специально

созданного магнитного поля, имеющего большую индукцию. Если направление движения

потока перпендикулярно силовым линиям магнитного поля, а электропроводность плаз-

мы, скорость потока и индукция магнитного поля достаточно велики, то в направлении,

перпендикулярном движению потока и силовым линиям магнитного поля, от одной стенки

канала к другой возникнет ЭДС и электрический ток, протекающий через плазму. Взаимодействие этого электрического тока с магнитным потоком создает силу, тормозящую движение плазмы по каналу. Таким образом, кинетическая энергия потока плазмы превращается в электрическую энергию. На выходе температура плазмы равна примерно 300 °С. В

МГД-генераторе осуществляется следующая цепь преобразований энергии:

тепловая кинетическая энергия электрическая

Изобретение предназначено для использования в области энергетики, транспорта, авиации и космонавтики, где большую роль играет повышение экономичности тепловых машин. Способ преобразования тепловой энергии в механическую осуществляется путем использования двух разнородных тел в газовой фазе, их раздельного сжатия, раздельного подвода тепла к рабочим телам, смешения, адиабатического расширения смеси с получением механической работы, регенерации тепла, охлаждения и разделения смеси. Изобретение позволяет повысить КПД цикла и использовать низкопотенциальное тепло. 1 з.п. ф-лы, 1 ил.

Изобретение предназначено для использования в области энергетики, транспорта, авиации и космонавтики, где большую роль играет повышение экономичности тепловых машин. Известен способ преобразования тепловой энергии в механическую, при котором сжатый в компрессоре воздух подают в камеру сгорания, где подводят теплоту в цикле при сжигании топлива, а образующиеся в ней продукты сгорания подают в парогазовый эжектор, в котором при их смешении с перегретым паром, образующимся в парогенераторе при подводе к воде теплоты и преобразуемым в активный поток ускорением в паровом сопле эжектора до достижения высокой скорости истечения, происходит увеличение скорости продуктов сгорания за счет передачи им кинетической энергии пара с последующим повышением давления продуктов сгорания в составе парогазовой смеси, которую расширяют в турбине, и через систему регенеративного подогрева воды, после отделения от парогазовой смеси продуктов сгорания, их удаляют из установки (см. патент РФ N 2076929, МПК F 01 К 21/04, 1997). Недостатком данного способа являются большие затраты теплоты на получение перегретого пара, использование громоздкой системы регенеративного подогрева воды и значительные потери при смешении в эжекторе. Известен способ преобразования тепловой энергии в механическую в замкнутом процессе с подводом тепла от сжигания твердого, жидкого или газообразного топлива или от другого источника, при котором инертный газ, например ксенон или CO 2 , сжимается в компрессоре, нагревается в газонагревателе и затем расширяется в первой газотурбинной ступени. Отработавшие, но еще обладающие энергией, газы попадают в смеситель, где они смешиваются с рабочей средой, например водой, или фреоном, или паром этой среды. Рабочая среда испаряется или перегревается. Смесь поступает во вторую газотурбинную ступень, где расширяется. Отработавшую смесь подают из второй газотурбинной ступени в конденсатор, причем благодаря конденсации одновременно вновь происходит разделение веществ. Газ поступает в компрессор, а рабочая смесь в сборник жидкости и через насос - в подогреватель или испаритель (см. заявку DE N 3605466, МПК F 01 K 21/04, 1987). Недостатком этого способа являются большие потери тепла и громоздкость применяемого оборудования. Из известных способов преобразования тепловой энергии в механическую (электрическую) наиболее близким является способ преобразования тепловой энергии в механическую путем использования двух разнородных рабочих тел, их раздельного сжатия, подведения тепла, смешения, адиабатического расширения смеси с получением механической работы, охлаждения и разделения смеси на рабочие тела (см. патент US, N 5444981, МПК F 01 K 21/04, 1995). В этом способе преобразования турбина извлекает полезную энергию при меньшем падении давления, чем потребовалось бы при использовании только одного рабочего тела. Однако указанный способ применим только для использования высокопотенциального тепла сжигания топлива в котле и имеет недостаточно высокий КПД цикла. Использование котла в качестве источника тепла и совместный подогрев смешанных рабочих тел предопределяют выбор в качестве рабочих тел паров воды и гелия, которые соответственно имеют недостаточно оптимальные теплофизические свойства в процессе преобразования тепловой энергии. Недостатком способа является также отсутствие процесса регенерации тепла. Задачей настоящего изобретения является повышение КПД цикла и получение возможности использования низкопотенциального тепла, например тепла солнца, тепла окружающей среды и др. Поставленная задача решается тем, что в способе преобразования тепловой энергии в механическую путем использования двух разнородных рабочих тел, их раздельного сжатия, подведения тепла, смешения, адиабатического расширения смеси с получением механической работы, охлаждения и разделения смеси на рабочие тела, согласно изобретению в качестве рабочих тел используют разнородные тела в газовой фазе (He - CO 2 , He - N 2 , Ar - CO 2 , H 2 - N 2 или их смеси), тепло к рабочим телам подводят раздельно, а после расширения смеси производят регенерацию тепла к первоначальным рабочим телам. Поставленная задача решается тем, что смешение рабочих тел осуществляют в газовом эжекторе со сверхзвуковым диффузором или пульсирующем газовом эжекторе. На чертеже приведена T-S диаграмма сжатия, нагрева, смешения, расширения смеси, регенерации тепла от смеси на вход к первоначальным газам, охлаждения и разделения газов. Процессы адиабатического раздельного сжатия 0-1 и 0-1" двух различных газов в диапазоне температур от T 0 до T 1 изображены пунктиром, так как они начинаются из одной точки с параметрами P 0 и T 0 , а заканчиваются в точках 1 и 1" из-за различия свойств применяемых газов. Газы сжимаются соответственно до давлений P 1 и P" 1 , и далее идут процессы изобарического раздельного подвода тепла 1-2 и 1"-2" от постороннего источника до температуры 2 . После подвода тепла газы смешиваются в газовом эжекторе - процесс 2 - P см - 2" при температуре T см = T 2 . Возможно повторное смешение смеси газов после эжектора с одним из рабочих тел для достижения оптимальных параметров рабочей смеси перед расширением. Смесь газов эжектора расширяется в процессе P см - P" см до температуры T" см с получением механической (электрической) энергии. В процессе P" см - P"" см происходит регенерация тепла (изобарический отвод тепла от смеси к первоначальным рабочим телам). При этом температура смеси снижается до T 1 . Процесс P"" см P 0 - адиабатический, замыкает термодинамический цикл, и смесь приобретает первоначальные параметры P 0 и T 0 . В точке 0 происходит охлаждение и разделение смеси на первоначальные компоненты с использованием энергии основного цикла. Способ преобразования тепловой энергии в механическую осуществляется следующим образом. Разнородные рабочие тела в газовой фазе, например He - CO 2 , He - N 2 , Ar - CO 2 , H 2 - N 2 или их смеси раздельно сжимаются до давлений P 1 и P" 1 и к ним раздельно подводится тепло, например тепло солнца, тепло окружающей среды или другое низкопотенциальное тепло (процесс 1-2 и 1"-2"). Затем нагретые рабочие тела смешиваются, например, в газовом эжекторе (точка P см). Наиболее предпочтительным является смешение рабочих тел в газовом эжекторе со сверхзвуковым диффузором. Смесь рабочих тел адиабатически расширяется до давления P" см с получением механической работы (или электрической энергии). В процессе P" см - P"" см происходит регенерация тепла. Тепло от смеси изобарически отводится и передается к первоначальным рабочим телам. Процесс P"" см - P 0 адиабатический, замыкает термодинамический цикл, и смесь приобретает первоначальные параметры P 0 и T 0 . В точке 0 происходит охлаждение и разделение смеси на первоначальные компоненты с использованием энергии основного цикла. Таким образом, в предлагаемом способе преобразования тепловой энергии в механическую (электрическую) осуществляется многоконтурный замкнутый термодинамический цикл, в котором разнородные рабочие тела после их сжатия и раздельного подвода тепла к ним попеременно то смешиваются, то разделяются после расширения смеси в турбине. Положительный эффект от применения такого цикла объясняется резким различием теплофизических свойств используемых газов в качестве рабочих тел и оптимальными параметрами и свойствами смесей, получаемых при смешении этих газов в эжекторе. Все это позволяет повысить термический КПД тепловой машины и использовать в качестве подогрева рабочих тел низкопотенциальное тепло окружающей среды (или солнечный нагрев).

Формула изобретения

1. Способ преобразования тепловой энергии в механическую путем использования двух разнородных рабочих тел, их раздельного сжатия, подведения тепла, смешения, адиабатического расширения смеси с получением механической работы, охлаждения и разделения смеси на рабочие тела, отличающийся тем, что в качестве рабочих тел используют разнородные тела в газовой фазе (He - CO 2 , He - N 2 , Ar - CO 2 , H 2 - N 2 или их смеси), тепло к рабочим телам подводят раздельно, а после расширения смеси производят регенерацию тепла к первоначальным рабочим телам. 2. Способ по п.1, отличающийся тем, что смешение рабочих тел осуществляют в газовом эжекторе со сверхзвуковым диффузором.