Преобразование тепловой энергии в электрическую. Преобразование тепловой энергии в механическую работу Кпд преобразования электрической энергии в тепловую

Они являются устройствами непосредственного превращения тепловой энергии в электрическую. Принцип действия ТЭГ основан на применении эффекта Зеебека. С помощью такого эффекта во многих энергетических системах (например, в двигателях внутреннего сгорания) можно преобразовывать бесполезно теряемую (сбросовую) тепловую энергию от двигателя в электрическую и использовать ее для питания различных устройств в автомобиле. Термоэлектрические генераторы могут найти применение также на некоторых электростанциях, где используется метод когенерации, т.е. в дополнение к произведенной электроэнергии вырабатывается тепло, которое применяется в альтернативных целях. Термоэлектричество может использоваться также в системах преобразования солнечной энергии.

Простейший полупроводниковый термоэлектрогенератор (термоэлемент) состоит из отрицательной (н-типа проводимости) и положительной (р-типа проводимости) ветвей. Материал с электронной проводимостыо имеет отрицательную ТЭДС, а с дырочной проводимостью - положительную, поэтому можно получить большее значение термо-ЭДС (а следовательно, повышенное 77).

Рис. 4.54.

Электрическая цепь работающего ТЭГ состоит из р- и и-ветвей одного или нескольких термоэлементов (рис. 4.54), коммутационных пластин горячего (при температуре Т г) и холодного (при температуре Г) спаев и активной нагрузки 7?.

При нагреве горячих спаев термоэлемента до температуры Т г и рассеивании тепла О на холодных спаях, поддерживаемых при температуре Т, а также при разомкнутой цепи 7?, между спаями стационарно устанавливается разность температур (Г г - Г х). Тепловой поток через термоэлемент, в данном случае после некоторых упрощений, можно записать как

где к - среднее значение теплопроводностей ветвей в интервале температур Г г - Г х; А и / - площадь поперечного сечения и длина р- и я-ветвей соответственно.

Разность температур па спаях термоэлемента вызывает термодиффузию носителей, в результате чего горячие спаи ветвей обедняются электронами и дырками, которые концентрируются на холодных спаях. Нарушение электрической нейтральности создает поле, направленное от холодных участков к горячим, которое препятствует дальнейшей термодиффузии носителей. Поле и создает термоэлектродвижущую силу V, возникающую на концах разомкнутой цепи термоэлемента. Возникающая ЭДС пропорциональна разности температур и разности коэффициентов ТЭДС каждой ветви:

В момент замыкания термоэлемента на внешнюю нагрузку 7? в цепи потечет обусловленный эффектом Зеебека постоянный ток:

(ЯРТЭГ), солнечные концентраторы различного исполнения (СТЭГ). Ориентировочно полагается, что при электрических мощностях от 1 до 10 кВт на космическом летательном аппарате целесообразны РИТЭГ и СТЭГ, а при повышенных уровнях мощности (в особенности, в дальнем космосе) - ЯРТЭГ.

Для катодной защиты магистральных газо- и нефтепроводов от коррозии, при отсутствии вдоль трассы линии электропередачи используются ТЭГ, работающие на газообразном топливе. Для работы автоматики газовых буровых скважин применяются ТЭГ, использующие перепад температур окружающей среды и газа из скважины. Недостатками ТЭГ являются сравнительно низкий (3-5%) КПД преобразования энергии и значительная (10-15 кг/кВт) удельная масса. Поверхностная плотность мощности ТЭГ достигает 10 кВт/м 2 (па единицу поперечного сечения элемента), а объемная плотность мощности равна 200-400 кВт/м 3 .

Для получения в ТЭГ стандартного рабочего напряжения в 30 В при значении ТЭДС одного термоэлемента 0,1-0,3 В требуется последовательно соединить в батарею до 100 элементов. Для космических аппаратов создаются ТЭГ мощностью от единиц до сотен ватт. Каскадное соединение ТЭГ позволяет повысить КПД преобразования энергии до 13%.

Термоэлектрические генераторы бывают низкотемпературные, среднетемпературные и высокотемпературные. Максимальная рабочая температура низкотемпературных (самых распространенных) ТЭГ с типовыми размерами 3x3 и 4x4 см 2 достигает 470-520 К. Напряжение, ток и мощность подобных ТЭГ при температурах холодного и горячего спаев 323 и 423 К равны соответственно 2 В, 1 А и 2 Вт.

  • Рис. 4.55. Вид промышленного ТЭГ (о) и его принципиальное устройство (б) где г - внутреннее сопротивление термоэлемента. Этот же токвызовет выделение и поглощение тепла Пельтье на спаях р- и/7-ветвей термоэлемента с металлическими пластинами. Движение носителей будет происходить от горячих спаев к холодным, что соответствует поглощению на горячих спаях теплотыПельтье. Другими словами, вся электрическая мощность, вырабатываемая термоэлементом, есть разница теплот Пельтьеего горячего и холодного спаев. Эффективность термоэлементов для термоэлектрических генераторов оценивается соотношением Иоффе (4.13). Принципиальные преимущества ТЭГ (рис. 4.55) перед другими источниками электропитания состоят в следующем: длительный срок службы, не требующий специальногообслуживания, и практически неограниченный срок храненияпри полной готовности к работе в любое время; устойчивость в работе, стабильное напряжение, невозможность короткого замыкания и режима холостого хода, высокая надежность, стабильность параметров;
  • полная бесшумность в работе (из-за отсутствия движущихся частей)и вибростойкость. Благодаря перечисленным свойствам ТЭГ находят применение в областях, где необходимы сверхнадежные источникиэлектроэнергии, обладающие длительным сроком эксплуатации и не требующие обслуживания. Они используются для питания электричеством аппаратуры в труднодоступных объектах, которые монтируются в отдаленных районах Земли, - автоматических метеостанциях, морских маяках, космическихлетательных аппаратах. В перспективе такие объекты могутмонтироваться на Луне или на других планетах. В качествеисточников тепла для подвода к горячим спаям ТЭГ применяются радиоактивные изотопы (РИТЭГ), ядерные реакторы

Электрический ток представляет собой направленное движение электрических частиц. При столкновении движу­щихся частиц с ионами или молекулами кинети­ческая энергия движущихся частиц частично передается ионам или молекулам, вследствие чего происходит нагре­вание проводника. Таким образом, электрическая энергия

преобразуется в тепловую, которая тратится на нагрев провода и рассеивается в окружающую среду.

Скорость преобразования электрической энергии в теп­ловую определяется мощностью:

Р =UI

или, учитывая, что U = Ir , получаем:

P=UI=I 2 r.

Электрическая энергия, переходящая в тепловую,

W = Pt = Prt.

Q = I 2 rt.

Полученное выражение, определяющее соотношение меж­ду количеством выделенного тепла, силой тока, сопротивлением и временем, было найдено в 1844 г. опытным путем русским академиком Э. X. Ленцем и одновре­менно английским ученым Джоулем. Оно известно теперь под названием за­кона Джоуля-Лен­ца: количество тепла,выделенного током в провод­нике,пропорцио­нально квадрату силы тока,сопро­тивлению проводника и времени прохождения то­к а.

Преобразование электрической энергии в тепло находит полезное применение в разнообразных нагревательных и осветительных приборах и устройствах.

В остальных приборах и устройствах преобразование электрической энергии в тепловую является непроизводи­тельным расходом энергии (потерями), снижающими к. п. д. их. Кроме того, тепло, вызывая нагревание этих устройств,

ограничивает их нагрузку, а при перегрузке повышение температуры может повести к повреждению изоляции или сокращению срока работы установки.

Пример 1 -7. Определить количество тепла, выделенное в нагрева­тельном приборе в течение 15 мин, если сопротивление прибора 22 ом, а напряжение сети 110в.

Сила тока

I = U : r = 110: 22 = 5a

Количество тепла, выделенное в приборе,

Q = I 2 r t = 5 2 22 15 60 = 49 500 дж.

Статья на тему Преобразование электрической энергии в тепловую

Изобретение предназначено для использования в области энергетики, транспорта, авиации и космонавтики, где большую роль играет повышение экономичности тепловых машин. Способ преобразования тепловой энергии в механическую осуществляется путем использования двух разнородных тел в газовой фазе, их раздельного сжатия, раздельного подвода тепла к рабочим телам, смешения, адиабатического расширения смеси с получением механической работы, регенерации тепла, охлаждения и разделения смеси. Изобретение позволяет повысить КПД цикла и использовать низкопотенциальное тепло. 1 з.п. ф-лы, 1 ил.

Изобретение предназначено для использования в области энергетики, транспорта, авиации и космонавтики, где большую роль играет повышение экономичности тепловых машин. Известен способ преобразования тепловой энергии в механическую, при котором сжатый в компрессоре воздух подают в камеру сгорания, где подводят теплоту в цикле при сжигании топлива, а образующиеся в ней продукты сгорания подают в парогазовый эжектор, в котором при их смешении с перегретым паром, образующимся в парогенераторе при подводе к воде теплоты и преобразуемым в активный поток ускорением в паровом сопле эжектора до достижения высокой скорости истечения, происходит увеличение скорости продуктов сгорания за счет передачи им кинетической энергии пара с последующим повышением давления продуктов сгорания в составе парогазовой смеси, которую расширяют в турбине, и через систему регенеративного подогрева воды, после отделения от парогазовой смеси продуктов сгорания, их удаляют из установки (см. патент РФ N 2076929, МПК F 01 К 21/04, 1997). Недостатком данного способа являются большие затраты теплоты на получение перегретого пара, использование громоздкой системы регенеративного подогрева воды и значительные потери при смешении в эжекторе. Известен способ преобразования тепловой энергии в механическую в замкнутом процессе с подводом тепла от сжигания твердого, жидкого или газообразного топлива или от другого источника, при котором инертный газ, например ксенон или CO 2 , сжимается в компрессоре, нагревается в газонагревателе и затем расширяется в первой газотурбинной ступени. Отработавшие, но еще обладающие энергией, газы попадают в смеситель, где они смешиваются с рабочей средой, например водой, или фреоном, или паром этой среды. Рабочая среда испаряется или перегревается. Смесь поступает во вторую газотурбинную ступень, где расширяется. Отработавшую смесь подают из второй газотурбинной ступени в конденсатор, причем благодаря конденсации одновременно вновь происходит разделение веществ. Газ поступает в компрессор, а рабочая смесь в сборник жидкости и через насос - в подогреватель или испаритель (см. заявку DE N 3605466, МПК F 01 K 21/04, 1987). Недостатком этого способа являются большие потери тепла и громоздкость применяемого оборудования. Из известных способов преобразования тепловой энергии в механическую (электрическую) наиболее близким является способ преобразования тепловой энергии в механическую путем использования двух разнородных рабочих тел, их раздельного сжатия, подведения тепла, смешения, адиабатического расширения смеси с получением механической работы, охлаждения и разделения смеси на рабочие тела (см. патент US, N 5444981, МПК F 01 K 21/04, 1995). В этом способе преобразования турбина извлекает полезную энергию при меньшем падении давления, чем потребовалось бы при использовании только одного рабочего тела. Однако указанный способ применим только для использования высокопотенциального тепла сжигания топлива в котле и имеет недостаточно высокий КПД цикла. Использование котла в качестве источника тепла и совместный подогрев смешанных рабочих тел предопределяют выбор в качестве рабочих тел паров воды и гелия, которые соответственно имеют недостаточно оптимальные теплофизические свойства в процессе преобразования тепловой энергии. Недостатком способа является также отсутствие процесса регенерации тепла. Задачей настоящего изобретения является повышение КПД цикла и получение возможности использования низкопотенциального тепла, например тепла солнца, тепла окружающей среды и др. Поставленная задача решается тем, что в способе преобразования тепловой энергии в механическую путем использования двух разнородных рабочих тел, их раздельного сжатия, подведения тепла, смешения, адиабатического расширения смеси с получением механической работы, охлаждения и разделения смеси на рабочие тела, согласно изобретению в качестве рабочих тел используют разнородные тела в газовой фазе (He - CO 2 , He - N 2 , Ar - CO 2 , H 2 - N 2 или их смеси), тепло к рабочим телам подводят раздельно, а после расширения смеси производят регенерацию тепла к первоначальным рабочим телам. Поставленная задача решается тем, что смешение рабочих тел осуществляют в газовом эжекторе со сверхзвуковым диффузором или пульсирующем газовом эжекторе. На чертеже приведена T-S диаграмма сжатия, нагрева, смешения, расширения смеси, регенерации тепла от смеси на вход к первоначальным газам, охлаждения и разделения газов. Процессы адиабатического раздельного сжатия 0-1 и 0-1" двух различных газов в диапазоне температур от T 0 до T 1 изображены пунктиром, так как они начинаются из одной точки с параметрами P 0 и T 0 , а заканчиваются в точках 1 и 1" из-за различия свойств применяемых газов. Газы сжимаются соответственно до давлений P 1 и P" 1 , и далее идут процессы изобарического раздельного подвода тепла 1-2 и 1"-2" от постороннего источника до температуры 2 . После подвода тепла газы смешиваются в газовом эжекторе - процесс 2 - P см - 2" при температуре T см = T 2 . Возможно повторное смешение смеси газов после эжектора с одним из рабочих тел для достижения оптимальных параметров рабочей смеси перед расширением. Смесь газов эжектора расширяется в процессе P см - P" см до температуры T" см с получением механической (электрической) энергии. В процессе P" см - P"" см происходит регенерация тепла (изобарический отвод тепла от смеси к первоначальным рабочим телам). При этом температура смеси снижается до T 1 . Процесс P"" см P 0 - адиабатический, замыкает термодинамический цикл, и смесь приобретает первоначальные параметры P 0 и T 0 . В точке 0 происходит охлаждение и разделение смеси на первоначальные компоненты с использованием энергии основного цикла. Способ преобразования тепловой энергии в механическую осуществляется следующим образом. Разнородные рабочие тела в газовой фазе, например He - CO 2 , He - N 2 , Ar - CO 2 , H 2 - N 2 или их смеси раздельно сжимаются до давлений P 1 и P" 1 и к ним раздельно подводится тепло, например тепло солнца, тепло окружающей среды или другое низкопотенциальное тепло (процесс 1-2 и 1"-2"). Затем нагретые рабочие тела смешиваются, например, в газовом эжекторе (точка P см). Наиболее предпочтительным является смешение рабочих тел в газовом эжекторе со сверхзвуковым диффузором. Смесь рабочих тел адиабатически расширяется до давления P" см с получением механической работы (или электрической энергии). В процессе P" см - P"" см происходит регенерация тепла. Тепло от смеси изобарически отводится и передается к первоначальным рабочим телам. Процесс P"" см - P 0 адиабатический, замыкает термодинамический цикл, и смесь приобретает первоначальные параметры P 0 и T 0 . В точке 0 происходит охлаждение и разделение смеси на первоначальные компоненты с использованием энергии основного цикла. Таким образом, в предлагаемом способе преобразования тепловой энергии в механическую (электрическую) осуществляется многоконтурный замкнутый термодинамический цикл, в котором разнородные рабочие тела после их сжатия и раздельного подвода тепла к ним попеременно то смешиваются, то разделяются после расширения смеси в турбине. Положительный эффект от применения такого цикла объясняется резким различием теплофизических свойств используемых газов в качестве рабочих тел и оптимальными параметрами и свойствами смесей, получаемых при смешении этих газов в эжекторе. Все это позволяет повысить термический КПД тепловой машины и использовать в качестве подогрева рабочих тел низкопотенциальное тепло окружающей среды (или солнечный нагрев).

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ преобразования тепловой энергии в механическую путем использования двух разнородных рабочих тел, их раздельного сжатия, подведения тепла, смешения, адиабатического расширения смеси с получением механической работы, охлаждения и разделения смеси на рабочие тела, отличающийся тем, что в качестве рабочих тел используют разнородные тела в газовой фазе (He - CO 2 , He - N 2 , Ar - CO 2 , H 2 - N 2 или их смеси), тепло к рабочим телам подводят раздельно, а после расширения смеси производят регенерацию тепла к первоначальным рабочим телам. 2. Способ по п.1, отличающийся тем, что смешение рабочих тел осуществляют в газовом эжекторе со сверхзвуковым диффузором.

Изобретение предназначено для использования в области энергетики, транспорта, авиации и космонавтики, где большую роль играет повышение экономичности тепловых машин. Способ преобразования тепловой энергии в механическую осуществляется путем использования двух разнородных тел в газовой фазе, их раздельного сжатия, раздельного подвода тепла к рабочим телам, смешения, адиабатического расширения смеси с получением механической работы, регенерации тепла, охлаждения и разделения смеси. Изобретение позволяет повысить КПД цикла и использовать низкопотенциальное тепло. 1 з.п. ф-лы, 1 ил.

Изобретение предназначено для использования в области энергетики, транспорта, авиации и космонавтики, где большую роль играет повышение экономичности тепловых машин. Известен способ преобразования тепловой энергии в механическую, при котором сжатый в компрессоре воздух подают в камеру сгорания, где подводят теплоту в цикле при сжигании топлива, а образующиеся в ней продукты сгорания подают в парогазовый эжектор, в котором при их смешении с перегретым паром, образующимся в парогенераторе при подводе к воде теплоты и преобразуемым в активный поток ускорением в паровом сопле эжектора до достижения высокой скорости истечения, происходит увеличение скорости продуктов сгорания за счет передачи им кинетической энергии пара с последующим повышением давления продуктов сгорания в составе парогазовой смеси, которую расширяют в турбине, и через систему регенеративного подогрева воды, после отделения от парогазовой смеси продуктов сгорания, их удаляют из установки (см. патент РФ N 2076929, МПК F 01 К 21/04, 1997). Недостатком данного способа являются большие затраты теплоты на получение перегретого пара, использование громоздкой системы регенеративного подогрева воды и значительные потери при смешении в эжекторе. Известен способ преобразования тепловой энергии в механическую в замкнутом процессе с подводом тепла от сжигания твердого, жидкого или газообразного топлива или от другого источника, при котором инертный газ, например ксенон или CO 2 , сжимается в компрессоре, нагревается в газонагревателе и затем расширяется в первой газотурбинной ступени. Отработавшие, но еще обладающие энергией, газы попадают в смеситель, где они смешиваются с рабочей средой, например водой, или фреоном, или паром этой среды. Рабочая среда испаряется или перегревается. Смесь поступает во вторую газотурбинную ступень, где расширяется. Отработавшую смесь подают из второй газотурбинной ступени в конденсатор, причем благодаря конденсации одновременно вновь происходит разделение веществ. Газ поступает в компрессор, а рабочая смесь в сборник жидкости и через насос - в подогреватель или испаритель (см. заявку DE N 3605466, МПК F 01 K 21/04, 1987). Недостатком этого способа являются большие потери тепла и громоздкость применяемого оборудования. Из известных способов преобразования тепловой энергии в механическую (электрическую) наиболее близким является способ преобразования тепловой энергии в механическую путем использования двух разнородных рабочих тел, их раздельного сжатия, подведения тепла, смешения, адиабатического расширения смеси с получением механической работы, охлаждения и разделения смеси на рабочие тела (см. патент US, N 5444981, МПК F 01 K 21/04, 1995). В этом способе преобразования турбина извлекает полезную энергию при меньшем падении давления, чем потребовалось бы при использовании только одного рабочего тела. Однако указанный способ применим только для использования высокопотенциального тепла сжигания топлива в котле и имеет недостаточно высокий КПД цикла. Использование котла в качестве источника тепла и совместный подогрев смешанных рабочих тел предопределяют выбор в качестве рабочих тел паров воды и гелия, которые соответственно имеют недостаточно оптимальные теплофизические свойства в процессе преобразования тепловой энергии. Недостатком способа является также отсутствие процесса регенерации тепла. Задачей настоящего изобретения является повышение КПД цикла и получение возможности использования низкопотенциального тепла, например тепла солнца, тепла окружающей среды и др. Поставленная задача решается тем, что в способе преобразования тепловой энергии в механическую путем использования двух разнородных рабочих тел, их раздельного сжатия, подведения тепла, смешения, адиабатического расширения смеси с получением механической работы, охлаждения и разделения смеси на рабочие тела, согласно изобретению в качестве рабочих тел используют разнородные тела в газовой фазе (He - CO 2 , He - N 2 , Ar - CO 2 , H 2 - N 2 или их смеси), тепло к рабочим телам подводят раздельно, а после расширения смеси производят регенерацию тепла к первоначальным рабочим телам. Поставленная задача решается тем, что смешение рабочих тел осуществляют в газовом эжекторе со сверхзвуковым диффузором или пульсирующем газовом эжекторе. На чертеже приведена T-S диаграмма сжатия, нагрева, смешения, расширения смеси, регенерации тепла от смеси на вход к первоначальным газам, охлаждения и разделения газов. Процессы адиабатического раздельного сжатия 0-1 и 0-1" двух различных газов в диапазоне температур от T 0 до T 1 изображены пунктиром, так как они начинаются из одной точки с параметрами P 0 и T 0 , а заканчиваются в точках 1 и 1" из-за различия свойств применяемых газов. Газы сжимаются соответственно до давлений P 1 и P" 1 , и далее идут процессы изобарического раздельного подвода тепла 1-2 и 1"-2" от постороннего источника до температуры 2 . После подвода тепла газы смешиваются в газовом эжекторе - процесс 2 - P см - 2" при температуре T см = T 2 . Возможно повторное смешение смеси газов после эжектора с одним из рабочих тел для достижения оптимальных параметров рабочей смеси перед расширением. Смесь газов эжектора расширяется в процессе P см - P" см до температуры T" см с получением механической (электрической) энергии. В процессе P" см - P"" см происходит регенерация тепла (изобарический отвод тепла от смеси к первоначальным рабочим телам). При этом температура смеси снижается до T 1 . Процесс P"" см P 0 - адиабатический, замыкает термодинамический цикл, и смесь приобретает первоначальные параметры P 0 и T 0 . В точке 0 происходит охлаждение и разделение смеси на первоначальные компоненты с использованием энергии основного цикла. Способ преобразования тепловой энергии в механическую осуществляется следующим образом. Разнородные рабочие тела в газовой фазе, например He - CO 2 , He - N 2 , Ar - CO 2 , H 2 - N 2 или их смеси раздельно сжимаются до давлений P 1 и P" 1 и к ним раздельно подводится тепло, например тепло солнца, тепло окружающей среды или другое низкопотенциальное тепло (процесс 1-2 и 1"-2"). Затем нагретые рабочие тела смешиваются, например, в газовом эжекторе (точка P см). Наиболее предпочтительным является смешение рабочих тел в газовом эжекторе со сверхзвуковым диффузором. Смесь рабочих тел адиабатически расширяется до давления P" см с получением механической работы (или электрической энергии). В процессе P" см - P"" см происходит регенерация тепла. Тепло от смеси изобарически отводится и передается к первоначальным рабочим телам. Процесс P"" см - P 0 адиабатический, замыкает термодинамический цикл, и смесь приобретает первоначальные параметры P 0 и T 0 . В точке 0 происходит охлаждение и разделение смеси на первоначальные компоненты с использованием энергии основного цикла. Таким образом, в предлагаемом способе преобразования тепловой энергии в механическую (электрическую) осуществляется многоконтурный замкнутый термодинамический цикл, в котором разнородные рабочие тела после их сжатия и раздельного подвода тепла к ним попеременно то смешиваются, то разделяются после расширения смеси в турбине. Положительный эффект от применения такого цикла объясняется резким различием теплофизических свойств используемых газов в качестве рабочих тел и оптимальными параметрами и свойствами смесей, получаемых при смешении этих газов в эжекторе. Все это позволяет повысить термический КПД тепловой машины и использовать в качестве подогрева рабочих тел низкопотенциальное тепло окружающей среды (или солнечный нагрев).

Формула изобретения

1. Способ преобразования тепловой энергии в механическую путем использования двух разнородных рабочих тел, их раздельного сжатия, подведения тепла, смешения, адиабатического расширения смеси с получением механической работы, охлаждения и разделения смеси на рабочие тела, отличающийся тем, что в качестве рабочих тел используют разнородные тела в газовой фазе (He - CO 2 , He - N 2 , Ar - CO 2 , H 2 - N 2 или их смеси), тепло к рабочим телам подводят раздельно, а после расширения смеси производят регенерацию тепла к первоначальным рабочим телам. 2. Способ по п.1, отличающийся тем, что смешение рабочих тел осуществляют в газовом эжекторе со сверхзвуковым диффузором.

Тепловая энергия занимает особое место в человеческой деятельности, поскольку она используется во всех секторах экономики, сопровождает большинство промышленных процессов и жизнедеятельность людей. В большинстве случаев отработанное тепло теряется безвозвратно и без какой-либо экономической выгоды. Этот потерянный ресурс уже ничего не стоит, поэтому повторное его использование будет способствовать как уменьшению энергетического кризиса, так и защите окружающей среды. Поэтому новые способы преобразования тепловой в электрическую энергию и конверсия отработанного тепла в электричество сегодня как никогда актуальны.

Преобразование природных источников энергии в электричество, тепло или кинетическую энергию требует максимальной эффективности, особенно на газовых и угольных электростанциях, чтобы снизить объемы выбросов СО 2 . Существуют различные способы преобразование тепловой энергии в электрическую, зависящие от типов первичной энергии.

Среди ресурсов энергии уголь и природный газ используются для выработки электроэнергии путем сжигания (тепловая энергия), а уран путем ядерного деления (ядерной энергии), чтобы использовать энергию пара для вращения паровой турбины. Десять крупнейших стран производителей электроэнергии на 2017 год представлены на фото.

Таблица эффективности работы существующих систем преобразование тепловой энергии в электрическую.

Выбор метода преобразования тепловой энергии в электрическую и его экономическая целесообразность зависят от потребностей в энергоносителях, наличия природного топлива и достаточности площадки строительства. Вид генерации варьируется во всем мире, что приводит к широкому диапазону цен на электроэнергию.

Технологии преобразования тепловой энергии в электрическую, такие как ТЭС, АЭС, КЭС, ГТЭС, ТЭП, термоэлектрические генераторы, МГД-генераторы имеют разные преимущества и недостатки. Исследовательский институт электроэнергетики (EPRI) иллюстрирует плюсы и минусы технологий генерации на природных энергетических ресурсах, рассматривая такие критические факторы, как строительство и затраты на электроэнергию, на землю, требования к воде, выбросы CO 2 , отходы, доступность и гибкость.

Результаты EPRI подчеркивают, что при рассмотрении технологий производства электроэнергии нет единого подхода к решению всех проблем, но при этом все же больше преимуществ у природного газа, который является доступным для строительства, имеет низкую себестоимость электроэнергии, создает меньше выбросов, чем уголь. Однако не все страны имеют доступ к обильному и дешевому природному газу. В некоторых случаях доступ к природному газу находится под угрозой из-за геополитической напряженности, как это было в случае с Восточной Европой и некоторыми странами Западной Европы.

Технологии возобновляемых источников энергии, такие как солнечные фотоэлектрические модули производят эмиссионное электричество. Однако для них, как правило, требуется много земли, результаты их эффективности являются неустойчивыми и зависят от погоды. Уголь, основной источник тепла, является самым проблемным. Он лидирует по выбросам CO 2 , требует много чистой воды для охлаждения теплоносителя и занимает большую площадь под строительство станции.

Новые технологии направлены на снижение ряда проблем, связанных с технологиями производства электроэнергии. Например, газовые турбины, объединенные с резервным аккумулятором, обеспечивают резерв на случай непредвиденных обстоятельств без сжигания топлива, а периодически возникающие проблемы в области возобновляемых ресурсов могут быть смягчены за счет создания доступного крупномасштабного хранилища энергии. Таким образом, сегодня нет ни одного безупречного способа преобразования тепловой энергии в электрическую, который мог бы обеспечить надежную и экономически эффективную электроэнергию с минимальным воздействием на окружающую среду.

Тепловые электростанции

На ТЭС пар высокого давления и температуры, полученный от нагрева воды при сжигании твердого топлива (главным образом угля), вращает турбину, подключенную к генератору. Таким образом он преобразует свою кинетическую энергию в электрическую. Рабочие компоненты тепловой электростанции:

  1. Котел с газовой топкой.
  2. Паровая турбина.
  3. Генератор.
  4. Конденсатор.
  5. Охлаждающие башни.
  6. Циркуляционный водяной насос.
  7. Насос подачи воды в котел.
  8. Принудительные вытяжные вентиляторы.
  9. Сепараторы.

Типовая схема представлена ниже.

Паровой котел служит для преобразования воды в пар. Этот процесс осуществляется путем нагрева воды в трубах с нагревом от сжигания топлива. Процессы горения непрерывно проводятся в камере сгорания топлива с подачей воздуха извне.

Паровая турбина передает энергию пара для вращения генератора. Пар с высоким давлением и температурой толкает лопатки турбины, установленных на валу, так, что он начинает вращаться. При этом параметры перегретого пара, поступающего в турбину, снижается до насыщенного состояния. Насыщенный пар попадает в конденсатор, а роторная мощность применяется для вращения генератора, вырабатывающего ток. Сегодня почти все паровые турбины представляют собой конденсаторный тип.

Конденсаторы - это устройства для преобразования пара в воду. Пар течет снаружи труб, а охлаждающая вода течет внутри труб. Такая конструкция называется поверхностным конденсатором. Скорость передачи тепла зависит от потока охлаждающей воды, площади поверхности труб и разности температур между водяным паром и охлаждающей водой. Процесс изменения водяного пара происходит при насыщенном давлении и температуре, в этом случае конденсатор находится под вакуумом, потому что температура охлаждающей воды равна внешней температуре, максимальная температура конденсата воды вблизи температуры наружного воздуха.

Генератор преобразует механическую энергию в состоит из статора и ротора. Статор состоит из корпуса, который содержит катушки, а магнитная полевая роторная станция состоит из сердечника, содержащего катушку.

По виду вырабатываемой энергии ТЭС делятся на конденсационные КЭС, которые производят электрическую энергию и теплоэлектроцентрали ТЭЦ, совместно выпускающие тепловую (пар и горячая вода) и электрическую энергию. Последние, имеют возможности преобразования тепловой энергии в электрическую с высоким КПД.

Атомные электростанции

АЭС используют тепло, выделяемое во время ядерного деления, для нагрева воды и производства пара. Пар используется для вращения больших турбин, которые генерируют электричество. При делении атомы расщепляются, образуя более мелкие атомы, высвобождая энергию. Процесс протекает внутри реактора. В его центре находится ядро, в котором содержится уран 235. Топливо для АЭС получают из урана, имеющего в своем составе изотоп 235U (0,7%) и неделящегося 238U (99,3 %).

Ядерный топливный цикл представляет собой серию промышленных этапов, связанных с производством электроэнергии из урана в ядерных энергетических реакторах. Уран - относительно распространенный элемент, который встречается во всем мире. Он добывается в ряде стран и обрабатывается до использования в качестве топлива.

Виды деятельности, связанные с производством электроэнергии, в совокупности относятся к ядерному топливному циклу по преобразованию тепловой энергии в электрическую на АЭС. Ядерный топливный цикл начинается с добычи урана и заканчивается удалением ядерных отходов. При переработке использованного топлива в качестве опции для ядерной энергии, его этапы образуют настоящий цикл.

Чтобы подготовить топливо для использования на АЭС, осуществляются процессы по добыче, переработке, конверсии, обогащению и выпуску твэлов. Топливный цикл:

  1. Выгорание урана 235.
  2. Шлакование - 235U и (239Pu, 241Pu) из 238U.
  3. В процессе распада 235U расход его уменьшается, а из 238U при выработке э/энергии получаются изотопы.

Себестоимость твэлов для ВВР примерно 20 % себестоимости вырабатываемого электричества.

После того как уран проведет около трех лет в реакторе, используемое топливо может пройти еще один процесс использования, включая временное хранение, переработку и рециркуляцию до удаления отходов. АЭС обеспечивает прямое преобразование тепловой энергии в электрическую. Тепло, выделяемое во время ядерного деления в активной зоне реактора, используется для превращения воды в пар, который вращает лопасти паровой турбины, приводя в действие генераторы, вырабатывающие электричество.

Пар охлаждается, превращаясь в воду в отдельной структуре на силовой установке, называемой градирней, которая использует воду из прудов, рек или океана для охлаждения чистой воды паросилового контура. Затем охлажденную воду повторно используют для получения пара.

Доля выработки электроэнергии на АЭС, по отношению к общему балансу выработки их разных видов ресурсов, в разрезе некоторых стран и в мире - на фото ниже.

Принцип работы газотурбинной электростанции аналогичен работе паротурбинной электростанции. Единственное различие заключается в том, что на паротурбинной электростанции для вращения турбины используется сжатый пар, а в газотурбинной силовой установке - газ.

Рассмотрим принцип преобразования тепловой энергии в электрическую в газотурбинной электростанции.

В воздух сжимают в компрессоре. Затем этот сжатый воздух проходит через камеру сгорания, где образуется газовоздушная смесь, повышается температура сжатого воздуха. Эта смесь с высокой температурой и высоким давлением проходит через газовую турбину. В турбине она резко расширяется, получая кинетическую энергию достаточную для вращения турбины.

В газотурбинной электростанции вал турбины, генератор переменного тока и воздушный компрессор являются общими. Механическая энергия, создаваемая в турбине, частично используется для сжатия воздуха. Газотурбинные электростанции часто используются в качестве резервного поставщика вспомогательной энергии на гидроэлектростанции. Он генерирует вспомогательную мощность во время запуска гидроэлектростанции.

Конструкция газотурбинной электростанции намного проще, чем паротурбинная электростанция. Размер газотурбинной электростанции меньше, чем у паротурбинной электростанции. На газотурбинной электростанции нет котельного компонента, и, следовательно, система менее сложная. Отсутствует пар, поэтому не требуются конденсатор и градирня.

Проектирование и строительство мощных газотурбинных электростанций намного проще и дешевле, капитальные затраты и эксплуатационные расходы в значительной степени меньше стоимости аналогичной паротурбинной электростанции.

Постоянные потери на газотурбинной электростанции значительно меньше по сравнению с паротурбинной электростанцией, поскольку в паровой турбине силовая установка котла должна работать непрерывно, даже когда система не подает нагрузку в сеть. Газотурбинная электростанция может быть запущена практически мгновенно.

Недостатки газотурбинной электростанции:

  1. Механическая энергия, создаваемая в турбине, также используется для запуска воздушного компрессора.
  2. Поскольку основная часть механической энергии, создаваемой в турбине, используется для управления воздушным компрессором, общая эффективность газотурбинной электростанции не такая высокая, как эквивалентная паротурбинная электростанция.
  3. Выхлопные газы в газотурбинной электростанции сильно отличаются от котла.
  4. До фактического запуска турбины воздух должен быть предварительно сжат, что требует дополнительного источника питания для запуска газотурбинной электростанции.
  5. Температура газа достаточно высока на газотурбинной электростанции. Это приводит к тому, что срок службы системы меньше, чем у эквивалентной паровой турбины.

Из-за более низкой эффективности газотурбинная электростанция не может использоваться для коммерческого производства электроэнергии, она обычно используется для подачи вспомогательной энергии на другие обычные электростанции, например, такие как гидроэлектростанция.

Термоэмиссионные преобразователи

Они также называются термоэлектронным генератором или термоэлектрическим двигателем, которые непосредственно преобразуют тепло в электричество, используя термоэмиссию. Тепловая энергия может быть преобразована в электроэнергию с очень высокой эффективностью через индуцированный температурой процесс электронного потока, известный как термоэлектронное излучение.

Основным принципом работы термоэлектронных преобразователей энергии является то, что электроны испаряются с поверхности нагретого катода в вакууме и затем конденсируются на более холодном аноде. После первой практической демонстрации в 1957 году термоэлектронные преобразователи энергии использовались с различными источниками тепла, но все они требуют работы при высоких температурах - выше 1500 К. В то время как работа термоэлектронных преобразователей энергии при относительно низкой температуре (700 К - 900 К) возможна, эффективность процесса, которая обычно составляет > 50%, значительно уменьшается, поскольку количество излучаемых электронов на единицу площади от катода зависит от температуры нагрева.

Для традиционных катодных материалов, таких как металлы и полупроводники, число испускаемых электронов пропорционально квадрату температуры катода. Однако недавнее исследование демонстрирует, что температура тепла может быть снижена на порядок при использовании графена в качестве горячего катода. Полученные данные показывают, что катодный термоэлектронный преобразователь на основе графена, работающий при 900 К, может достичь КПД 45%.

Принципиальная схема процесса электронной термоэлектронной эмиссии представлена на фото.

TIC на основе графена, где Tc и Ta - температура катода и температура анода, соответственно. Основываясь на новом механизме термоэлектронной эмиссии, исследователи предполагают, чтобы конвертер энергии катода на основе графена мог найти свое применение при повторном использовании тепла промышленных отходов, которое часто достигает температурного диапазона от 700 до 900 K.

Новая модель, представленная Ляном и Энгом, может принести пользу конструкции преобразователя энергии на основе графена. Твердотельные преобразователи энергии, которые в основном являются термоэлектрическими генераторами, обычно работают неэффективно в низкотемпературном диапазоне (с КПД менее 7%).

Утилизация отходов энергии стала популярной целью для исследователей и ученых, которые придумывают инновационные методы для достижения этой цели. Одним из наиболее перспективных направлений является термоэлектрические устройства на основе нанотехнологий, которые выглядят, как новый подход к экономии энергии. Прямое преобразование тепла в электричество или электричество в тепло известно, как термоэлектричество, основанное на эффекте Пельтье. Если быть точным, эффект называется именем двух физиков - Жана Пельтье и Томаса Зеебека.

Пельтье обнаружил, что ток, посылаемый в два разных электрических проводника, которые соединены на двух переходах, приведет к нагреву одного соединения, в то время как другое соединение охладится. Пельтье продолжил исследования, установил, что каплю воды можно заставить замерзнуть на стыке висмута-сурьмы (BiSb), просто изменив ток. Пельтье также обнаружил, что электрический ток может протекать, когда имеет место разность температур размещается поперек соединения разных проводников.

Термоэлектричество является чрезвычайно интересным источником электроэнергии из-за его способности преобразовывать тепловой поток непосредственно в электричество. Он представляет собой преобразователи энергии, которые легко масштабируются и не имеют движущихся частей или жидкого топлива, что делает их применимыми практически в любой ситуации, когда большое количество тепла, как правило, направляется в отходы, от одежды до крупных промышленных объектов.

Наноструктуры, используемые в материалах полупроводниковых термоэлементах, помогут поддерживать хорошую электропроводность и уменьшить теплопроводность. Таким образом, производительность термоэлектрических устройств может быть увеличена за счет использования материалов на основе нанотехнологий, с применением эффекта Пельтье. Они обладают улучшенными термоэлектрическими свойствами и хорошими поглощающими способность солнечной энергии.

Применение термоэлектричества:

  1. Поставщики энергии и датчики в диапазонах.
  2. Сжигающая масляная лампа, управляющая беспроводным приемником для удаленной связи.
  3. Нанесение небольших электронных устройств, таких как MP3-плееры, цифровые часы, чипы GPS/GSM и импульсные счетчики с теплотой тела.
  4. Быстро охлаждающие сиденья в роскошных автомобилях.
  5. Уборка отработанного тепла в автомобилях путем преобразования его в электричество.
  6. Преобразование отработанного тепла на заводах или промышленных объектах в дополнительную мощность.
  7. Солнечные термоэлектрики могут быть более эффективнее, чем фотоэлектрические элементы для выработки электроэнергии, особенно в районах с меньшим солнечным светом.

Магнитогидродинамический генератор мощности генерируют электроэнергию посредством взаимодействия движущейся жидкости (обычно ионизированный газ или плазма) и магнитного поля. С 1970 года в нескольких странах были проведены исследовательские программы МГД с особым акцентом на использование угля в качестве топлива.

Основополагающий принцип генерации MHD-технологий элегантен. Как правило, электропроводящий газ образуется при высоком давлении путем сжигания ископаемого топлива. Затем газ направляется через магнитное поле, в результате чего внутри него действует электродвижущая сила в соответствии с законом индукции Фарадея (названным в честь английского физика и химика XIX века Майкла Фарадея).

Система МГД представляет собой тепловой двигатель, включающий расширение газа от высокого до низкого давления так же, как и в обычном газовом турбогенераторе. В системе МГД кинетическая энергия газа преобразуется непосредственно в электрическую энергию, так как ей разрешено расширяться. Интерес к генерированию МГД был первоначально вызван открытием того, что взаимодействие плазмы с магнитным полем может происходить при гораздо более высоких температурах, чем это возможно во вращающейся механической турбине.

Предельные характеристики с точки зрения эффективности в тепловых двигателях были установлена в начале XIX века французским инженером Сади Карно. Выходная мощность МГД-генератора для каждого кубического метра его объема пропорциональна продукту газопроводности, квадрату скорости газа и квадрату силы магнитного поля, через который проходит газ. Для того, чтобы МГД-генераторы работали конкурентоспособно, с хорошей производительностью и разумными физическими размерами, электропроводность плазмы должна быть в диапазоне температур выше 1800 К (около 1500 С или 2800 F).

Выбор типа МГД-генератора зависит от используемого топлива и применения. Обилие запасов угля во многих странах мира способствуют развитию углеродных систем МГД для производства электроэнергии.