Простой датчик движения своими руками — ремонт, установка. Подключение датчиков движения

Различные виды детекторов, позволяющих осуществлять функции контроля над коммуникациями и системами безопасности в зданиях и частных домах, позволяют значительно облегчить управление всем комплексом в целом. За счет встроенных алгоритмов устройства работают автономно, и вмешательство человека становится минимальным. Одними из важных элементов таких схем являются датчики движения. С помощью этих устройств можно защитить территорию от нежелательного проникновения и сэкономить на электроэнергии. Датчики будут автоматически включать и выключать освещение в доме и на улице, коммутировать питание других электроприборов.

Большинство из подобных детекторов можно изготовить самостоятельно, главное – понять принцип работы этих детекторов. Датчик движения своими руками может представлять сложное устройство или, наоборот, быть собранным из нескольких деталей.

Кольцевой выключатель

К самым простым датчикам движения можно отнести самовозвратные точки (кольцевые выключатели). Такое оборудование применяется при включении света в холодильнике. Для работы схемы используется:

  • геркон или герметизированный контакт, представляет собой колбу, внутри которой запаяны 2 ферромагнитных контакта;
  • магнит.

Во время приближения магнита к геркону контакты замыкаются, а при удалении – размыкаются. При разомкнутых контактах напряжение подается на лампу в холодильнике, и свет загорается. При замкнутых контактах лампочка обесточивается.

Такой самодельный датчик движения можно просто подключить к существующей охранной сигнализации или к звуковому извещателю. За счет этого при размыкании контактов, то есть открытии двери, система подаст звуковой сигнал. Схема применяется на дверях охраняемых объектов, но не подходит для открытых территорий.

Для осуществления контроля на больших пространствах используются более сложные устройства, которые могут реагировать на различные изменения в окружающей среде. К подобным элементам относят:

  • фото,- и звуковые реле;
  • датчики поля;
  • пироприемники.

Световой датчик движения

Довольно часто датчик движения необходим, чтобы засекать какой-либо объект при перемещении через определенную линию, например, на входе в комнату. Для создания такого датчика необходимы 2 устройства: источник света и фотоприемник. При прохождении человека в области лучей связь между источником и приемником будет пропадать, датчик сработает и выдаст звуковой сигнал.

Вся схема данного устройства основана на фотоэлементе – транзисторе. Причем такой фототранзистор также можно сделать своими руками. Для этого нужно взять транзистор, по виду напоминающий шляпку с полями на трех ножках, например, П417А. Нужно отпилить верхнюю часть элемента таким образом, чтобы образовалось отверстие, или просто откройте весь кристалл. Теперь при попадании света элемент станет работать как фототранзистор, правда чувствительность его будет немного меньше обычного. Можно не тратить время на эту операцию, а сразу взять готовый фотоэлемент.

Сначала собираем фотоприемник. В работе устройства используются следующие элементы:

  • VT1 – фототранзистор;
  • R1 – резистор;
  • C1 – конденсатор;
  • DA1 – операционный усилитель с обратной связью;
  • R2 – резистор с обратной связью на операционный усилитель;
  • R1 – выполняет функции нагрузки и коллектора. С помощью этого элемента устанавливают рабочую точку. Подбор необходимого значения идет опытным путем.

При выборе характеристик R2 следует помнить, что чем больше коэффициент усиления, тем меньше устойчивость усилителя. С другой стороны, чем выше номинал резистора, тем больше коэффициент усиления. Оптимально использовать номинал в 100 кОм.

Самоделки работают следующим образом:

  • при попадании света на транзисторе возникает небольшое рабочее напряжение, и элемент открывается;
  • конденсатор заряжается;
  • если свет уходит, конденсатор начинает разряжаться;
  • в точке А напряжение снижается, что уменьшает напряжение и на выходе;
  • операционный усилитель необходим, чтобы усилить сигнал от точки А для дальнейшей его передачи к другим устройствам.

В качестве источника света на небольших расстояниях можно использовать фотодиод. Красный лазер позволит значительно выиграть в расстоянии. Лазерный датчик движения можно использовать на больших территориях. Но если нужно сделать так, чтобы датчик был незаметен, используйте инфракрасный диод.

Внимание! При подборе лазерного диода проверьте, чтобы его характеристики соответствовали правилам безопасности. Некоторые подобные элементы оказывают пагубное влияние на глаза.

Сам фотодатчик необходимо затемнить и закрыть темным пропускающим материалом. Это позволит снизить влияние обычного освещения. Источник света ставим напротив датчика. За счет этого образуется оптическая связь, то есть пока объект не закроет источник света (пересечет черту), напряжение в фототранзисторе будет постоянным. При разрыве оптической связи напряжение на выходе снижается до нуля за счет операционного усилителя.

Для анализа данных, приходящих с датчика, к схеме следует подключить реле. Обмотку соединяем с входом, на 1 контакт подаем напряжение 12 В, другой конец заземляем, а третий – подключаем к радиоприемнику. Если на фотоэлемент падает свет, цепь питания соединена с фотоприемником, радио не работает. Если оптическая связь разорвана, напряжение падает, и источник питания замыкается на радиоприемнике. Это приводит к включению радио. Вместо радиоприемника можно использовать другие извещатели.

Датчики движения с емкостным реле

Емкостное реле реагирует на возникновение объектов в заданном радиусе. Основными элементами такого оборудования являются антенна и микроволновый генератор.

Многие из нас замечали, что звук у радио при сильном приближении к нему человека меняется, в работе появляются непонятные шумы, или волна станции сбивается. Точно по такому же принципу функционируют микроволновые датчики движения.

Роль высокочастотного генератора радиоприемника в схеме одновременно выполняет транзистор VT1. Детекторный диод необходим для выпрямления напряжения, которое задает смещение на базе транзистора VT2. У трансформатора Т1 обмотки настроены на разные частоты. Если на антенну не воздействует внешние объекты, на детекторе VD1 нет напряжения, так как амплитуды сигналов компенсируют друг друга. Если частоты меняются, амплитуды начинают складываться и детектироваться на диоде. За счет этого VT2 открывается. Для того чтобы точно задать значение для отключения и включения, используется компаратор – тиристор VS1. Этот тиристор управляется силовым реле напряжением в 12 Вольт.

Важно! Не следует располагать датчики вблизи вентиляторов и больших бытовых приборов. Все это оборудование может создавать помехи в режиме работы любого датчика.

Платформы для конструирования

Для создания более сложных и функциональных устройств можно использовать готовые платы для радиоконструирования, к примеру, Arduino. Так называется аппаратная вычислительная платформа с собственным процессором и памятью. Arduino выполняет сразу несколько важных задач:

  • считывает и обрабатывает сигнал с инфракрасного датчика;
  • реагирует на движение;
  • проводит оповещение.

Для создания датчика потребуются сама платформа, PIR-датчик, макетная плата и провода. Можно подключать датчик сразу напрямую к Arduino, но так сложнее обеспечить плотное прилегание. Поэтому удобнее воспользоваться бредбоардом.

Все инфракрасные датчики имеют одинаковое строение. Главным параметром, по которому можно отличить один сенсор от другого, является чувствительность, а, значит, и используемая оптика. Оптимальным PIR датчиком сегодня является устройство с линзами Френеля. Эти линзы могут концентрировать излучение, повышая порог чувствительности.

Главной задачей платформы является отправка данных по USB Serial при обнаружении движения через определенные промежутки времени. Отладка оборудования осуществляется за счет программного обеспечения Python и PySerial.

Такой датчик движения для включения света можно запрограммировать на создание определенного уровня освещенности. Это оборудование можно использовать для обустройства системы сигнализации в гараже, тогда детектор будет подключаться к звуковому модулю.

Видео

Датчик движения чаще всего используется для включения освещения, когда вы проходите или находитесь рядом с ним. С его помощью можно хорошо экономить электричество и избавить себя от необходимости щелкать выключателем. Это устройство также используется и в системах сигнализации, для определения нежелательных проникновений. Кроме этого их можно встретить и на производственных линиях, они там нужны для автоматизированного выполнения каких-либо технологических задач. Датчики движения иногда называют датчикам присутствия.

Типы датчиков движения

Датчики движения различают по принципу действия от этого зависит их работа, точность срабатывания и особенности использования. У каждого из них есть сильные и слабые стороны. От конструкции и рода используемого элемента зависит и конечная цена такого датчика.

Датчик движения может быть выполнен в одном корпусе и в разных корпусах (блок управления отдельно от датчика).

Контактные

Самый простой вариант датчика движения - использовать или . Геркон (герметичный контакт) это переключатель который срабатывает при появлении магнитного поля. Суть работы заключается в установки концевого выключателя с нормально-разомкнутыми контактами или геркона на дверь, когда вы её откроете и зайдете в помещение контакты замкнутся, включат реле, а оно включит освещение. Такая схема изображена ниже.

Инфракрасные

Срабатывают от теплового излучения, реагируют на изменение температуры. Когда вы входите в поле зрения такого датчика он срабатывает на тепловое излучение от вашего тела. Недостатком такого способа определения являются ложные срабатывания. Тепловое излучение присуще всему что есть вокруг. Приведем несколько примеров:

1. стоит в помещении с электрообогревателем, который периодически включается и отключается по таймеру или термостату. При включении обогревателя возможны ложные срабатывания. Можно попробовать этого избежать долгой и скрупулезной настройкой чувствительности, а также попыткой направить его так, чтобы в прямой видимости не было обогревателя.

2. При установке на улице возможны срабатывания от порывов тёплого ветра.

В целом эти датчики нормально работают, при этом это самый дешевый вариант. В качестве чувствительного элемента используется PIR-сенсор, он создает электрическое поле пропорционально тепловому излучению.

Но сам по себе сенсор не имеет широкой направленности, поверх него устанавливается линза Френеля.

Правильнее будет сказать - многосегментная линза, или мультилинза. Обратите внимание на окошко такого датчика, оно разбито на секции это и есть сегменты линз, они фокусируют попадающие излучения в узкий пучок и направляют его на чувствительную область датчика. В результате этого на маленькое приемное окошко пироэлектрического сенсора попадают пучки излучений с разных сторон.

Для увеличения эффективности детектирования движения могут устанавливать сдвоенные, или счетвертненные сенсоры или несколько отдельных. Таким образом, расширяется поле зрение прибора.

Исходя из вышесказанного нужно отметить и то, что на датчик не должен попадать свет от лампы, а также в поле его зрения не должно быть ламп накаливания, это также сильный источник ИК-излучения, тогда работа системы в целом будет нестабильной и непредвиденной. ИК-излучения плохо проходят через стекло, поэтому он не сработает, если вы будете идти за окном или стеклянной дверью.

Это самый распространённый вид датчика его можно купить а можно и собрать самому на основе, поэтому рассмотрим его конструкцию подробно.

Как собрать ИК-датчик движения своими руками?

Самый распространенный вариант - это HC-SR501. Его можно купить в магазине радиодеталей, на али-экспресс, часто поставляется в наборах Arduino. Может использоваться как в паре с микроконтроллером, так и самостоятельно. Он представляет собой печатную плату с микросхемой, обвязкой и одним ПИР-сенсором. Последний накрыт линзой, на плате есть два потенциометра, один из них регулирует чувствительность, а второй время которое на выходе датчика присутствует сигнал. При детектировании движения на выходе появляется сигнал и держится установленное время.

Он питается напряжением от 5 до 20 вольт, срабатывает на расстоянии от 3 до 7 метров, а сигнал на выходе держит от 5 до 300 секунд, вы можете продлить этот период, если использовать , микроконтроллер или реле задержки времени. Угол обзора порядка 120 градусов.

На фото изображен датчик в сборе (слева), линзу (справа внизу), обратную сторону платы (справа вверху).

Рассмотрим плату подробнее. На её передней стороне расположен чувствительный элемент. На задней - микросхема, её обвязка, справа два подстроечных резистора, где верхний - время задержки сигнала, а нижний - чувствительность. В нижней правой части джампер для переключения режимов H и L. В режиме L датчик выдает выходной сигнал только она период времени выставленного потенциометром. Режим H выдает сигнал, пока вы находитесь в зоне действия датчика, а когда вы её покидаете сигнал, исчезнет через время заданное верхним потенциометром.

Если вы хотите использовать датчик без микроконтроллеров, тогда соберите эту схему, все элементы подписаны. Схема питается через гасящий конденсатор, напряжение питания ограничено на уровне 12В с помощью стабилитрона. Когда на выходе датчика появляется положительный сигнал реле Р включается через NPN транзистор (например BC547, mje13001-9, КТ815, КТ817 и другие). Можно использовать автомобильное реле или любое другое с катушкой на 12В.

Если вам нужно реализовать какие-то другие функции - можно использовать его в паре с микроконтроллером, например . Ниже представлена схема подключения и программный код.

Ультразвуковые

Излучатель работает на высоких частотах - от 20 кГц до 60 кГц. Отсюда выходит одна неприятность - животные, например собаки, чувствительны к этим частотам, более того они используются для их отпугивания и дрессировки. Такие датчики могут раздражать их и с этим возникают проблемы.

Ультразвуковой датчик движения работает на эффекте Допплера. Излучаемая волна, отражаясь от подвижного объекта, возвращается и принимается приёмником, при этом длина волны (частота) незначительно изменяется. Это детектируется, и датчик выдает сигнал, который используют для управления реле или симмистором и коммутации нагрузки.

Датчик неплохо отрабатывает движения, однако если движения очень медленные - он может не срабатывать. Преимуществом является то, что они не чувствительны к изменениям условий окружающей среды.

Лазерные или фотодатчики

В них есть излучатель (например ИК-светодиод) и приемник (фотодиод аналогичного спектра). Это простой датчик, возможна реализация в двух исполнениях:

1. Излучатель и фотодиод монтируются в проходе (контролируемой зоне) напротив друг друга. Когда вы проходите через него вы заслоняете излучение и оно не достигает приемника, тогда срабатывает датчик и включается реле. Это можно использовать и в системах сигнализации.

2. Излучатель и фотодиод стоят рядом друг с другом, когда вы находитесь в зоне действия датчика излучение отражается от вас и попадает на фотодиод. Это называется также датчиком препятствия, с успехом применяется в робототехнике.

Микроволновый

Состоит также из передатчика и приемника. Первый генерирует сигнал высокой частоты, второй их принимает. Когда вы проходите рядом изменяется частота. Приемник настроен таким образом, что при изменении частоты сигнал усиливается и передается на исполнительный орган, например реле, и происходит включение нагрузки.

Микроволновые датчики движения очень чувствительны, позволяют «увидеть» объект даже за дверью или за стеклом, однако это вызывает и проблемы ложного срабатывания, когда объект находится вне поля предполагаемой видимости.

Это достаточно дорогостоящие датчики, но они реагируют даже на самые незначительные движения.

Подобным образом работают и емкостные приборы. Такая схема изображена ниже.

Как подключить датчик движения?

Можно придумать бесчисленное множество вариантов и схем подключения датчика движения в зависимости от ваших потребностей, иногда нужно чтобы система срабатывала при движении в разных местах, например уличное освещение по пути от дома до ворот и наоборот, в других случаях необходимо принудительное включение или отключение света и т.д. Мы рассмотрим несколько вариантов.

Обычно у датчика движения есть три провода или три клеммы для подсоединения:

1. Приходящая фаза.

2. Фаза, отходящая для питания нагрузки.

Если вам не хватает мощности датчика - используйте промежуточное реле и . Для этого вместо лампочки в нижеуказанных схемах подключаются выводы катушки.

На фото ниже изображены клеммы к которым подсоединяются питающие провода.

Заключение

Использование датчиков движения, как бы это ни звучало, это шаг . Во-первых, это поможет экономить электроэнергию и ресурс ламп. Во-вторых, это избавит от необходимости каждый раз щелкать выключатель. Для освещения на улице при правильной настройки можно сделать так, чтобы свет включался, когда вы подходите к воротам дома.

Если расстояние от ворот до дома 7-10 - можно обойтись и одним датчиком, тогда не придется прокладывать кабель на второй датчик или собирать схему с проходным выключателем.

Как уже было сказано чаще всего встречаются ИК-датчики, их достаточно для простых задач, если вам нужна большая чувствительность или точность - присмотритесь к датчикам других типов.

Датчики движения активно применяются в различных облостях : охранных системах и сигнализациях, в системах, контролирующих доступ в помещения, в управлении освещением (это особенно актуально при появлении пункта общественное освещение, например, включение света в подъезде осуществляется только при входе жильцов, в системе «умный дом» - в составе интегрированного управления освещением, вентиляцией, кондиционированием и отоплением. С помощью датчика движения можно корректировать климатические показатели в зависимости от наличия или отсутствия людей в помещении.

В зависимости от типа используемого излучения, датчики движения бывают инфракрасные , микроволновые , ультразвуковые и комбинированные.

Структурная схема любого ДД:

BL - ДД, S - контакт управления освещением, N - "нулевой" провод осветительной сети, L - "фаза", A - клемма подключения осветительных приборов.

Подключение датчика движения . Достаточно подать питающее напряжение на выводы клеммной колодки L и N . А нагрузку или лампочку подключаем к контакту N и A .

На корпусе ДД обычно располагаются регулировочные ручки. Обычно их бывает от двух до четырех. Рядом с ручками подписан вид регулировки.

LUX - Для регулировки уровня освещенности. Time - Время включение таймера. SENS - регулировка чувствительности ДД. MIC - присутствует не на всех моделях - акустический уровень срабатывания.

Для лучшего понимания приведу элементарную схему подключения светильника через классический ДД.

Кроме того существует схема ДД с стандартным электрическим выключателем и если возникает нужда подключения нагрузки большой мощности можно применить электромагнитный пускатель или реле.

В случае если зона контроля достаточно большая, например подъезд многоквартирного дома, то с помощью этой схемы можно подсоединить любое количество ДД.


Видео: как подключить датчик движения

Выбирая место необходимо снизить условия, негативно влияющие на его работу. На схеме ниже приведены примеры наилучших мест для размещения наиболее широко используемого инфракрасного датчика.


Как видно из рисунка, необходимо избегать мест с возможным прямым попаданием внешнего теплового излучения: батареи отопления, прямые солнечные лучи, и т.п.

Обязательно учитывайте особенности каждого типа датчика, чтоб в их рабочую область не могли попасть объекты которые вызывают ложные срабатывания и в то же время контролирую все нужное для пространство. Перед монтажом устройства необходимо убедиться, что поверхность, на которую будет осуществлен монтаж, не подвергается вибрационным воздействиям.


По возможности размещения датчики движения бывают

Потолочные – используются для установки на потолках, плитах перекрытия и т.п. В большинстве случаев схема потолочного устройства, предусматривают круговую зону детектирования.
Угловые и настенные – имеют более узкую направленность. Их преимущество – точное выделение зоны наблюдения, сократив тем самым число ложных срабатываний. Настенные датчики монтируются на вертикальных поверхностях, угловые – в местах примыкания стен. Для угловых приборов наблюдения имеются два варианта крепления – как на внешних, там и внутренних углах помещения

В некоторых универсальных устройствах контроля при помощи специального крепежа существует возможность сделать как прямой монтаж, так и угловой – на внутренних и внешних углах зданий.

По возможности установки ДД бывают:

Внешние - отличаются, простотой установки, кроме того устройства этого типа максимально функциональны и удобны, они позволяют корректировать зону охвата
Внутренние – позволяют установить датчики максимально скрытно. Существуют модели, которые можно установить не только на стены, но и на мебель, в потолок и даже электроприборы.

По способу обеспечения питанием датчики фиксирующие движение можно разделить на: автономные и проводные

Датчик движения работающий по инфракрасному принципу

Работа ИК ДД основана на фиксации теплового (ИК) излучения, идущего от различных объектов. Любой объект, обладающий собственной температурой, генерирует инфракрасное излучение, попадающее через специальные сегментированные вогнутые зеркала и линзы на установленный внутри преобразователя чувствительный сенсор, который и обнаруживает это излучение. Если объект перемещается, то испускаемое им ИК излучение периодически попадает на различные линзы сенсора. В различных преобразователях количество линз может меняться от 20 до 60 штук, при этом с ростом их числа числа возрастает чувствительность датчика. Зона охвата, которую контролирует ДД, зависит от площади поверхности имеющейся системы линз – чем выше эта площадь, тем больше зона контроля.


Преимущества ИК датчиков движения:

Неплохая регулировка угла обнаружения и дальности движущихся объектов
Их удобно использовать вне помещений, т.к они реагируют исключительно на те объекты, которые имеют тепло и двигаются
Полностью безопасны для людей и животных, т.к работает в пассивном режиме, не генерируя никакого излучения

Недостатки ИК ДД:

Возможные ложные срабатывания, из=за появления различных тепловых излучений, даже из-за потоков теплого воздуха, исходящего от батарей отопления, работающего кондиционера и т.п.
Меньшея точность срабатывания при работе вне помещения из-за, осадков, солнечного света и т.д.
Небольшой диапазон температур, в котором обеспечивается стабильная работа преобразователя
Не сработает если объект покрытыт специальным материалом, не пропускающим ИК-излучение

УЗ датчик контролирует окружающее пространство с помощью звуковых волной, частота которых находилась вне диапазона слышимости человеческого уха. Так как в момент отражении от движущегося объекта частота сигнала меняется в соответствии с эффектом Доплера, то при заданном изменении частоты в принятом сигнале, преобразователь сработает.

Внутри УЗ ДД имеется генератор звуковых волн, генерирующий УЗ волны в диапазоне от 20 до 60 кГц. Сгенерированная волна идет в открытое пространство и, отразившись от окружающих объектов, попадает обратно в приемник. Фактически – это мини радиолокационная станция.

С появлением в зоне контроля, перемещаюгося объекта, отраженные волны получат дополнительную частотную составляющую – эффект Доплера. Путем сравненияона выделяется и формирует сигнал запуска преобразователя.

Огромное применение УЗ преобразователи нашли в автомобилях – они используются в устройствах автоматической парковки, а так же в системах, осуществляющих контроль в «слепых» зонах автомобиля. В помещениях они нашли хорошую нишу для контроля движения на лестницах, и в длинных коридорах и т.п.

Преимущества ультразвуковых датчиков

Низкая стоимость
Внешние природные факторы (ветер, солнце, осадки и т.д.) не оказывают влияния на точность срабатывания
Фиксирует движение объекта контроля, не зависимо от того, из какого он материала


Недостатки УЗ ДД:

Достаточно небольшая эффективная дальность действия
Может не сработать при низкоскоростном перемещение объекта контроля
Оказывает влияние на животных, которые способны слышать звук в УЗ диапазоне

Схема этого типа преобразователя,использует для работы принцип распространения волны в СВЧ-диапазоне, поэтому принцип работы, очень похож на УЗ ДД. Микроволновый генератор генерирует высокочастотные волны (обычно на частоте 5,8ГГц), которые излучаются преобразователем в окружающее пространство. При отражении от движущегося объекта контроля волна имеет «доплеровскую» прибавку частоты, которая фиксируется при обработке принятого сигнала. После чего сигнал поступает на управляющую плату и запускается схема контроля и сигнализвции.

Плюсы микроволновых датчиков

Обладают самыми малыми габаритами, по сравнению с другими типами
Больший радиус действия
СВЧ датчик может улавливать движение даже за слабо проводящими и диэлектрическими препятствиями: стекла, двери, тонкие стены
на точность срабатывания не оказывают влияния атмосферные и природные условия
Преобразователи этого типа гарантированно сработают, на объекты контроля перемещение которых происходит даже небольшой скоростью
С помощью одного преобразователя можно создать несколько независимых зон контроля

Минусы:

Стоят очень дорого
Существует вероятность ложного срабатывания, вызванная захватом движения вне зоны контроля
Небезопасность СВЧ - излучения на любой биологический объект в том числе и человека

Комбинированные датчики движения

Комбинированная схема ДД способна совмещать в себе сразу несколько технологий, например, микроволновой датчик и инфракрасный. На сегодняшний день такое совмещение очень эффективное, особенно, когда надо получить высокую точности определения движения в зоне, контролируемой устройством. Параллельная работа нескольких каналов достаточно сильно увеличивают вероятность обнаружения нежелательного перемещения, кроме того, такие устройства дополняют друга, взаимно компенсируя недостатки каждого типа.

Видео: Устройство датчиков движения


Датчик движения своими руками на микросхеме LM324

Схему ДД можно условно поделить на три составные части: усилитель сигнала с него два компаратора и пироэлектрический датчик PIS209S работающий на принципах генерации электрических зарядов в кристалле под воздействием теплового (инфракрасного) излучения,.

Что самое приятное что почти все это уже имеется в микросхеме LM324

Пироэлектрический датчик состоит из пластины пироэлектрика по бокам которой сделаны металлические обкладки, которые напоминают конденсатор. На одной из обкладок имеется вещество, принимающее тепловое излучение. Как только оно вызывает пироэлектрический эффект и напряжение между обкладками увеличивается. Это напряжение приложено к затвор – исток униполярного транзистора, встроенного в датчик.

Поэтому сопротивление канала транзистора снижается. VT1 нагружен на внешнее нагрузочное сопротивление (нет на рисунке), с которого и снимается генерируемый сигнал. Сопротивление R1 предназначено для разрядки обкладок емкости пироэлектрического датчика.

Датчик движения своими руками на пиродетекторе

Эту схему я подсмотрел в книге Радиолюбителям-схемы для дома, но не повторял ее.


Фото реле СФЗ-1 используется, для того чтобы свет включался только в вечернее и ночное время. Иначе биполярный транзистор VT1 открыт, а его коллега VT2, работающий в режиме ключа, входит в режим насыщения, тем самым, блокируя включение света.

В темноте и при появление биологического объекта в зоне действия ДД резко меняется инфракрасный фон и вырабатывается сигнал усиливаемый операционным усилителем и попадающий на вход реле времени. Путем изменения сопротивлений R2 и R11 можно корректировать чувствительность схемы.

Сигнал, поступающий от ОУ, открывает транзистор VT3 и заряжает конденсатор C6. После его заряда откроетсятранзистор VT4, который в свою очередькоммутирует реле К1. А реле через свои фронтовые контакты включит освещение. При указанных на схеме значениях задержка выключения освещения составляет 70 секунд.

На сегодняшний день практически каждый знает, что такое . Данный аппарат, хорошо себя зарекомендовал, и в служебных помещения, и в частном секторе. Стоимость не всегда является доступной. В этой статье мы подробно опишем как своими руками, сделать самодельный датчик для освещения, по простой схеме.

Основная информация о датчике движения

Рассмотрим немного информации о датчике движения для освещения и сфера его применения.
Датчик движения - устройство, основной функцией которого является распознание движения в зоне его действия. Имеется три вида датчика – пассивный, активный и смешанный.

Принцип действия активного датчика, основан на излучении ультразвуковых и электромагнитных волн. Пассивный, имеет инфракрасный датчик, который распознает тепло человека. Смешанные датчики движения имеют оба прибора контроля.

Принцип работы устройства

Активные датчики посредством регистрации и сравнения данных, полученных во время излучения, оповещают о движении, если в данных произошел сдвиг.

Плюсы ультразвуковых датчиков:

  1. Низкая стоимость.
  2. Не поддаются влиянию погодным условиям.
  3. Распознают движение независимо материалу.

Минусы ультразвуковых приборов:

  • Ограничение в дальности действия
  • Они рассчитаны на достаточно резкие движения.
  • Животные чувствительны к ультрачастотам.

Чаще всего такие приборы применяют в охранных системах для автомобиля.

Плюсы радиочастотных датчиков движения:

  • Их размеры невелики.
  • Имеются модели с большим радиусом действия.
  • Очень точны.

Минусы радиочастотных приборов:

  • Их стоимость довольно высока.
  • Из-за высокого порога чувствительности бывают ложные фиксирования движения.
  • Высокая мощность прибора может плохо влиять на организм человека или животного при долгом нахождении в поле действия.

Их применяют в охранных системах

Пассивные приборы имеют инфракрасные датчики, которые следят за температурой в радиусе своего действия. При изменении температурных данных прибор срабатывает. Именно такой прибор используется чаще, для освещения в жилом помещении.

Устройство датчика ИК

Плюсы инфракрасного датчика

  1. Они безопасны для людей и животных.
  2. Их легко можно настроить.
  3. Они отлично работают, и в помещении, и на улице.
  4. Цена является удовлетворительной.

Минусы инфракрасного датчика

  • Такой прибор работает лишь в определенных температурных рамках.
  • Он не улавливает предметы, покрытые материалом с защитой от инфракрасного излучения.
  • Прибор работает со сбоями при тепловых потоках обогревателей и теплого ветра.

Все что необходимо для изготовления

Необходимоые инструменты и элементы для сборки:

  • Вольтомметр
  • Паяльник
  • Провода
  • Водопроводная прокладка
  • Шуруп
  • Лазерная указка
  • Транзисторы
  • Фотодиод ФД 265
  • Реле РЭС 55А
  • Резисторы
  • Блок питания

Схема сборки

Произведения сборки, работы поэтапно

Схема датчика движения, для освещения, очень проста. Для тех кто занимался с ремонтом электро-приборов сделать его не будет тяжело.

Этапы работ:

  1. Для начала работы следует подготовить блок питания. Следует срезать с него разъем. Затем при помощи вольтметра найти плюс.
  2. Потом следует припаять резистор 10 ком.
  3. Фотодиод катодом нужно припаять к резистору, который, припаянный к плюсу.
  4. Посредством припаивания, присоединяем к построечному резистору фотодиод анодом. К минусу резистора следует припаять эмиттер транзистора. С базой VT 1, которая, припаянная и к R1, соединяют нужный коллектор.
  5. Затем следует соединить эмиттер VT 2с минусом, контакт реле нужно соединить с коллектором VT 2. С плюсом блока питания нужно спаять другой контакт реле.
  6. Самым распространённым является использование лазерной указки, ее и используем. Для экономии к тому же блоку питания паяем еще два дополнительных провода.
  7. Вставляем шнур в водопроводную прокладку все это, шляпкой внутрь нужно вставить в указку - так чтобы шляпка уперлась в имеющуюся внутри пружину.
  8. Один провод от питания должен быть подключен к шурупу, а другой следует просунуть между прокладкой и корпусом указки.

Перед включением следует еще раз сверится со схемой. Если со схемой все сходится,тогда проверяем работу прибора.

Как подключить прибор и настроить чувствительность

Для того чтобы прибор работал исправно и справлялся с поставленной задачей, нужно ответственно отнестись к его установке. Лучшим местом для монтажа является дверной проем. Для более эстетичного вида, прибор можно поместить в пластмассовую коробочку, проделав отверстие для фотодиода.

Монтирует датчик на высоте около метра, от пола. Указку следует установить параллельно полу и так чтобы луч попадал на фотодиод, тогда чувствительность при работе прибора будет не нарушена, не потребуется прибегать к его ремонту.

По окончании монтажа можно скрыть провода, так они не будут портить внешний вид, и путаться под ногами. Задуматься об установке прибора желательно во время ремонта в помещении, тогда будет проще скрыть провода подключения к освещению. При ремонте легче продумать расположение прибора.

Чтобы чувствительность была хорошей нужно проследить за правильностью установки указки. Если она установлена правильно тогда и чувствительность будет в норме, и прибор не будет работать со сбоями и не нужно будет его подвергать ремонту.

При установке следует помнить, что при загрязнении фотодиода или препятствию луча указки, может, нарушит работоспособность прибора.

Подведем итог

Такой прибор широко используется при установке охранной системы с использованием не только светового, но и звукового сопровождения. Данный прибор легло подключить к освещению и сделать автовключение света в жилом помещении.

Таким образом и создают систему умный дом. Достаточно экономным вариантом является такое приспособление. Оно поможет вам значительно уменьшить затраты электроэнергии.

Различные схемы подключения

Очень часто его используют в ванных комнатах, на кухне, в прихожих, и в подвалах частного дома. В ванной комнате и туалете прибор соединяют не только с освещением, но и с вентиляцией, что гораздо упрощает вентиляцию помещения.

Несколько датчиков движения своими руками.

В этой статье мы начнем путь от самых легких и примитивных схем и закончим более сложными и интересными решениями, но сначала небольшое предисловие.

Если вы читаете эту статью в надежде найти в ней схемы инфракрасных датчиков движения или схемы датчиков, которые достаточно сложно собрать в домашних условиях, то это статья не для вас. Но если вы решили развить свой кругозор и ваш выбор пал на изучение принципов работы датчиков движения, то это статья подходит вам как нельзя лучше.

Самый простой датчик движения который можно придумать – это датчик с применением проволочного резистора, или, как их правильно называть, потенциометрические резистивные преобразователи. Стоит сделать небольшую оговорку, что это не совсем датчик движения, а скорее датчик перемещения и попал в статью лишь благодаря своей простоте.

Предположим, на необходимо зафиксировать линейное передвижение малогабаритного объекта из точки А в точку Б. Тут нам и понадобиться подобный датчик, поскольку применение более сложных датчиков для таких целей просто нецелесообразно.

Рисунок 1:

Как видите все весьма просто, наш объект соединен с движком, который в свою очередь перемещается по резистору, изменяя напряжение на вольтметре. Было бы не совсем справедливо с моей стороны умолчать тот факт, что конструкция, показанная выше, не совсем рабочая. Проблема в том что преобразование линейного перемещения в напряжение происходит не по линейному закону, так как обычно эти датчики подключены к какой – нибудь нагрузке (в этой схеме вместо вольтметра). Но в схеме, показанной на рисунке 2, этот недостаток устранен.

Рисунок 2:

Назначение элементов:
GB1 – источник питания.
R1 – проволочный резистор.
R2 – резистор, который шунтирует верхние плече потенциометра. Зачем? Это вы увидите на рисунке 3.
R3 – сопротивление нагрузки, в качестве нагрузки сюда можно подключить любой тип индикации, начиная с обычных лампочек и заканчивая схемами, способными воспроизводить звуковой сигнал.
V – сюда можно подключить вольтметр.

Рисунок 3:

Красной линией показана кривая преобразования движения в напряжение, если в схеме нет R2. А зеленой, почти прямой линией, показано преобразование с R2.

Теперь обсудим достоинства и недостатки таких датчиков.
+ Сравнительно простые в исполнение.
+ Достаточно точные.

Требуют небольшой отладки перед использованием. Заключается эта отладка в снятии графика как на рисунке 3 для того, что бы определить качество датчика.

Датчики движения с применением фотоэлементов.

Здесь уже предстоит более сложная, но и интересная работа. Мы пойдем по наиболее простому пути, и для сборки такого датчика придется раздобыть фототранзистор. Его можно спокойно приобрести в магазине или сделать самому, так как это достаточно не сложно. Возьмите транзистор, который имеет корпус как на рисунке 4.

Рисунок 4:

Отпилите верхнею часть корпуса так, что бы на верху образовалось своего рода окно или отделите корпус так, что бы открыть весь кристалл (рисунок 5).

Рисунок 5:

В этом случаи, если на транзистор попадет свет, он будет работать как фототранзистор, но возможно в некоторых случаях будет менее чувствительный.

Теперь нам нужно собрать две достаточно простые схемы. Одна схема будет представлять собой источник света, а другая будет схемой фотоприемника. Начнем с конца.

Рисунок 6:

Назначение элементов:
VT1 – фототранзистор
R1 – резистор, выполняющий две функции: устанавливает рабочую точку и играет роль коллекторной нагрузки. К сожалению его номинал подбирается опытным путем, поэтому наберитесь терпения.
C1 – конденсатор, его назначение будет подробнее описано ниже.
DA1 – операционный усилитель с обратной связью.
R2 – резистор, на котором реализована обратная связь ОУ. Чем больше его наминал, тем больше коэффициент усиления, но стоит помнить: чем больше Кu, тем меньше устойчивость усилителя. Ищите золотую середину.

Схема работает следующим образом . Попадание света на VT1 можно принять за подачу небольшого постоянного напряжения на базу транзистора. Тогда, после попадания луча света на VT1, он откроется, конденсатор С1 зарядится, и в момент, когда свет перестанет падать на транзистор, начнет разряжаться, при этом напряжение в точке А начнет плавно уменьшаться. Отсюда следует, что оно упадет и на выходе. Тогда зачем операционный усилитель? Ведь можно обойтись и без него. Возьмем и сделаем выход не после ОУ, а из точки А. Можно и так, но операционный усилитель усиливает сигнал, снятый в точке А, что бы этот датчик можно было соединить с различными устройствами.

По сути дела, это обычный фотодатчик, можете подумать вы, и я буду вынужден согласиться, но только с одной оговоркой. До тех пор, пока мы не затемним транзистор (окно, пропиленное в крышке VT, надо закрыть темным пропускающим свет материалом, что бы уменьшить влияние обычного освещения) и не поставим напротив него источник света. Тогда у нас появиться оптическая связь, и до тех пор, пока кто то не перекроет луч света, напряжение на выходе второй части датчика не будет меняться. Но как только оптическая связь разорвана, напряжение на выходе почти мгновенно станет равно нулю благодаря операционному усилителю.

Что использовать в качестве излучателя решайте сами, можете поставить простой светодиод, но тогда расстояние до фотоприемника придется сильно сократить. Или поставить обычный красный лазер, сильно выиграв в расстоянии. Хотите, что бы датчик был незаметен? Поставьте ИК диоды.

Так же не забывайте, что на излучатель можно поставить линзу, которая будет фокусировать излучение.

Я не буду приводить схемы излучателя, так как вам достаточно вбить в поисковике фразу: ” Как включить светодиод” и вы получите миллионы схем.

Нам так же необходимо анализировать информацию, полученную с датчика. Для этого добавим к схеме один новый элемент – реле.

Все очень просто: обмотку реле соединяем с нашим входом, на один из контактов подаем напряжение, у меня это 12В. Другой заземляем, а на третий подключаем, например, радиоприемник, как на рисунке 7.

Рисунок 7:

Тогда, пока на датчик падает свет, цепь питания приемника соединена с корпусом и радио молчит, но когда свет не достигает VT1, реле срабатывает и замыкает цепь питания с 12В, рисунок 8.

Рисунок 8:

И тогда наш радиоприемник заработает, таким образом подав вам звуковой сигнал. Вместо радиоприемника может быть все что вам захочется, была бы фантазия.

Важно так же уточнить: если вы решите собрать эту схему и не знакомы с реле, ознакомьтесь с принципом работы и основными параметрами, это знание сильно облегчит настройку датчика.

Перед завершением статьи, пару слов о плюсах и минусах.
+ Простая схема.
+ Возможность анализировать состояния датчика, не переводя аналоговый сигнал в цифровой.
- Сложная система калибровки.