Глава xxiv. композиционные материалы с металлической матрицей

Волокнистые композиционные металлические материалы.

Эвтектические композиционные металлические материалы.

Композиционные металлические материалы, формируемые спеканием.

Дисперсно-упрочненные материалы на металлической матрице.

Композиционные материалы на металлической матрице.

Лекция № 2

Слоистые армированные пластики

Текстолиты – материалы, формируемые из слоёв ткани, пропитанной термореактивной синтетической смолой.

Дублированные пластики – слоистые материалы, состоящие из листов полиэтилена, полипропилена и других термопластов, соединённых подслоем на основе ткани, химически стойкой резины, нетканых волокнистых материалов и т.п.

Линолеум – полимерный рулонный материал для покрытия полов – представляет собой многослойный или на тканевой основе КПМ, содержащий алкидные смолы, полвинилхлорид, синтетические каучуки и другие полимеры.

Гетинакс слоистый пластик на основе бумаги, пропитанной термореактивной синтетической смолой.

Металлопласт – конструкционный материал, состоящий из металлического листа, снабженного с одной или двух сторон полимерным покрытием из полиэтилена, фторопласта или поливинилхлорида.

Древесно-слоистые пластики – материалы, получаемые «горячим» прессованием заготовок из древесины (шпона), пропитанных синтетическими термореактивными смолами.

Тема: « КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ НА МЕТАЛЛИЧЕСКОЙ МАТРИЦЕ»

Номенклатуру КММ делят на три основные группы:1) дисперсно-упрочненные материалы, армированные частицами, в том числе псевдосплавы, полученные методом порошковой металлургии; 2) эвтектические композиционные материалы – сплавы с направленной кристаллизацией эвтектических структур; 3) волокнистые материалы, армированные дискретными или непрерывными волокнами.

Дисперсно-упрочненные материалы

Если в металлической матрице КММ распределены частицы упрочняющей фазы размером 1…100 нм, занимающие 1…15% объема композита, матрица воспринимает основную часть механической нагрузки, приложенной к КММ, а роль частиц сводится к созданию эффективного сопротивления перемещению дислокаций в материале матрицы. Такие КММ характеризуются повышенной температурной стабильностью, вследствие чего их прочность практически не снижается вплоть до температур (0,7…0,8) Т пл, где Т пл – температура плавления матрицы. Материалы этого типа подразделяют на две группы: материалы, формируемые спеканием, и псевдоматериалы.

М а т е р и а л ы, ф о р м и р у е м ы е с п е к а н и е м, содержат мелкодисперсные частицы оксидов, карбидов, нитридов и других тугоплавких соединений, а также интерметаллидов, которые при формировании КММ не плавятся и не растворяются в матрице. Технология формирования изделий из таких КММ относится к области порошковой металлургии и включает операции получения порошковых смесей, их прессования в форме, спекания полученных полуфабрикатов, деформирования и термообработки заготовок.



Материалы на матрице из алюминия . Нашедшие применение КМ с алюминиевой матрицей в основном армируют стальной проволокой, борными и углеродными волокнами В качестве матрицы используют как технический алюминий (например, АД1), так и сплавы (В95, Д20 и др.).

Дисперсно – упрочненные стали содержат в качестве упрочняющих компонентов оксиды: Аl 2 O 3 , TiO 2 , ZrO 2 и др

КММ на матрице из кобальта в качестве дисперсной добавки содержат оксид тория, на матрице из магния – собственные оксиды.

Материалы на основе меди , упрочненные оксидами, карбидами, нитридами, приобретают жаростойкость, которая сочетается с высокой электропроводностью медной матрицы. Такие КММ используются для изготовления электрических контактов, электродов для роликовой сварки, инструментов для искровой обработки и т.д.

КММ на основе никеля , наполненные оксидом тория и оксидом гафния, предназначены для работы при температурах выше 1000 о С и используются в авиастроении, энергомашиностроении, в космической технике.

П с е в д о с п л а в – дисперсно-упрочненные КММ, состоящие из металлических и металлоподобных фаз, не образующих растворы и не вступающих в химические соединения. Технология формирования псевдосплавов относится к области порошковой металлургии. Заключительными операциями получения псевдосплавов является пропитка либо жидкофазное спекание формовок.

Пропитка заключается в заполнении пор формовки или спеченной заготовки из тугоплавкого компонента расплавом легкоплавкого компонента псевдосплава. Пропитку осуществляют, погружая пористую заготовку в расплав.

Номенклатура псевдосплавов включает преимущественно материалы триботехнического назначения.

Псевдосплавы на основе вольфрама W – Cu и W – Ag сочетают высокую твердость, прочность и электропроводность. Они применяются для изготовления электрических контактов. Такое же назначение имеют псевдосплавы на основе молибдена (Мо – Cu) и никеля (Ni – Ag) и др.

Э в т е к т и ч е с к и е КММ – сплавы эвтектического или близкого к нему состава, в которых армирующей фазой служат ориентированные волокнистые или пластинчатые кристаллы, образовавшиеся в процессе направленной кристаллизации металлической матрицы.

Технология формирования эвтектических КММ состоит в том, что образец вытягивают из расплава с постоянной скоростью, подвергая его непрерывному охлаждению. Форма фронта кристаллизации зависит от скорости вытяжки и условий теплообмена, регулируемых с помощью элементов конструкции кристаллизатора.

В о л о к н и с т ы е м а т е р и л ы. Технология формирования волокнистых КММ включает методы прессования, прокатки, совместной вытяжки, экструзии, сварки, напыления или осаждения, а также пропитки.

«Горячим» прессованием (прессованием с нагревом) получают КММ, исходным материалом матрицы которых служат порошки, фольги, ленты, листы и другие металлические полуфабрикаты. Их и армирующие элементы (проволоку, керамические, угольные или другие волокна) в определенном порядке укладывают на плиту пресса или в форму а затем прессуют при нагревании на воздухе или в инертной атмосфере.

Методом прокатки перерабатывают те же компоненты, что и прессованием.

Метод совместной вытяжки заключается в следующем. В заготовке из матричного металла высверливают отверстия, в которые вставляют армирующие прутки или проволоку. Заготовку нагревают и производят ее обжатие и волочение, которое завершают отжигом.

Методом экструзии изготавливают изделия в виде прутков или труб, армированных непрерывными и дискретными волокнами. Исходным материалом матрицы являются металлические порошки,

Н о м е н к л а т у р а волокнистых КММ включает множество материалов на матрицах из алюминия, магния, титана, меди, никеля, кобальта и др.

Композиционные материалы на основе металлической матрицы

По структуре и геометрии армирования композиты на базе металлической матрицы бывают представлены в виде волокнистых (МВКМ), дисперсно-упрочненных (ДКМ), псевдо- и эвтектических сплавов (ЭКМ), а в качестве материала основы наиболее широко применяют такие металлы как Al, Mg, Ti, Ni, Co.

Свойства и методы получения МВКМ на базе алюминия . МВКМ Al-стальные волокна. При получении КМ, состоящих из чередующихся слоев алюминиевой фольги и волокон, чаще всœего используют прокатку, динамическое горячее прессование, сварку взрывом, диффузионную сварку. Прочность этого типа композита͵ в основном, определяется прочностью волокон. Введение в матрицу высокопрочных стальных проволок повышает предел выносливости композита.

МВКМ Al-кремнеземные волокна получают, пропуская волокна через расплав матрицы, с последующим горячим прессованием. Скорость ползучести этих МВКМ при температурах 473-573 К на два порядка ниже ползучести неармированной матрицы. Композиты Al – SiO 2 обладают хорошей демпфирующей способностью.

МВКМ Al-борные волокна относятся к наиболее перспективным конструкционным материалам, поскольку обладают высокими прочностью и жесткостью при температурах до 673-773 К. При изготовлении широко используется диффузионная сварка. Жидкофазные методы (пропитка, различные виды литья и т. д.), ввиду возможности химического взаимодействия бора с алюминием, применяют лишь в тех случаях, когда на волокна бора предварительно нанесены защитные покрытия – карбид кремния (волокна борсик) или нитрид бора.

МВКМ Al-углеродные волокна имеют высокие показатели прочности и жесткости при малой плотности. При этом большой недостаток углеродных волокон – их нетехнологичность, связанная с хрупкостью волокон и их высокой реакционной способностью. Обычно МВКМ Al – углеродные волокна получают пропиткой жидким металлом или методом порошковой металлургии. Пропитку используют при армировании непрерывными волокнами, а методы порошковой металлургии – при армировании дискретными волокнами.

Свойства и методы получения МВКМ на базе магния. Использование магния и магниевых сплавов в качестве матрицы, армированной высокопрочными и высокомодульными волокнами, позволяет получить легкие конструкционные материалы с повышенными удельной прочностью, жаропрочностью и модулем упругости.

МВКМ Mg-борные волокна отличаются высокими прочностными свойствами. Для изготовления МКМ можно применять методы пропитки и литья. Листовые композиции Mg – B изготовляют методом диффузионной сварки. Недостатком МКМ Mg – B является пониженная коррозионная стойкость.

МВКМ Mg-углеродные волокна получают пропиткой или горячим прессованием в присутствии жидкой фазы, растворимость углерода в магнии отсутствует. Для улучшения смачивания углеродных волокон жидким магнием их предварительно покрывают титаном (путем плазменного или вакуумного напыления), никелœем (электролитически) или комбинированным покрытием Ni – B (химическим осаждением).

Свойства и методы получения МВКМ на базе титана. Армирование титана и его сплавов повышает жесткость и расширяет диапазон рабочих температур интервала до 973-1073 К. Для армирования титановой матрицы применяют металлические проволоки, а также волокна карбидов кремния и бора. Композиты на базе титана с металлическими волокнами получают прокаткой, динамическим горячим прессованием и сваркой взрывом.

МВКМ Ti – Mo (волокна) получают методом динамического горячего прессования заготовок типа ʼʼсэндвичʼʼ в вакуумированных контейнерах. Такое армирование позволяет повысить длительную прочность по сравнению с матрицей и сохранить прочность при высоких температурах. Одним из недостатков МВКМ Ti – Mo является высокая плотность, что снижает удельную прочность этих материалов.

МВКМ Ti – B, SiC (волокна) имеют повышенные не только абсолютные, но и удельные характеристики МВКМ на базе титана. Так как эти волокна хрупки, то для получения компактных композиций чаще всœего используют диффузионную сварку в вакууме. Длительные выдержки МВКМ Ti – B при температурах выше 1073 К под давлением приводят к образованию хрупких боридов титана, разупрочняющих композит. Карбидокремниевые волокна более устойчивы в матрице. Композиты Ti - B обладают высокой кратковременной и длительной прочностью. Чтобы повысить термическую стабильность волокон бора их покрывают карбидом кремния (борсик). Композиты Ti – SiC имеют высокие значения внеосœевой прочности предела ползучести.

В системе МВКМ Ti – Be (волокна) взаимодействие при температуре ниже 973 К отсутствует. Выше этой температуры возможно образование хрупкого интерметаллида, при этом прочность волокон практически не изменяется.

Свойства и методы получения МВКМ на базе никеля и кобальта. Существующие виды упрочнения промышленных никелœевых сплавов (дисперсное твердение, карбидное упрочнение, сложное легирование и термомеханическая обработка) позволяют сохранить их работоспособность только до интервала температур 1223-1323 К. По этой причине важным явилось создание МВКМ никеля, армированных волокнами и способных работать долгое время при более высоких температурах. Применяют следующие упрочнители:

В системе МВКМ Ni - Al 2 O 3 (волокна) при нагреве на воздухе образуется оксид никеля, который взаимодействует с арматурой, благодаря чему на границе образуется шпинœель NiAl 2 O 4 . При этом связь между компонентами нарушается. Для увеличения прочности связи на арматуру наносят тонкие покрытия из металлов (W, Ni, нихром) и керамики (оксиды иттрия и тория). Так как жидкий никель не смачивает Al 2 O 3 , в матрицу вводят Ti, Zr, Cr, которые улучшают условия пропитки.

При комнатной температуре прочность композита никель - нитевидные кристаллы Al 2 O 3 , полученного электроосаждением никеля на волокна, существенно превышает прочность матрицы.

МВКМ Ni - C (волокна). Никель практически не растворим в углероде. В системе Ni – C образуется метастабильный карбид Ni 3 C, устойчивый при температурах выше 1673 К и ниже 723 К. Обладая высокой диффузионной подвижностью, углерод насыщает никелœевую матрицу за короткое время, в связи с этим главными разупрочняющими факторами в МВКМ Ni – C является растворение углеродных волокон и их рекристаллизация вследствие проникновения никеля в волокно. Введение в никелœевую матрицу карбидообразователœей (Cr, Al, Ti, Mo, W, Nb) усиливает взаимодействие матрицы с волокнами. Для повышения структурной стабильности на волокна наносят противодиффузионные барьерные покрытия из карбида и нитрида циркония, карбида титана.

МВКМ N – W, Mo (волокна) получают динамическим горячим прессованием, диффузионной сваркой, сваркой взрывом, прокаткой. По причине того, что W, Mo интенсивно окисляются при нагревах, композиты получают в вакууме или защитной атмосфере. При нагреве МВКМ на воздухе происходит окисление волокон вольфрама или молибдена, расположенных на поверхности композита. В случае если волокна не выходят на поверхность, то жаростойкость МВКМ определяется жаростойкостью матрицы.

Области применения МВКМ. Композиционные волокнистые материалы с металлической матрицей применяют при низких, высоких и сверхвысоких температурах, в агрессивных средах, при статических, циклических ударных, вибрационных и других нагрузках. Наиболее эффективно используются МВКМ в конструкциях, особые условия, работы которых не допускают применения традиционных металлических материалов. При этом, чаще всœего, в настоящее время армированием металлов волокнами стремятся улучшить свойства матричного металла, чтобы повысить рабочие параметры тех конструкций, в которых до этого использовали неармированные материалы. Использование МВКМ на базе алюминия в конструкциях летательных аппаратов, благодаря их высокой удельной прочности, позволяет достичь важного эффекта – снижения массы. Замена традиционных материалов на МВКМ в базовых деталях и узлах самолетов, вертолетов и космических аппаратов уменьшает массу изделия на 20-60 %.

Наиболее актуальна в газотурбостроении задача повышения термодинамического цикла энергетических установок. Даже малое повышение температуры перед турбиной значительно увеличивает КПД газотурбинного двигателя. Обеспечить работу газовой турбины без охлаждения или, по крайней мере, с охлаждением, не требующим больших конструктивных усложнений газотурбинного двигателя, можно, используя высокожаропрочные МВКМ на базе никеля и хрома, армированные волокнами Al 2 O 3 .

Алюминиевый сплав, армированный стекловолокном, содержащим оксид урана, обладает повышенной прочностью при температуре 823 К и должна быть использован в качестве топливных пластин ядерных реакторов в энергетике.

Волокнистые металлические композиты используют в качестве уплотнительных материалов. К примеру, статические уплотнения, изготовленные из Mo или стальных волокон, пропитанных медью или серебром, выдерживают давление 3200 МПа при температуре 923 К.

Как износостойкий материал в коробках передач, дисковых муфтах, пусковых устройствах можно использовать МВКМ, армированные ʼʼусамиʼʼ и волокнами. В армированных W-проволокой магнитотвердых материалах удается сочетать магнитные свойства с высоким сопротивлением ударным нагрузкам и вибрациям. Введение арматуры из W, Mo в медную и серебряную матрицу позволяет получать износостойкие электрические контакты, предназначенные для сверхмощных высоковольтных выключателœей, в которых сочетаются высокие тепло- и электропроводность с повышенным сопротивлением износу и эрозии.

Принцип армирования можно положить в основу создания сверхпроводников, когда в матрицах из Al, Cu, Ti, Ni создают каркас из волокон сплавов, обладающих сверхпроводимостью, к примеру, Nb – Sn, Nb – Zr. Такой сверхпроводящий композит может передавать ток плотностью 10 5 -10 7 А/см 2 .

Композиционные материалы на основе металлической матрицы - понятие и виды. Классификация и особенности категории "Композиционные материалы на основе металлической матрицы" 2017, 2018.

Композиционные материалы состоят из металлической матрицы (чаще Al, Mg, Ni и их сплавы), упрочненной высокопрочными волокнами (волокнистые материалы) или тонкодисперсными тугоплавкими частицами, не растворяющимися в основном металле {дисперсно-упрочненные материалы). Металлическая матрица связывает волокна (дисперсные частицы) в единое целое. Волокно (дисперсные частицы) плюс связка (матрица), составляющие ту

Рис. 196. Схема структуры (а) и армирования непрерывными волокнами (б) композиционных материалов: 1 - зернистый (дисперсно-упрочненный) материал (l/d =1); 2 - дискретный волокнистый композиционный материал; 3 - непрерывно волокнистый композиционный материал; 4 - непрерывная укладка волокон; 5 - двухмерная укладка волокон; 6,7 - объемная укладка волокон

или иную композицию, получили название композиционные материалы (рис. 196).

Волокнистые композиционные материалы. На рис. 196 приведены схемы армирования волокнистых композиционных материалов. Композиционные материалы с волокнистым наполнителем (упрочнителем) по механизму армирующего действия делят на дискретные, в которых отношение длины волокна к диаметру и с непрерывным волокном, в которых Дискретные волокна располагаются в матрице хаотично. Диаметр волокон от долей до сотен микрометров. Чем больше отношение длины к диаметру волокна, тем выше степень упрочнения.

Часто композиционный материал представляет собой слоистую етруктуру, в которой каждый слой армирован большим числом параллельных непрерывных волокон. Каждый слой можно армировать также непрерывными волокнами, сотканными в ткань, которая представляет собой исходную форму, по ширине и длине соответствующую конечному материалу. Нередко волокна сплетают в трехмерные структуры.

Композиционные материалы отличаются от обычных сплавов более высокими значениями временного сопротивления и предела выносливости (на 50-100 %), модуля упругости, коэффициента жесткости () и пониженной склонностью к трещинообразованию. Применение композиционных материалов повышает жесткость конструкции при одновременном снижении ее металлоемкости.

Таблица 44 (см. скан) Механические свойства композиционных материалов на металлической основе

Прочность композиционных (волокнистых) материалов определяется свойствами волокон; матрица в основном должна перераспределять напряжения между армирующими элементами. Поэтому прочность и модуль упругости волокон должны быть значительно больше, чем прочность и модуль упругости матрицы. Жесткие армирующие волокна воспринимают напряжения, возникающие в композиции при нагружении, придают ей прочность и жесткость в направлении ориентации волокон.

Для упрочнения алюминия, магния и их сплавов применяют борные и углеродные волокна, а также волокна из тугоплавких соединений (карбидов, нитридов, боридов и оксидов), имеющих высокие прочность и модуль упругости. Так, волокна карбида кремния диаметром 100 мкм имеют Нередко используют в качестве волокон проволоку из высокопрочных сталей.

Для армирования титана и его сплавов применяют молибденовую проволоку, волокна сапфира, карбида кремния и борида титана.

Повышение жаропрочности никелевых сплавов достигается армированием их вольфрамовой или молибденовой проволокой. Металлические волокна используют и в тех случаях, когда требуются высокие теплопроводность и электропроводимость. Перспективными упрочнителями для высокопрочных и высокомодульных волокнистых композиционных материалов являются нитевидные кристаллы из оксида и нитрида алюминия, карбида и нитрида кремния, карбида бора и др., имеющие

В табл. 44 приведены свойства некоторых волокнистых композиционных материалов.

Композиционные материалы на металлической основе обладают высокой прочностью и жаропрочностью, в то же время они малопластичны. Однако волокна в композиционных материалах уменьшают скорость распространения трещин, зарождающихся в матрице, и практически полностью исключают внезапное

Рис. 197. Зависимость модуля упругости Е (а) и временного сопротивления (б) бороалюминиевого композиционного материала вдоль (1) и поперек (2) оси армирования от объемного содержания борного волокна

хрупкое разрушение. Отличительной особенностью одноосных волокнистых композиционных материалов являются анизотропия механических свойств вдоль и поперек волокон и малая чувствительность к концентраторам напряжения.

На рис. 197 приведена зависимость и Е бороалюминиевого композиционного материала от содержания борного волокна вдоль (1) и поперек оси армирования. Чем больше объемное содержание волокон, тем выше и Е вдоль оси армирования. Однако необходимо учитывать, что матрица может передавать напряжения волокнам только в том случае, когда существует прочная связь на поверхности раздела армирующее волокно - матрица. Для предотвращения контакта между волокнами матрица должна полностью окружать все волокна, что достигается при содержании ее не менее 15-20 %.

Матрица и волокно не должны между собой взаимодействовать (должна отсутствовать взаимная диффузия) при изготовлении или эксплуатации, так как это может привести к понижению прочности композиционного материала.

Анизотропия свойств волокнистых композиционных материалов учитывается при конструировании деталей для оптимизации свойств путем согласования поля сопротивления 6 полями напряжения.

Армирование алюминиевых, магниевых и титановых сплавов непрерывными тугоплавкими волокнами бора, карбида кремния, диборида титана и оксида алюминия значительно повышает жаропрочность. Особенностью композиционных материалов является малая скорость разупрочнения во времени (рис. 198, а) с повышением температуры.

Рис. 198. Длительная прочность бороалюминиевого композиционного материала, содержащего 50% борного волокна, в сравнении с прочностью титановых сплавов (а) и длительная прочность никелевого композиционного материала в сравнении с прочностью дисперсионно-твердеющих сплавов (б): 1 - бороалюминиевый композит; 2 - титановый сплав; 3 - дисперсионно-упрочненный композиционный материал; 4 - дисперснонно-твердеющие сплавы

Основным недостатком композиционных материалов одно- и двумерным армированием является низкое сопротивление межслойному сдвигу и поперечному обрыву. Этого недостатка лишены материалы в объемным армированием.

Дисперсно-упрочненные композиционные материалы. В отличие от волокнистых композиционных материалов в дисперсно-упрочненных композиционных материалах матрица является основным элементом, несущим нагрузку, а дисперсные частицы тормозят движение в ней дислокаций. Высокая прочность достигается при размере частиц 10-500 нм при среднем расстоянии между ними 100-500 нм и равномерном распределении их в матрице. Прочность и жаропрочность в зависимости от объемного содержания упрочняющих фаз не подчиняются закону аддитивности. Оптимальное содержание второй фазы для различных металлов неодинаково, но обычно не превышает

Использование в качестве упрочняющих фаз стабильных тугоплавких соединений (оксиды тория, гафния, иттрия, сложные соединения оксидов и редкоземельных металлов), нерастворяющихся в матричном металле, позволяет сохранить высокую прочность материала до . В связи с этим такие материалы чаще применяют как жаропрочные. Дисперсно-упрочненные композиционные материалы могут быть получены на основе большинства применяемых в технике металлов и сплавов.

Наиболее широко используют сплавы на основе алюминия - САП (спеченный алюминиевый порошок). САП состоит из алюминия и дисперсных чешуек Частицы эффективно тормозят движение дислокаций и тем самым повышают прочность

сплава. Содержание в САП колеблется от и до С увеличением содержания повышается от 300 для до для а относительное удлинение соответственно снижается с 8 до 3 %. Плотность этих материалов равна плотности алюминия, они не уступают ему по коррозионной стойкости и даже могут заменять титан и коррозионно-стойкие стали при работе в интервале температур По длительной прочности они превосходят деформируемые алюминиевые сплавы. Длительная прочность для сплавов при составляет

Большие перспективы у никелевых дисперсно-упрочненных материалов. Наиболее высокую жаропрочность имеют сплавы на основе никеля с 2-3 об. двуоксида тория или двуоксида гафния. Матрица этих сплавов обычно -твердый раствор Широкое применение получили сплавы (никель, упрочненный двуокисью тория), (никель, упрочненный двуокисью гафния) и (матрица упрочненная окисью тория). Эти сплавы обладают высокой жаропрочностью. При температуре сплав имеет сплав Дисперсно-упрочненные композиционные материалы, так же как волокнистые, стойки к разупрочнению с повышением температуры и длительности выдержки при данной температуре (см. рис. 198).

Области применения композиционных материалов не ограничены. Они применяются в авиации для высоконагруженных деталей самолетов (обшивки, лонжеронов, нервюр, панелей и т. д.) и двигателей (лопаток компрессора и турбины и т. д.), в космической технике для узлов силовых конструкций аппаратов, подвергающихся нагреву, для элементов жесткости, панелей, в автомобилестроении для облегчения кузовов, рессор, рам, панелей кузовов, бамперов и т. д., в горной промышленности (буровой инструмент, детали комбайнов и т. д.), в гражданском строительстве (пролеты мостов, элементы сборных конструкций высотных сооружений и т. д.) и в других областях народного хозяйства.

Применение композиционных материалов обеспечивает новый качественный скачок в увеличении мощности двигателей, энергетических и транспортных установок, уменьшении массы машин и приборов.

Технология получения полуфабрикатов и изделий из композиционных материалов достаточно хорошо отработана.

ОБЩАЯ ХАРАКТЕРИСТИКА И КЛАССИФИКАЦИЯ

Традиционно применяемые металлические и неметаллические материалы в значительной мере достигли своего предела конструктивной прочности. Вместе с тем развитие современной техники требует создания материалов, надежно работающих в сложной комбинации силовых и температурных полей, при воздействии агрессивных сред, излучений, глубокого вакуума и высоких давлений. Зачастую требования, предъявляемые к материалам, могут носить противоречивый характер. Решение этой задачи можно осуществить путем использования композиционных материалов.

Композиционным материалом (КМ) или композитом называют объемную гетерогенную систему, состоящую из сильно различающихся по свойствам, взаимно нерастворимых компонентов, строение которой позволяет использовать преимущества каждого из них.

Принцип построения КМ человек заимствовал у природы. Типичными композиционными материалами являются стволы деревьев, стебли растений, кости человека и животных.

КМ позволяют иметь заданное сочетание разнородных свойств: высокой удельной прочности и жесткости, жаропрочности, износостойкости, теплозащитных свойств и др. Спектр свойств КМ невозможно получить при использовании обычных материалов. Их применение дает возможность создавать ранее недоступные, принципиально новые конструкции.

Благодаря КМ стал возможен новый качественный скачок в увеличении мощности двигателей, уменьшении массы машин и конструкций и повышении весовой эффективности транспортных средств и авиационно-космических аппаратов.

Важными характеристиками материалов, работающих в этих условиях, являются удельная прочность σ в /ρ и удельная жесткость Е /ρ, где σ в - временное сопротивление, Е - модуль нормальной упругости, ρ – плотность материала.

Высокопрочные сплавы, как правило, имеют низкую пластичность, высокую чувствительность к концентраторам напряжений и сравнительно низкое сопротивление развитию трещин усталости. Хотя композиционные материалы могут иметь также невысокую пластичность, они значительно менее чувствительны к концентраторам напряжений и лучше сопротивляются усталостному разрушению. Это объясняется разным механиз-мом образования трещин у высокопрочных сталей и сплавов. В высокопрочных сталях трещина, достигнув критического размера, в дальнейшем развивается прогрессирующим темпом.

В композиционных материалах действует другой механизм. Трещина, двигаясь в матрице, встречает препятствие на границе раздела матрица-волокно. Волокна тормозят развитие трещин, и их присутствие в пластичной матрице приводит к росту вязкости разрушения.

Таким образом, в композиционной системе сочетаются два противоположных свойства, необходимых для конструкционных материалов - высокая прочность за счет высокопрочных волокон и достаточная вязкость разрушения благодаря пластичной матрице и механизму рассеяния энергии разрушения.

КМ состоят из сравнительно пластичного матричного материала-основы и более твердых и прочных компонентов, являющихся наполнителя-ми. Свойства КМ зависят от свойств основы, наполнителей и прочности связи между ними.

Матрица связывает композицию в монолит, придает ей форму и служит для передачи внешних нагрузок арматуре из наполнителей. В зависимости от материала основы различают КМ с металлической матрицей, или металлические композиционные материалы (МКМ), с полимерной - полимерные композиционные материалы (ПКМ) и с керамической - керамические композиционные материалы (ККМ).

Ведущую роль в упрочнении КМ играют наполнители, часто называемые упрочнителями . Они имеют высокую прочность, твердость и модуль упругости. По типу упрочняющих наполнителей КМ подразделяют на дисперсноупрочненные ,волокнистые и слоистые (рис. 28.2).

Рис. 28.2. Схемы строения композиционных материалов: а ) дисперсноупрочненные; б ) волокнистые; в ) слоистые

В дисперсноупрочненные КМ искусственно вводят мелкие, равномерно распределенные тугоплавкие частицы карбидов, оксидов, нитридов и др., не взаимодействующие с матрицей и не растворяющиеся в ней вплоть до температуры плавления фаз. Чем мельче частицы наполнителя и меньше расстояние между ними, тем прочнее КМ. В отличие от волокнистых, в дисперсноупрочненных КМ основным несущим элементом является матрица. Ансамбль дисперсных частиц наполнителя упрочняет материал за счет сопротивления движению дислокаций при нагружении, что затрудняет пластическую деформацию. Эффективное сопротивление движению дислокаций создается вплоть до температуры плавления матрицы, благодаря чему дисперсноупрочненные КМ отличаются высокой жаропрочностью и сопротивлением ползучести.

Арматурой в волокнистых КМ могут быть волокна различной формы: нити, ленты, сетки разного плетения. Армирование волокнистых КМ может осуществляться по одноосной, двухосной и трехосной схеме (рис. 28.3, а ).

Прочность и жесткость таких материалов определяется свойствами армирующих волокон, воспринимающих основную нагрузку. Армирование дает больший прирост прочности, но дисперсное упрочнение технологически легче осуществимо.

Слоистые композиционные материалы (рис. 28.3, б ) набираются из чередующихся слоев наполнителя и матричного материала (типа «сэндвич»). Слои наполнителя в таких КМ могут иметь различную ориентацию. Возможно поочередное использование слоев наполнителя из разных материалов с разными механическими свойствами. Для слоистых композиций обычно используют неметаллические материалы.

Рис. 28.3. Схемы армирования волокнистых (а ) и слоистых (б ) композиционных материалов

ДИСПЕРСНОУПРОЧНЕННЫЕ КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ

При дисперсном упрочнении частицы блокируют процессы скольжения в матрице. Эффективность упрочнения, при условии минимального взаимодействия с матрицей, зависит от вида частиц, их объемной концентрации, а также равномерности распределения в матрице. Применяют дисперсные частицы тугоплавких фаз типа Al 2 O 3 , SiO 2 , BN, SiC, имеющие малую плотность и высокий модуль упругости. КМ обычно получают методом порошковой металлургии, важным преимуществом которого является изотропность свойств в различных направлениях.

В промышленности обычно применяют дисперсноупрочненные КМ на алюминиевой и, реже, никелевой основах. Характерными представителями этого вида композиционных материалов являются материалы типа САП (спеченная алюминиевая пудра), которые состоят из алюминиевой матрицы, упрочненной дисперсными частицами оксида алюминия. Алюминиевый порошок получают распылением расплавленного металла с последующим измельчением в шаровых мельницах до размера около 1 мкм в присутствии кислорода. С увеличением длительности помола пудра становится мельче и в ней повышается содержание оксида алюминия. Дальнейшая технология производства изделий и полуфабрикатов из САП включает холодное прессование, предварительное спекание, горячее прессование, прокатку или выдавливание спеченной алюминиевой заготовки в форме готовых изделий, которые можно подвергать дополнительной термической обработке.

Сплавы типа САП удовлетворительно деформируются в горячем состоянии, а сплавы с 6–9 % Al 2 O 3 - и при комнатной температуре. Из них холодным волочением можно получить фольгу толщиной до 0,03 мм. Эти материалы хорошо обрабатываются резанием и обладают высокой коррозионной стойкостью.

Марки САП, применяемые в России, содержат 6–23 % Al 2 O 3 . Различают САП-1 с содержанием 6–9, САП-2 - с 9–13, САП-3 - с 13–18 % Al 2 O 3 . С увеличением объемной концентрации оксида алюминия возрастает прочность композиционных материалов. При комнатной температуре характеристики прочности САП-1 таковы: σ в = 280 МПа, σ 0,2 = 220 МПа; САП-3 таковы: σ в = 420 МПа, σ 0,2 = 340 МПа.

Материалы типа САП обладают высокой жаропрочностью и превосходят все деформируемые алюминиевые сплавы. Даже при температуре 500 °С их σ в не менее 60–110 МПа. Жаропрочность объясняется тормозящим действием дисперсных частиц на процесс рекристаллизации. Характеристики прочности сплавов типа САП весьма стабильны. Испытания длительной прочности сплавов типа САП-3 в течение 2 лет практически не повлияли на уровень свойств как при комнатной температуре, так и при нагреве до 500 °С. При 400 °С прочность САП в 5 раз выше прочности стареющих алюминиевых сплавов.

Сплавы типа САП применяют в авиационной технике для изготовления деталей с высокой удельной прочностью и коррозионной стойкостью, работающих при температурах до 300–500 °С. Из них изготавливают штоки поршней, ло-патки компрессоров, оболочки тепловыделяющих элементов и трубы теплообменников.

Методом порошковой металлургии получают КМ с использованием дисперсных частиц карбида кремния SiC. Химическое соединение SiC обладает рядом положительных свойств: высокой температурой плавления (более 2650 °С), высокой прочностью (около 2000 МПа) и модулем упругости (» 450 ГПа), малой плотностью (3200 кг/м 3) и хорошей коррозионной стойкостью. Выпуск абразивных порошков кремния освоен промышленностью.

Порошки алюминиевого сплава и SiC смешивают, подвергают предварительному компактированию под небольшим давлением, затем горячему прессованию в стальных контейнерах в вакууме при температуре плавления матричного сплава, т. е. в твердо-жидком состоянии. Полученную заготовку подвергают вторичной деформации с целью получения полуфабрикатов необходимой формы и размера: листов, прутков, профилей и др.

К этому виду композиционных материалов относятся материалы типа САП (спеченная алюминиевая пудра), которые представляют собой алюминий, упрочненный дисперсными частицами оксида алюминия. Алюминиевый порошок получают распылением расплавленного металла с последующим измельчением в шаровых мельницах до размера около 1 мкм в присутствии кислорода. С увеличением длительности помола пудра становится мельче и в ней повышается содержание оксида алюминия. Дальнейшая технология производства изделий и полуфабрикатов из САП включает холодное прессование, предварительное спекание, горячее прессование, прокатку или выдавливание спеченной алюминиевой заготовки в форме готовых изделий, которые можно подвергать дополнительной термической обработке.

Сплавы типа САП применяют в авиационной технике для изготовления деталей с высокой удельной прочностью и коррозионной стойкостью, работающих при температурах до 300–500 °С. Из них изготавливают штоки поршней, лопатки компрессоров, оболочки тепловыделяющих элементов и трубы теплообменников.

Армирование алюминия и его сплавов стальной проволокой повышает их прочность, увеличивает модуль упругости, сопротивление усталости и расширяет температурный интервал службы материала.

Армирование короткими волокнами проводят методами порошковой металлургии, состоящими из прессования с последующей гидроэкструзией или прокаткой заготовок. При армировании непрерывными волокнами композиций типа сэндвич, состоящих из чередующихся слоев алюминиевой фольги и волокон, применяют прокатку, горячее прессование, сварку взрывом, диффузионную сварку.

Весьма перспективным материалом является композиция «алюминий – бериллиевая проволока», в которой реализуются высокие физико-механические свойства бериллиевой арматуры, и в первую очередь, ее низкая плотность и высокая удельная жесткость. Получают композиции с бериллиевой проволокой диффузионной сваркой пакетов из чередующихся слоев бериллиевой проволоки и матричных листов. Из алюминиевых сплавов, армированных стальной и бериллиевой проволоками, изготавливают корпусные детали ракет и топливные баки.

В композиции «алюминий – углеродные волокна»сочетание низкой плотности арматуры и матрицы позволяет создать композиционные материалы с высокой удельной прочностью и жесткостью. Недостатком углеродных волокон является их хрупкость и высокая реакционная способность. Композицию «алюминий – углерод» получают пропиткой углеродных волокон жидким металлом или методами порошковой металлургии. Технологически наиболее просто осуществимо протягивание пучков углеродных волокон через расплав алюминия.

Композит «алюминий – углерод» применяют в конструкциях топливных баков современных истребителей. Благодаря высокой удельной прочности и жесткости материала масса топливных баков уменьшается на
30 %. Этот материал используют также для изготовления лопаток турбин авиационных газотурбинных двигателей.